
                                                                                                                                    

Shift operator techniques for the classification of multi pole-phonon states: 
IV. Properties of shift operators in the G2 group 
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A previously developed shift operator method is applied to the G2 group, which plays an 
important role in the classification of nuclear octupole-phonon states. Expressions which connect 
quadratic products of the considered shift operators with G2 invariants are derived. 

1. INTRODUCTION 

The shift operator method, previously introduced by 
Hughes et al. ' ·

2 and recently applied by the present au
thors3

-
5 to solve the state labeling problem of the nuclear 

quadrupole-phonon states, will be developed here with a 
view to obtaining an orthogonal specification of the octu
pole-phonon states. The symmetry group of the octupole 
Hamiltonian is the U(7) group, whose symmetric represen
tations play an important role in the classification of the 
considered phonon states. Obviously, seven labels are need
ed to classify these states. Four of them are related to the 
Casimir operators of groups appearing in the chain 

U(7):J SU(7):J R(7):J G2:J R(3):J R(2), (1.1) 

i.e., the boson number Nfor U(7), the seniority ufor R(7), the 
angular momentum I for R(3), and its projection m for R(2). 
The SU(7) and G2 labels are redundant for the symmetric 
representations. For the other three internal labels Roho
zinsky6 has proposed the number of quartets and sextets of 
phonons coupled to spin zero and a nonphysical label defin
ing a residual factor. These three labels however are not re
lated with the eigenvalue of an operator. 

Hughes's technique ' ,2 provides us with R(3) scalar op
erators which can playa fundamental role in the orthogonal 
specification of the states considered. The apparatus for ob
taining their eigenvalues in an analytic way consists of the 1-
shift operators. The mentioned method can be applied to any 
group possessing a R(3) subgroup. It is evident that one 
starts with the group with the smallest number of generators, 
i.e., G2 • The Lie algebra consists of the generators Ij 
(i = 0, ±) ofR(3) and the components PI' (J.t = -5, ... ,5) of 
an II-dimensional irreducible representation ofR(3). These 
group generators are defined in terms of the creation (b 3~) 
and annihilation [( - 1 Vb) -I'] operators of the octupole
phonon states by Weber et al.7 Since Hughes and Yadegar2 
assume that the PI' and the generators 10 , I ± ofR(3) satisfy 
the standard commutation relations 

[/± 'PI' 1 = [(5 + Jl)(6±Jl)]1/2pl'± I' 

[/0' PI' ] = JlP/L' 

(1.2) 

(1.3) 

a little different form for these generators has to be intro
duced, namely 

"'Qualified researcher N.F.W.O. (Belgium). 

10 = - 2V7(b / b3)b, I ± = ± 2V14(b 3+ b3)1± 1 (1.4) 

PI' = (b 3+ b3)~' with Jl = -5, ... ,5. (1.5) 

2. EXPLICIT FORMS FOR THE G2 SHIFT OPERATORS 

For the construction of the R(5) shift operators (Ref. 3, 
to be referred to as I), use has been made of the general 
expressions derived for any arbitrary (2j +1) dimensional 
tensor representation ofR(3). This way of working is only 
interesting if analytic expressions for the occurring 3-j sym
bols are available in the literature. As far as we know this is 
not the case for the 3-j symbols appearing in the present 
investigation. Therefore we have preferred to use an alterna
tive method of determining the shift operators, denoted as 
p 7, by requiring that 

[L 2,P7]=k(k+2/+1)P7 for k=O,I,2,3,4,5. (2.1) 

This method has firstly been used by Hughes ' in the SU(3) 
case. Here I (l + 1) is the eigenvalue of the R(3) Casimir oper
ator L 2. It is assumed that the operators P 7 shift the I value 
by k, without altering the eigenvalue of 10 , We also require 
P 7 to depend linearly on PI" and therefore we choose its form 
as 

P7 = apo + b (p + ,/_ ±P _, 1+) 

+C(P+2/2_ ±P_2[2+)+d(p+3[3_ ±P_3/3+) 

+e(p+41~ ±p_4/~)+f(p+5/s_ ±p_s/s+), 
(2.2) 

where the upper sign is valid for odd k and the lower sign for 
even k ("a" becoming zero in the latter case). this sign con
vention follows directly from the general formula (1.1.4) and 
form the symmetry relation for 3-j symbols. Introducing 
(2.2) into (2.1), one may solve for each k value a, b, c, d,e, and 
fin terms of / and m. On the other hand the expression for 
P ,- k(k > 0) follows immediately due to the relation2 

P,-k=pk_(l+I)' (2.3) 

The explicit expressions of these operators involve the / 
and m values of the states upon which they act. In order, 
however, to considerably simplify their calculation we have 
restricted our considerations to the case when they act on 
states of zero m value. Since the study of the considered shift 
operators is closely related to the derivation of the P ~ eigen
values, which are independent of m 2

, this seemingly drastic 
condition will not seriously detract from the generality of 
subsequent calculations. The following results 
are finally obtained: 
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pO_ . y'2y'5 
1- - y'3y'7 

X(/-I)(/-2)(/+2)(/+3)( p+I/_ -P_I/+) 

+ ~: (/-2)(1+3)(P+2f2_ -P_2f2+) 

+ ~ 5 
(/2 + I - 24)( P + 3 /3_ - P _ 3 13

+ ) 

-2y'2y'5(p+4/~ -P_4/ 4+)-(p+s/ s_ -p_s/ s+), 

P/I/(I + 1) 

2 y'2 

(2.4) 

= y'7 1 (/-1)(1 + 1)(1 + 2)(1 + 3)po + 
y'3v'i5y' 7 

X (/- 1)(1 + 2)(1 + 3)(/- 14)( P + 1/_ + P _II + ) 

-2 y'~~5 (I +3)(/
2 
+3/-13)( P+2[2_ +P_2[2+) 

- ; 5 (/ 2 
- 71 - 48)( P + 3 [3_ + P _ 3 [3+ ) 

+ ~~ (/+ll)(p+4/~ +P-4 /\) 

+(p+s/ s_ +p_s/ s+), (2.5) 

p +2/(1 + 1)(1 +2) = _ y'2y'7 
1 y'3y'5 

X(/-l)(I+2)(/+3)(/+4)( p+J- -p_I/+) 

y'2 (/+3)(/+4)(2/-11)(p+2/2 _p 2/2+) 
y'3y'5 - -

+ ;5 (/+4)(/+17)(p+3[3_ -P_3 /3+) 

+ ~~ (2/+ 13)(p+4/4_ -P_4/4+) 

+(P+5/5_ -P_5 /5+), 

P/3/(1+1)(I+2)(1+3)= _ 2y'7 
3 

X 1 (I + 1)(1 + 2)(1 + 3)(1 +4)po 

(2.6) 

~~~~ (I + 2)(1 - 3)(1 + 3)(1 + 4)( P + I 1 _ + P _ I 1+ ) 

+ 2y'2 (I + 3)(1 +4)(1 + 12)( P +2/2_ + P 2/2+) 
y'3y'5 -

1 
+ 3y'5 (I +4)(131 + 81)( P +3 [3_ + P -3 [3+) 

+ ~~ (3/+16)(p+4/~ +p_4/4+) 

+(p+s/ S
_ +p_s/ S+), 

p 1+4/(1 + 1)(1 + 2)(1 + 3)(1 + 4) = 
y'2y'3y'7 

y'5 

X (I + 2)(1 + 3)(1 + 4)(1 + 5)( P + I 1_ - P _ I 1+ ) 

(2.7) 

+ 4y'2y'3 (/+3)(/+4)(/+5)( P+2[2_ -P 2/2+) 
y'5 -

+ :5 (l+4)(1+5)(p+3 /3_ -P_3 /3+) 
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+ 4y'2 (/+5)(p+4/4 -P-4 /\) 
y'5 -

+ (p + 5 I 5_ - P _ 5 I 5_ ), 

P 1+ 5/(1 + 1)(1 + 2)(1 + 3)(1 +4)(1 + 5) 

= 6y'7(1 + 1)(1 +2)(1 + 3)(1 +4)(1 + 5)po 

+y'2y'3y'5y'7 

(2.8) 

X (I + 2)(1 + 3)(1 + 4)(1 + 5)( P + I 1_ + P _ J 1 + ) 

+2y'2y'3y'5(1 + 3)(1 +4)(1 +5)( p+2/2. +P_2/2+) 

+ 3y'5(1 +4)(1 +5)( p+3/~ +P_3 /3+) 

+y'2y'5(/+5)(p+4 /4. +P-4 /\) 

+ (p + 5 [5.. + P _ 5 I 5+ ). (2.9) 

3. THE PRODUCT OPERATORS AND THEIR MUTUAL 
RELATIONS 

With the aid of the introduced P 7, various scalar R(3) 
operators which obviously commute with L 2 and 10 can be 
constructed. As in the quadrupole case3 we shall be con
cerned with the ones of the type P /·/k P / k. Because of their 
scalar character these quadratic operators must be express
ible in terms of the other available scalar operators, i.e., L 2, 

10 , p~, and the G2 second-order Casimir operator defined by8 

5 

V* = - M 2 - L (-I)1'pl"p _1"' (3.1) 
I" ~ -5 

having an eigenvalue of - tv(v + 5). (In the G2 group a 
sixth-order Casimir operator exists. For symmetric repre
sentations however it is not independent of V*.) This result 
can be derived from the general expression given by Judd8 

for an arbitrary irreducible representation. In Appendix A 
we present a derivation for that eigenvalue by making use of 
pure Racah algebraic techniques. 

The quadratic product operators P I~ kk P / k consist of 
terms composed of two PI" and ten or less Ij operators. In 
order to reach a one-to-one relation between all before-men
tioned scalar operators it is clear that all operators should be 
brought into a so-called standard form. The procedure to 
reach that standard form has been discussed in I. To perform 
that operation explicit use has been made of the commuta
tion relations between the several components of the p-oper
ator. These relations are summarized in Appendix B. It was 
now rather straightforward to observe that in order to 
acheive proper relations between the various operators one 
needs six of the eleven product operators. By this it also 
follows that among the various relations which can be con
structed only six independent ones exist. Since we are inter
ested in the P? eigenvalues, we have retained in each relation 
the (P ?)2 term. For the other five product operators we have 
chosen in a first relation k = 1,2,3,4, and 5 in a second 
relation k = 1,2,3,4, -1, and in a third relation k = 1,2,3, 
-1, -2. By using afterwards the fact that every P / k goes 

over in a P 1 k on replacing I by - (I + 1), one easily deduces 
from the first three constructed relations three other useful 
equations. The following relations could be finally 
withdrawn: 
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8 5(21 + 3)(21 + 17) _ 1 1 
3(21 + 7)2(P'!'i + 7113 (/ + 1)(1 + 2)(/ + 3)(21 + 3)(21 + 5)(21 + 7)2 P7 + (/ + li PI + 1 P / 

20 (/+9)(2/+5)(2/+17) p-2 p+2 15 (/+6)(2/+3)(2/+7)(2J2+27/+151) p-3 p+3 
+ 7 (/ + 1)(1 +2)2(1 +4)2 1+2 I + -:;- (I + 1)(/ +2)2(1 +3)2(/ +4)2(21 +9f 1+3 I 

5 (21 + 3)(21 + 17)(21 3 + 27/2 + 1661 +435) P -4 p +4 

+ 21 (/+l)(/+2)(/+3)2(/+4t(l+5)2(2/+9) 1+4 I 

1 (21 + 3)(21 + 5)(2/4 + 39/ 3 + 298[2 + 11011 + 1890) P 1~55 P /5 
+ 2t (I + 1)(1 + 2)(1 + 3)2(/ + 4t(1 + 5t(21 + 9)2 

+ ~ (I + 1 f(l + 2)2(1 + 3)2(21 + 3)2(21 + 5)2(21 + 7)2 V· 
21 

+ _4_1 (I + 1)2(1 + 2)2(1 + 3)2(21 + 3)2(21 + 5f(21 + 7)2(1 + 16) = 0, 
147 

(3.2) 

9(1 + 3)(21 + 1 )(21 + 7)(41 3 + 56/ 2 + 2831 + 630)( P 7)2 

8 1 (I + 1)(1 + 2)(1 + 3)(21 + 1)(21 + 3)(21 + 5)(21 + 7) (4/5 + 88/ 4 + 79113 + 3692[2 + 86551 + 9450) P? 
35113 (I +5) 

.:../~(2::.../...:...+....:.3~)(~4/~5......:+~6O:....:.:....-/4_---=-1O....:.5.:....f3_-----:::5.:....:.13_5/_2_-_2_9_5_44_1_-_604_8_0-,--) P I~\ P /1 
(I + 1)2 

41 (21 + 1)(21 + 5)(21 + 9) (4/5 +64/4. + 251/3 _ 874/2 _ 8715/-18900) P 1~22 P /2 
(I + 1 )2(1 + 2)2(1 + 4)(1 + 5)(21 + 7) 

18/(21 + 1) (4/4 +46/ 3 + 1161 2 -271/-1470) P I-\P t 3 

(I + 1)(1 + 2f(1 + 3)2(1 + 4f + 

+ 6/(2/+1)(2/+3) (-81 4 -861 3-2771 2-49l+1050) P/~~P/4 
(I + 1)(1 + 2)2(1 + 3)2(1 + 4 t(l + 5)(21 + 7) 

+ (I + 3f(21 + 5)(21 + 7) (2/4 + 39/3 +298/2 + 11011 + 1890) P ~l P -I 
12(1 + 5) I 1 I 

96 12(1 + 1)2(1 + 2)2(1 + 3)2(2/ + 1 )(21 + 3)2(21 + 5)2(21 + 7) V. 
+ (I+~ 

4 12(1 + 1)2(1 + 2?(1 + 3)2(21 + 1)(21 + 3)2(21 + 5)2(21 + 7) 

735 (I +5) 

X (4/ 5 + 88/ 4 + 7911 3 + 3062J2 - 7951 + 9450) = 0, (3.3) 

(I + 3)(21 + 5)(24/6 + 2601 5 + 326/ 4 - 50851 3 - 1741712 + 23621 + 47880)( p7)2 

1969 

8 I (I + 1)(1 + 2)(1 + 3)(2/- 1)(21 + 3)(21 + 5) 
315V3 

X (241 7 +292/ 6 + 13261 5 +2947/ 4 +4965/ 3 +3196/ 2 -222001 -56700) P? 

- (/ +3)(2/-1)(21 +3) (12/7 + 1001 6 -97915 _ 87211 4 +2434[3 + 111404/ 2 + 858001- 315000) P I~\ P /1 
9(1 + 1)2(21 + 1) 

+ 21 (21-1)(21 + 5) (_ 32/6 -164P + 1040/ 4 + 3905/ 3 -10308[2 __ 26541/ +40500) P 1~22 P /2 
9(1 + 1)2(1 +2?(21 + 1) 

2/(/-1)(2/-1) (414 + 81 3 -49/ 2 -531 +300) p -3 P +3 
(I + 1 )2(1 + 2)2(1 + 3? 1+3 I 

- (/+ 3)2(2/-1)(21 + 5) ( _ 12/7 _ 160/ 6 -751 5 + 7133/ 4 + 36063/ 3 + 43517[2 _ 75126/-143640) P I~\ PI-I 
9/ 2(1-1)(21 + 1) 

_ 2(1 + 2)(1 + 3)2(21 + 3)(21 + 5)2 (8/4 + 86/3 + 277/2 + 49/- 1050) P +2 p -2 
9[2(1-1)3(21 + 1) 1-2 I 

- .E:. J2(/ + 1)2(/ + 2)2(/ + 3)2(/-1 )(21-1)2(21 + 3)2(21 + 5)2V. 
3 

- _4_/2(1 + 1)2(/ +2)2(1 + 3)2(/ -1)(2/-1)2(21 + 3)2(21 + 5l(4/ 5 + 36/ 4 + 71 3 _ 71112 - 3861-4200) = 0, 
2205 
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3(2/- 5)2(P7)2 - 7~3 1(1- 1)(/- 2)(2/-1)(2/- 3)(2/- 5f P? + 5(21- 1~~2/-15) P I~\ PI-I 

+ ~ (/- 8)(2/- 3)(2/-15) P +2 P -2 + 15 (/- 5)(2/-1)(2/- 5)(2/2 -231 + 126) P 1~33P 1- 3 
7 1(/-1)2(/-3)2 1-2 I 7 1(/-lf(l-2)2(1-3f(2/-7)2 

+ _5_ (2/-1)(2/-15)(2[3 -2112 + 118/-294) P +4 P -4 
21 1(/-1)(1-2)2(/-3)4(/-4)2(2/_7) 1-4 I 

+ _1_ (2/-1)(2/- 3)(2/4 - 311 3 + 193/ 2 - 6141 + 1050) P I~SS P I- s 
21 1 (I - 1 )(/ - 2)2(1 - 3t(1 - 4)4(2/ - 7)2 

+ ~ 12(1 - 1 )2(1 - 2)2(21 - 1 )2(21 - 3)2(21 _ 5)2 V. 
21 

+ _4_ (/ + 1 )/2(1 - 1 )2(1 - 2)2(21 - 1)2(2/ _ 3)2(2/ - 5)2(/ - 15) = 0, (3.5) 
147 

9(1 - 2)(2/ + 1 )(2/ - 5)(4/ 3 - 44/ 2 + 183/ - 399)( P 7)2 

8 (I + 1)/(/ -1)(1-2)(2/ + 1)(2/ -1)(2/ -3)(2/-5) (4/5 -68/ 4 +479[3 -1807/2 +3312/-3780) P? 
- 35'\1'3 (/ - 4) 

(I + 1)(2/ - 1)(41 5 _40/ 4 - 3051 3 +45001 2 - 198091 + 35910) P + I P ~ I 
+ /2 I~I I 

_ 4(1 + 1)(21 + 1)(21- 3)(2/-7) (4/5 _44/4 + 35/ 3 + 1283[2 _ 64501 + 11250) P 1~22 P ,-2 
[2(/- 1)2(/ - 3)(1- 4)(2/ - 5) 

18(/ + 1)(21 + 1) (4/4 -30[3 +2/2 +3811-1125) P/~33PI~3 
+ 1 (/- 1)2(/ - 2)2(/_ 3)2 

6(1 + 1)(2/ + 1)(2/-1) ( _ 8/4 + 54[3 _ 67/ 2 _ 2791 + 900) P ,~~ P 1~4 
+ 1 (/ - 1 )2(/ - 2)2(/ - 3)4(/ - 4)(21 - 5) 

(/- 2l(2/- 3)(2/- 5) (2/4 + 311 3 + 1931 2 _ 6141 + 1050) P i+\ P 1+ I 

(I + 1)2(/-4) 

96(1 + 1 )212(/ - 1 )2(1 - 2)2(2/ + 1 )(2/ - 1)2(21 - 3)2(21 - 5) V. 

(/-4 ) 

4 (I + 1 )2/2(1 - 1 f(1 - 2f(21 + 1 )(21 - 1 )2(21 - 3)2(2/ - 5) 

- 735 (/ -4) 

X(4/ 5 - 681 4 + 479[3 - 1177/2 - 4878/ - 12600) = 0, (3.6) 

(/ -2)(2/ -3)(24/ 6 -116/ 5 -614/4 +42691 3 -2446/ 2 -21793/ +33276)( P7)2 

1970 

8 (I + 1)1 (1- 1)(/- 2)(2/ + 3)(2/ -1)(2/ - 3) 
315'\1'3 

X (24[1 -124/ 6 +781 5 + 143/ 4 + 1437[3 +34011 2 -20439/ +34380) P? 

+ (/ - 2)(2/ + 3)(2/-1) (12/7 _ 16/ 6 _ 1327/5 + 2746/ 4 + 25948/ 3 - 62814/ 2 - 100233/ + 299484) P I~\ P i- I 

9/ 2(21 + 1) 

2(/ + 1)(2/ + 3)(2/ - 3) ( _ 32/6 _ 28/ 5 + 1380/ 4 + 1255[3 _ 14623/ 2 _ 1002/ + 54000) P 1~22 P 1~2 
+ 9/ 2(/ _1)2(2/ + 1) 

2(/ + 1)(/ + 2)(2/ + 3) (4/4 + 81 3 _ 49/ 2 _ 53/ + 3(0) P 1~33 P I~ 3 

+ 12(1 - 1)2(1 - 2)2 

(/ - 2?(2/ + 3)(21 - 3) (12/7 -76/ 6 _ 633/ 5 + 5528/ 4 _ 9561/ 3 _ 23272/ 2 + 82002/- 54000) 
9(/ + 1)2(1 + 2)(2/ + 1) 

2(/- 1)(/ - 2)2(21- 1)(2/ - 3)2 (8/4 _ 54/3 + 67/ 2 + 2791- 9(0) P 1~/2 P /2 
9(/ + 1 )2(1 + 2)3(2/ + 1) 

+ ~ (/ + 1 )2/2(1 _ 1 )2(/ _ 2)2(/ + 2)(21 + 3)2(21 - 1 )2(21 - 3)2 V· 
3 

__ 4_ (I + 1)2[2(/- 1)2(/ - 2?(1 + 2)(21 + 3)2(2/- 1?(2/- 3)2 
2205 

(4/ 5 -16/ 4 -97[3 +556/ 2 +9331 +45(0) = O. 
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Once more we like to insist on the fact that these six 
relations are only valid when they are acting to the left upon 
m = o states. 

4. DISCUSSION 

The detailed properties of the shift operators consid
ered in this paper, although rather technical, will prove to be 
extremely useful in a following paper in obtaining the eigen
values of P ~. However, due to the specific structure ofthe P ~ 
operator (2.4), it is clear that for alII = 0, 1= 1, and 1=2 
octupole-phonon states, its eigenvalue will become zero. 
Since degenerated states with these total angular momenta 
already occur for v = 6,6 it is evident that it is not possible to 
solve the octupole state labeling problem with the proposed 
P? operator alone. Therefore in the next paper a second R(3) 
scalar operator built up with the help of a 7-dimensional 
tensor representation belonging to the R(7) group, will be 
introduced. 

APPENDIX A: THE EIGENVALUE OF V* (3.1) 

The Casimir operator V *, as given by (3.1), can, due to 
(1.4) and (1.5), be denoted as 

V* = ± v' (8k + 1) [(b 3+ b3)4k+ I(b 3+ b3tk+ 1]0, 
k~O 

which, with the help of Racah algebra, can be brought into 
the following form: 

3 I ~ / 
V* = - L . L (8k + 3) V 4r + 1 

r~o k~O 

X g ~ 4~; 1 } [(b 3+ b 3+ )2r (b 3b3)2r]0 

I {4k + 1 4k + 1 O} 
- k~O (8k + 3)3/2 3 3 3 (b 3+ b3 )0. 

From De-ShaHt and Talmi9 one deduces 

I {3 
k~O (8k +3) 3 

3 

3 
4k+ I} 

2r 

- -- -8 -7 1 7 {3 
- 2 2 2r,0 3 

and 

I {4k + 1 
k~O (8k + 3)3/2 3 

4k+ 1 

3 

3 

3 2~ } 

~} = -2Y7. 

Using expression (37) of Weber et al.,7 i.e., 

N 2 = N + L v' 4r + 1 [(b 3+ b 3+fr(b3b3)2r ]0, 
r 

and the previously mentioned relations, V * can be trans
formed to 

V*= -~N(N+3)+~V 

+7~v' 4r+l g ~ 2~}[(b3+b3+)2r(b3b3)2r]0. 

Here V is the seniority operator introduced by Weber et al.7 

as 7 [(b 3+ b 3+ )0(b3b3)0]0, having an eigenvalue of 
(N - v)(N + v + 5). Due to the fact that the 6-j symbols 
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3 

3 ~} =g 3 

3 !} = g 3 

3 !} = 2X3X7 

are equal, 10 the Casimir operator V * can be totally expressed 
in terms of N and V: 

V* = --l(N 2 +5N - V), 

whose eigenvalue due to the known eigenvalue of Vbecomes 
-j-v(v + 5). 

APPENDIX B: THE COMMUTATION RELATIONS Lol" Pv] 

2 y3y5 I 
[Po,p ± I ] = ± y3y7 P ± I - 28y2 ± ' 

y5 
[P±I,P±2] = ± y3y7 P±3' 

2 
[PO,P±2] = ± y3y7 P±2' 

y5 
[P±I>P±d = ± 2y7 P±4' 

[Po,P±d = + 2Y~Y7 P±3, 

[P±I,P±4]= + 2~7P±s, 

[ ] 
_ y3 

PO,P±4 = + y7 P±4' 

y5 
[p ± I ,P::p] = ± y3y7 P+2' 

y3 
[Po,P±s] = ± 2y7 P±s, 

y5 
[P±I,P+4]= ± 2y7P+3' 

2 1 
[P-I ,P+tl = y3y7 Po+ 28' /0, 

[p ± I ,p+sl = + 2~7 P+4' 

-2 1 
[P-2,P+2] = y3y7 Po- 14 1o, 

1 
[P±2,P±d = ± y2 P±s, 

[ ] _ _ 1 ~I 
P -3'P +3 - 2y3y7 Po + 28 0' 

[P±2'P+S] = + ;2 P+3' 

y3 1 
[P-4,P+4]= y7Po-7/0, 

[p ± 3'P+S] = + ;2 P+2' 

[ ] _ y3 _5 / 
P-s,p+s - 2y7 Po+ 28 0' 

[ P ± I ,P ± s ] = [p ± 2 ,p ± 4 ] = 0, 

1 
[ P ± I ,P + 2 ] = 4y7 1 + ' 
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[ P ± 3 ,P ± 4 ] = 0, 

~, 
14y12 =t=' 

[P±4,P=t=5] = + 2~7 P=t=! - 2~~2 '=t=' 

[ P ± 3 ,p ± 5 ] = 0, [ P ± 4'P ± 5 ] = 0. 
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Shift operator techniques for the classification of multipole-phonon states. V. 
Properties of shift operators in the R(7) group 

H. E. De Meyer 8) and G. Vanden 8erghe . 
Seminarie voor Wiskundige Natuurkunde. R. U. G .• Krijgslaan 271-S9. B-9ooo Gent. BelgIum 

(Received 4 March 1980; accepted for publication 4 April 1980) 

With a view to obtaining additional label-generating operators for the classification of octupole
phonon states a set of shift operators 0 7 (k = 0, ± 1, ± 2, ± 3) in theR (7) ?roup isc~nstructed. 
Expressions which connect quadratic products of these shift operators are given, and It tur~s out 
that besides R (7) invariants the expressions also involve the scalar Gz shift oper~tor P? prevl~usly 
studied. The opportunity to arrive at an orthogonal solution of the state labellmg problem IS 

discussed. 

1. INTRODUCTION 

In analogy to the quadrupole state labelling problem, 
which we treated rigorously by means of ths shift operator 
technique in the first three papers of this series l

-
3 (to be re

ferred to as I, II, and III respectively), we investigate the 
possibility of using R (3) scalar shift operators in the sense of 
Hughes and Yadegar4 as labelling operators for the classifi
cation of octupole-phonon states. It is well known that the 
latter may be viewed at as symmetric representation states of 
the unitary group U (7). Recently, an orthonormalized set of 
independent octupole N-phonon states has been explicitly 
constructed for N..;; 5 by the present authors.5 However, for 
classifying in a complete general way all octupole-phonon 
states, seven quantum numbers are needed. Obviously, four 
of them are immediately witheld as the ones related to the 
Casimir operators of the groups U (7), R (7), R (3), and R (2) 
appearing in the chain U(7)"=>R (7)=>Gz~R (3)~R (2), i.e., 
the boson number N, the seniority v, the angular momentum 
I, and its projection, m. The Casimir operators of the special 
group Gz in this chain do not provide us with additional 
labelling operators. Indeed, it has been remarked in the pre
vious paper6 (to be referred to as IV) that the sixth order Gz
Casimir operator is not independent from the second order 
one if we are looking only at symmetric representations, 
whereas we shall demonstrate further that the eigenvalues of 
the second order operator are, upon a mUltiplying factor, . 
identical to the eigenvalues of the R (7) Casimir operator and 
thus also quadratic in the seniority v. 

Nevertheless, it was also proved in IV that the scalar 
shift operator P7 built from Gz generators PI' (fl = 0, ± 1, 
± 2, ± 3, ± 4, ± 5) and R (3) generators 1 + ' 1_ , 10 , de

fined in (IV. 1.5) and (IV. 1.4), respectively, can serve as a 
suitable fifth label generating operator. As a natural exten
sion we propose also to construct shift operators in the R (7)
group, hence containing in the expansion also generators of 
the type ql' (fl = 0, ± 1, ± 2, ± 3), defined by 

ql' = (b 3+ b3)~ (fl = 0, ± 1, ± 2, ± 3). (1.1) 

a)Bevoegdverklaard Navorser N.F.W.O. (Belgium). 

Herein b 3;;' and ( - l)mb3 _ m are the octupole phonon cre
ation and annihilation operators respectively. 

A priori there is a large variety of polynomial forms of 
the 1-, p-, and q-generators on which we can imply the condi
tion of becoming an R (3)-scalar-or otherwise stated, the 
condition of commuting with the operator L z-such that it 
also becomes a suitable label generating operator. (This 
clearly corresponding to the fact that there are also many 
scalar Q(klkzk3k4kS) operators which have been studied 
from a numerical point of view elsewhere.? However, if we 
like to keep the analogy with the quadrupole case as much as 
possible, it is evident we must first analyze the shift operator 
forms which contain the 1- and q-generators only and which 
in addition are linear in the q-generators. Now, the explicit 
construction of such shift operators is considerably simpli
fied by remarking that in spite of the fact that the internal 
structure of the q-generators (1.1) differs from that of the 
quadrupole q-generators given in (1.1.7), and also in spite of 
the fact that the I-generators are defined in a slightly differ
ent ways, as may be seen by comparing (IV. 1.4) to (1.1. 7), 
nevertheless the commuting properties of the I 's among each 
other and of the I's with the q's remain valid-in both the 
quadrupole and octupole cases the q's form a seven-dimen
sional tensor representation of the R (3)-group indeed. 
Hence, since the shift operators are found by the use of these 
commutation properties and without any reference to a pos
sible internal structure, we can formally keep for these oper
ators the same forms 07 with k = 0, ± 1, ± 2, ± 3 as de
rived in the quadrupole case, namely in (1.2.1 )-(1.2.5). It has 
to be noticed that these expressions still exhibit the lo-depen
dence, but that by using them only acting on states with zero 
angular momentum projection, as we shall do in the next 
section, 10 may be set equal to zero. 

Furthermore, it has to be remarked in advance that on 
account of the commuting properties of the q-generators, 
properties which are summarized in the Appendix,p-gener
ators can be introduced when calculating quadratic forms of 
the 07 shift operators in the aim of constructing relations 
among such forms and octupole invariants. Since it turns out 
that the p's can only occur linearly in relations between qua
dratic scalar products of the shift operators 07, it is easy to 
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predict that the operator P? defined in IV will enter the 
relations. 

2. THE PRODUCT OPERATORS AND THEIR MUTUAL 
RELATIONS 

Since the shift operators 07 (k = 0, ± 1, ± 2, ± 3) are 
in form identical to the quadrupole shift operators (1.2.1)
(1.2.5), it is clear that we should be able to take profit of the 
results obtained in I when setting up relations connecting 
quadratic products of the shift operators with group invar
iants. In fact, it is easily verified that we can copy immediate
ly the coefficients occurring with the combinations 
o 1+ kk 0 / k (k = 0, ± 1, ± 2, ± 3) in the quadrupole rela
tions (1.3.2)-(1.3.5). Furthermore, by comparing the q-co
mutators in the Appendix of I with those in the Appendix 
here, and looking especially at the q-dependency of these 
commutators, we deduce that the coefficients associated to 
the terms linear in O? in the relations of I, have only to be 
altered by a numerical factor. Looking then at the 1+ - and 
I _ -dependency of the q-commutators a similar reasoning 
applies for the constant terms of the relations. Finally, we 
can even make use of the dependency of the quadrupole rela
tions on theR (5) Casimir operator V· by simply substituting 
now for V· the analogue V· which is defined as follows: 

that the second-order Casimir operator of the group G2 

which is a subgroup of R (7), is, apart from a term in L 2, 

exactly of the form of a bilinear expression in the p-gener
ators, namely 

5 

C2(G2)= L (-I)I'+l p _I'PI'_f/- 2
, (2.3) 

IL= -5 

and is also an R (7)-invariant. Combining the operators (2.2) 
and (2.3) we deduce that V may be written as 

V = - -¥- 2 + C2(R (7» - C2(G2). (2.4) 

Now, it is a lucky coincidence that the eigenvalues of 
C2(R (7» and CiG2) are the same upon a numerical factor. 
Indeed, when acting on a state with seniority v, C2 (R (7» 
yields the eigenvalue - v(v + 5)/2 whereas Cz{G2) yields 
the eigenvalue - v(v + 5)/3. Consequently, the operator V* 
is an R (7) invariant producing the eigenvalue 
- I (I + 1)/28 - v(v + 5)/6 on a state with seniority v and 

angular momentum I. This result allows us to replace the 
operator V * in the relations under construction formally by 
the operator - L 2/28 + [C2(R (7»]13, since both yield the 
same eigenvalues. For convenience, and to conform with no
tations elsewhere, 7 we shall use from here on the notation V· 
for C2(R (7», V * thus representing the R (7)-Casimir opera-

V * = - ...L L 2 + I (_ 1) I' + 1 q _ I' ql" (2.1) tor to which the eigenvalues - v(v + 5)/2 are associated. 
28 I' ~ _ 3 Resuming, we can take maximum profit of the relations 

However, V· is obviously not the R (7) quadratic Casimir obtained in the quadrupole situation by replacing some nu-
operator since the latter one is given by merical coefficients and by replacing the V· therein formally 

3 by - L 2/28 + V*/3, although both V* have a different 
C2(R (7» = L (-1)1' + 1 q -I'ql' meaning. However, by this we have not finished the con-

I' ~ - 3 struction of the octupole relations yet. Indeed, as we have 
5 + L (- 1)1' + 1 P -I' PI' - -fs L 2, (2.2) already remarked at the end of the introductory section, the 

I' ~ - 5 appearance in the q-commutators of the Appendix of a part 
and therefore contains in addition to (2.1) a part which is which is linear in the p-generators will give rise to the intro-
bilinear in the p-generators. Hence, it may seen at first sight duction of a new term in these relations which is also linear in 
impossible to introduce in the octupole relations which we the p's. As has been argued before, this term has to be ex-
are constructing the Casimir operator (2.2) without adding a pressible in terms of the G2-scalar shift operator P? ofIV. By 
supplementary term which cancels the quadratic p-terms of straightforward calculation we have arrived at the following 
this operator. To perform the cancellation, let us remember

l 
final results: 

5(1 + 3)2(21 + 5)2( 07)2 - ";;(1 + 1)(1 + 2)(1 + W(21 + 3)(21 + 5? O? 

15(1 + 3)2(1 + 4)(21 + 3) 0 -1 0 + 1 _ 3(1 + 4)(21 + 5)(21 + 9) 01+220/2 
(/+1)2 1+1 1 (/+1)(/+2)2 

(21 + 3)(12 + 71 + 15) 0 -3 0 +3 _ ~(I + 1)2(1 + 2)2(1 + 3?(21 + 3)2(21 + 5)2V* 
(/+1)(/+2)2(/+3)2 1+31 3 

- ~ I (I + 1)2(1 + 2)2(1 + W(21 + 3)2(21 + 5? + 1/3(1 + 1)(1 + 2)(1 + 3)(21 + 5)(21 + 3) P?, 

(I + 2)(21 + 1)(8[2 + 571 +90)( 0?)2 + ~ 1(1 + 1)(1 +2)(21 + 1)(21 + 3)(413 + 34/ 2 + 871 + 90) 
31/15 

(1+2)2(2/+3)(/ 2 +7/+15) 0 +10 -I 1(2/+3)(/ 3 +5/ 2-18/-63) 0 -10 +1 
12 1- 1 1 + (I + 1)2 1 + 1 1 

+ 1(2/+1)(2/2+2/-9) 0-20+2_ 4/2(1+1)2(1+2)2(2/+3)2(2/+1)V* 
(1+1)2(/+2)2 1+2 I 3 

+ 165 12(1 + 1 )2(1 + 2)2(21 + 3)2(21 + 1 )(2/ 3 + 17/2 + 61 + 45) 

- _1_1 (I + 1)(1 + 2)(1 + 3)(2/ + 3)(21 + 1) p?, 
1/3 
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which are the equivalents of (1.3.2) and (1.3.5) respectively. As in the quadrupole case, the replacement of I by - 1- 1 yields 

two supplementary relations, namely 

5(1- 2)2(2/- 3)2( 07i + ~ .If 1(1- 1)(/- 2)2(2/- 1)(21- 3)2 o? 

-15 (/-2f(/-3)(2/-1) 0 +10 -I -3 (/-3)(2/-3)(2/-7) O/~2201-2 
12 1- 1 1 I (I _ 1)2 

_ (2/-1)(/
2
-5/+9) 0 ~3 0 -3 -1/ 2(1_1)2(1_2)2(2/_1)2(2/_3)2V* 

1(1 + 1)2(/_2)2 1 3 1 3 

+ ~ /2(1- 1)2(1- 2)2(2/-1)2(2/- W(l + 1) - Y/31 (1- 1)(/- 2)(21- 1)(2/- 3) P? 
and 

(/- 1)(2/ + 1)(8/2 - 41/ +41)( O?)2 + ~ I (I + 1)(/- 1)(2/- 1)(2/ + 1)(4/ 3 
- 22/2 + 31/- 33)( O?) 

3y/15 

(I - V(21 - 1 )(e - 51 + 9) 0 _ 1 0 + 1 _ (I + 1 )(21 - 1 )(1 3 
- 212 - 251 + 41) 0 + 1 0 - 1 

(I + 1)2 1 + 1 1 12 1 - 1 1 

+ (1+1)(2/+1)(2/2+2/-9) 0 ~2 0 -2 +1/ 2(/+ 1)2(/_1)2(2/_1)2(2/+ I)V* 
/2(1 _ 1)2 1 2 1 3 

(2.7) 

+ 155 12(1 + 1)2(1- 1)2(2/_ 1)2(2/ + 1)(21 3 -11/ 2 - 22/- 54) - _1_1 (I + 1)(/- 1)(/- 2)(2/- 1)(2/ + 1) P?, 
Y/3 

(2.8) 
which are the analogs of (1.3.3) and (1.3.4) respectively. The four independent relations above must allow us to calculate the 
O? eigenvalues once the p? eigenvalues have been found explicitly. 

3. DISCUSSION 

We have demonstrated how the results of! obtained in 
the context of the quadrupole state labelling problem can be 
used to find almost immediately analogous results for the 
present octupole situation. The most striking difference, 
however, is that we have to introduce here also the Gz-shift 
operator p? besides the R (7)-shift operator O? Hence, one 
could erroneously conclude that the occurrence of O? and 
P?, both R (3)-scalars, in the same relation would imply that 
O? and P? commute. Nevertheless, we have numerical con
firmation that this is certainly not true, and it is also straight
forward to verify this by working out explicitly the commu
tator [O?,pn (one can obviously restrict oneself to the 
calculation of only those terms which have a unique pre
scribed form, for demonstrating the noncommutativity). As 
a consequence, we cannot diagonalize O? and P? simulta
neously, and thus no set of orthogonal phonon states can be 
generally constructed such that they are always eigenstates 
of both O? and p? 

Besides this fact we have to remark that, even putting 
aside the orthogonalisation difficulty, P? and O? are certain
ly not sufficient to label all the octupole-phonon states 
(which is certainly in accordance to the well-known fact that 
three labels are missing). This property can be nicely illus
trated by noting that on any state with total angular momen
tum I equal to 0 or 1, P? and O? yield zero eigenvalues. This 
is verified from their explcit forms given in (IV.2.4) and 
(1.2.1) respectively. Now, calculating the I-degeneracies for 
the N-octupole-phonon states which are listed in Ref. 8, we 
see that there exist for instance two N = 7, I = 1 states. Since 
neither O? nor p? can distinguish between these states, the 
construction of a third operator will be necessary, and, 
moreover, we must have the guarantee that this operator 
should not yield zero eigenvalues on I = 0 and I = 1 states. 
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The construction of orthonormalized octupole phonon
states on acount of the shift-operator technique and the con
struction of an additional third label generating operator 
shall be considered in the near future. 

APPENDIX: THE COMMUTATION RELATIONS [ql"qj 

- 1 y'5 y/3 I 
[qo,q±l] = + Y/6 q±1 + Y/2y'3Y/7 P±I - """28 ±' 

[ ] 
_ 1 _ 1 

qO,q±2 = + Y/6 q±2 + Y/3 P±2' 

1 1 
[qo,q±d = ± Y/6 q±3 + Y/3 P±3' 

[ J 1 5 i.{ 
q -I ,q + 1 = - y/6 qo - 2Y/3y/7 Po + 28 0' 

[ 1 2 1 / 
q-2,q+2 J = + Y/6 qo- y/3y/7 Po- 14 0' 

[ 1 1 l{ 
q -3,q +3 J = + y/6 qo - 2Y/3y/7 Po + 280' 

[ ] ___ 3_ ~/ 
q +' 1 ,q ± 2 - + 2y/7 P ± 1 + 28Y/2 ±' 

[ ] 
_ _1_ Y/5 _ ~/ 

q+,2,q ± 3 - ± y/3 q ± 1 + y/2Y/3y/7 P ± 1 28Y/2 ±' 

[ J 
1 - 1 

q+'l,q±3 = ± y/3 q±2 + y/6 P±2' 

1 _ 1 
[q+, 1 ,qp] = ± y/3 qp + y/6 P+,3' 
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Generalized Bessel functions and the representation theory of U(2)@C2X2 
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We construct the matrix elements of both finite transfr\T1:nations and infinitesimal generators in 
irreducible representations of the motion group U(2)@ C2X2 with the aid of the contraction limit of 
the analogous structures ofU(4). The matrix elements of finite transformations are found to have a 
structure similar to that of the classical Bessel function in that they contain two inverse gamma 
matrices which couple Wigner D functions. An integral representation is established and related to 
the matrix-values Bessel functions of Gross and Kunze. By means of the representation property of 
the matrix elements we obtain a new sum rule for classical Bessel functions and an analog of the 
binomial theorem for the sum of two 2 X 2 matrices which involves the U(2) gamma matrix instead of 
the classical gamma function. 

I. INTRODUCTION 

This paper is part of an ongoing investigation of matrix
valued special functions associated with the representation 
theory of the conformal group U(2,2). In the first paper 
which resulted from this investigation I K.1. Gross and the 
present author announced the results of a calculation of the 
eigenvalues of the matrix-valued gamma function for U(2) 
and examined the implications for representation spaces for 
U(2,2). The second paper2 presented the details of the calcu
lation and some properties of the gamma function which are 
analogous to those of the classical gamma function. In this 
paper we shall be concerned with the generalized Bessel 
function which has already been extensively treated by 
Gross and Kunze,3-6 who define it in terms of the integral 
transform 

J;. (a,z) = f eiRe Tr(z'ua)A (u t ) du, 
U(n) 

(1.1) 

in analogy to the integral representation for the classical Bes
sel function 

J,,(z) = _1_Jrr e-izsineeine dO. 
2rr - n-

(1.2) 

In Eq. (1.1) the integral is taken over the group manifold of 
U(n), and A (u) denotes the matrix of an irreducible represen
tation ofU(n). The quantities a and z are elements ofe xn, 

the vector group of complex n X n matrices under addition. 
Just as the classical Bessel function (1.2) is the matrix ele
ment of an irreducible representation of U (I)@)C I x I, so the 
generalized Bessel function (1.1) is a particular matrix ele
ment of an irreducible representation of the motion group 
U(n)@)e xn

, the semidirect product ofU(n) and e xn. This 
generalized Bessel function, however, also appears in the re
presentation theory of the conformal group U(n,n) as the 
kernel of the integral operators in certain irreducible repre
sentations ofU(n,n) which correspond to the element 

(1.3) 

where In denotes the n X n unit matrix. Hence, the Bessel 
transform (1.1) is a matrix-valued special function associat-

ed with the representation theory of the conformal group as 
well as with that ofU(n)@)e xn• 

In this paper we shall study the representation theory of 
U(2)@C2X2 in detail; in this case the Wigner-Racah algebra 
is sufficiently well understood to make such a project feasi
ble. We shall construct the matrix elements of irreducible 
representations of this group essentially by means of the 
Wigner-inonii contraction of those ofU(4), and in doing so 
we shall explore the technical problems involved in the si
multaneous contraction both of a group and of a maximal 
subgroup. The contraction limit of these matrix elements in 
U(4) will provide us with a set off unctions which we shall 
prove to be the matrix elements of irreducible representa
tions in U(2)(e:>C2X2 by restricting them to infinitesimal 
transformations and recovering the correct matrix elements 
of the infinitesimal generators of the group. 

In Sec. II we shall consider the geometry of the group 
U(4) and the specific contraction procedure which yields the 
group [U(2)@)C2X2

]XH2X2 where H 2X2 denotes the group 
of 2 X 2 Hermitian matrices under addition. We shall also 
consider the dual object ofU(4) and its relation, under con
traction, to that of [U(2)@C2X2

] X H2 X 2 and the classifica
tion of all the irreducible representations of U(2)@)C2X2

• 

In Sec. III we shall treat the matrix elements of the 
infinitesimal generators ofU(2@C2X2 and establish them 
for the case of a general irreducible representation of the 
group. 

In Sec. IV we obtain the matrix elements of finite trans
~ormations by a heuristic procedure based on the Wigner
Inonii contraction, the details of which are relegated to Ap
pendix A. The proof that the resulting functions are indeed 
the required matrix elements of irreducible representations 
is sketched in Appendix B; it involves the demonstration 
that these functions have the correct transformation proper
ties under the generators of the group realized as differential 
operators on the group manifold. We also derive some of the 
consequences of the representation property of these func
tions: a new sum rule for the classical Bessel function [Eq. 
(4.20)] and an analog of the binomial theorem involving the 
U(2) gamma matrix [Eq. (4.24)]. As a special case of this 
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generalized binomial theorem we also obtain an expansion of 
[det( S + 1])]" in powers of dets and det1] with coefficients 
X A( S . \1]), where sand 1] are 2 X 2 matrices and X A is a 
primitive character of a finite-dimensional representation of 
GL(2,C) [Eq. (4.25)]. We also establish the relationship be
tween our matrix elements and the Bessel functions of Gross 
and Kunze. We find that the matrix elements of irreducible 
representations in U(2)@I(? X2 havea structure analogous to 
that of the classical Bessel function [the matrix element of an 
irreducible representation in U(I)@CX\], in which inverse 
U(2) gamma matrices replace the inverse classical gamma 
functions in the series expansion. 

In Sec. V we discuss the realization of the infinitesimal 
operators of the group U(2)®C2X2 as differential operators 
on the group manifold, and we obtain the invariant differen
tial operators of which our matrix elements are 
eigenfunctions. 

The results of this paper will be extended and presented 
in a more abstract form in a forthcoming paper.7 

II. THE GROUPS U(4) AND [U(2.,@C2X2] X lHe x 2 AND THE 
CONTRACTION PROCESS 

We first consider the geometry of the group U(4) and 
the specific contraction procedure which yields the group 
[U(2)@C2X2]XUZX2. We obtain the latter group by restrict
ing the former to transformations of the type 

lim 
R----x; 

1 
U -Z\ 

R 

1 
iH +
R 

(2.1) 

where U, Z\ , Z2' and H all denote 2 X 2 matrices. The re
striction that Eq. (2.1) be the limit of a unitary matrix then 
implies that 

UU t = 1, 

Z2 = -zTu, 
H=Ht. 

(2.2) 

The law of group multiplication for the semidirect product 
group U(2)@C2X2 is given by 

(U2,Z2)(U\ ,Z\) = (U2 U\ ,Z2 + U2 Z 1 ), (2.3) 

where Ui EU(2) and ZiEC2X2. The matrix multiplication law 
for the elements of the form (2.1) with the restrictions (2.2) 
then becomes 

u2 ~Z 1 R 2 U\ -ZI 

lim 
R 

R- ... ~ 

_~ztu 
1 t U --Z\ I 

R 2 2 R 

U2 U\ 
1 
-(U2 Z 1 + Z2) 
R 

= lim 
R "00 

(2.4) 
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which tells us that the contracted group is indeed isomorphic 
to the direct product [U(2)(Q)C2X2] X IHl2X2. In deducing the 
restrictions (2.2) and in deriving the group multiplication 
law (2.4) we have merely discarded all powers of R - I higher 
than the first. 

We should note that we have an additional degree of 
freedom available to us. Let fl denote an arbitrary 2 X 2 ma
trix. We can map the group element [(U,Z),H] of 
[U(2xg)C2'2] XIHl2X2 onto 4 X 4 matrices of the form 

( 

U 

lim 
R·x _ ~flZtU 

~z~t ) 
l+-H 

R 

(2.5) 

and obtain a group multiplication law isomorphic to Eq. 
(2.3). We shall find that the matrix fl acts as a transforma
tion on the dual object of the Abelian group C2X2. 

The infinitesimal generators ofU( 4) are simply the ma
trices Ei}' I ';;;'i,j<A, where Ei} has unity in the (i,j) place and 
zeroes elsewhere. The Lie algebra of the generators is there
fore specified by the commutation relations 

[Ey,Ek!] = E,/»k - Ek)~i(' (2.6) 

The group of transformations of the type (2.1) above is gen
erated by the operators (in the limit R ---> 00 ) 

1 1 I 
E,), REu, REI)' RE/J' 1,;;;,i,j,;;;,2,3,;;;,1,J,;;;,4. (2.7) 

Denoting 

lim ~EiJ Pu , 
R .= R 

lim ~EI)_PI)' 
R 'x R 

(2.8) 

we find that the operators (2.7) obey the commutation rela
tions (in the limit R ---> 00 ) 

[Eil,Eu] = Eill))k - Ekjl)iO 

[Ei},P)K] = PiK , 

[Ei),PKi] = - PK)' 

(2.9) 

with all other commutators vanishing. We retain the con
vention that lower case indices range over the values 1 and 2, 
while capital indices range over the values 3 and 4. 

We must now consider the irreducible representations 
ofU(4) and their contraction to those of(U(2)@C2X2] 
X IHl z 

'< 2. The irreducible representations of U(4) are speci
fied by sets of four real integers m 14 , m 24 , m}4' m 44 , where 
m\4 - m 24 , m 24 - m 34 , and m}4 - m 44 are nonnegative in
tegers. In the Gel'fand-Tsetlin basis these representations 
are reduced by representations of the subgroups in the ca
nonical chain U(4)::JU(3)::JU(2)::JU(I). Hence, each com
ponent of a vector in the space of an irreducible representa
tion ofU(4) is labeled by a triangular array of numbers, the 
Gel'fand pattern, in which thejth row (from the bottom) 
containsj real numbers mij which obey the "betweenness" 
conditions 

Wayne J. Holman, III 1978 



                                                                                                                                    

mi,j+ I <,mij <,mi + I,j+ I (2,10) 

and which constitute the invariants of the U{j) subgroup of 
U(4) in the canonical decomposition. The quantities mij 
- m· I' and m·· - m44 are restricted to be nonnegative , + ,) 11 

integers, 
The matrix elements of the generators Eij in the Gel'

fand basis are well known; we shall give them in the recen
sion ofJ.D. Louck.8 Let us consider the !n(n - 1) generators 
Eij, i <j, ofU(n), and let (m)n denote a Gel'fand state of 
U(n). Let (m')n denote a Gel'fand state which can be ob
tained from (m)n by application of Eij. Then (m')n differs 
from (m)n only in the i, i + 1, ... ,j - 1 rows. In each of these 
rows (m')n will differ from the corresponding row in (m)n in 
only one entry, say the entry mT,k in the k th row~ For this 
entry we shall have 

while 

m~k =m1k • {'=Irk' 

Then 

«m')n IEij I(m)n) 

[ I 
n{~I(pSj-PTj"j_l-l) I] 

- nj -
I (p. -p '1-1) 

s~ I.S,",Tj' s,)-I Tj_,J-

RPI4 RpZ4 

(2.11 ) 

(2.12) 

(2.13) 

-Rp34 

where 

Pij =mij +j-i (2.14) 

denote the partial hooks, and S (p - q) is defined to be + 1 
for p>q and - 1 for p < q. There is an ambiguity in the ex
pression (2.13), namely, the factor in the product! ... J corre
sponding to k = i contains and index r i _ I which does not 
appear in (m')n because the labels in row i-I are not shifted 
by Eij, kj, i.e., (m')n and (m)n have identical (i - l)th rows. 
The correct factor for k = i is 

[ 

i ~ I >j i ] 1/2 
S (i - r;) II (Ps,;- I - PT,;) II (PSi - PT,;) . 

s=l s=l,s#-r, 

(2.15) 

The matrix elements of the diagonal generatorsEu van
ish unless (m')n = (m)n' We have, then 

i i-I 

«m)nIEiil(m)n) = I mji - I mj,i_I' (2.16) 
j~ I j~ I 

The matrix elements E ij , i>j, can be found from Eq. (2.13) 
by means of the relation of Hermitian conjugation E & = Eji . 

The contraction process for the Lie algebra ofU(4), by 
which it becomes that of [U(2xg)C2X2

] X H2X2, leaves the 
generators of the U(2) subgroup in the canonical decomposi
tion unaffected. This fact [or, rather, choice of un contracted 
U(2) subgroup] suggests that we should be able to obtain 
matrix elements of the infinitesimal operators (2.7) in an 
irreducible representation of[U(2@C2X2

] X lHI2X2 by taking 
matrix elements of these operators between Gel'fand states 
of the form 

-RP44 

Rp\3 + ml3 m23 - Rp33 + m33 

(2.17) 
m l2 m22 

mil 
or 

RpI4 Rp24 -Rp34 -RP44 

RpI4 - m\3 m23 -RP44 + m33 

and then taking the limit R--+ 00. In Eqs. (2.17) and (2.18), of 
course, all entries in the different Gel'fand patterns must 
maintain the betweenness conditions in the asymptotic limit. 

1979 J. Math. Phys., Vol. 21, No.8, August 1980 

(2.18) 

The reader may easily devise other asymptotic limits in addi
tion to the two given above. These expressions for the indi
cated limits of basis states of irreducible representations of 
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U(4) are merely symbolic; we shall not realize them in any 
explicit manner. The only asymptotic limits which we shall 
evaluate explicitly will be those of the matrix elements of the 
infinitesimal generators or of finite transformations in U(4). 
In order to evaluate the matrix element of an operator in the 
contracted group [U(2)@)C2X2]XJH[2X2 we must first deter
mine the corresponding operator in the group U(4), then 
express it as an operator function of the contraction param
eter R «(7_(7 R)' then express the Gel'fand labels in terms of 
R as well (!(m»-!(m),R », then read off the asymptotic 
limit ofthe U(4) matrix element as the corresponding matrix 
element in the contracted group. The relation 

lim (7 R !(m),R ) 
R 'X 

= lim I «m'),R! (7 R !(m),R ) !(m'),R ) 
R -'X "'(m') 

(2.19) 

defines the symbolic meaning of the expressions (2.17) and 
(2.18). In all cases of interest to us, only discrete sums, not 
integrals, will appear on the right of Eq. (2.19), though they 
will be infinite sums in the case that (7 R is the operator of a 
finite translation in the Abelian subgroup C2X2 and in some 
other cases. Since we are contracting a compact group to a 
noncom pact group, the spaces of irreducible representations 
become infinite dimensional. 

We must choose an asymptotic limit for the representa
tion labels, either Eqs. (2.17), (2.18), or some other, and we 
wish our limit to satisfy certain conditions: 

(1) The basis state, in the asymptotic limit, must ap
proach the direct product of a basis state of a representation 
ofU(2)@C2X2 and a basis state of a representation ofJH[2x2. 
Alternatively, any matrix element must approach a product 
of a matrix element in a representation ofU(2)@C2X2 and 
one in a representation of JH[2 x 2. 

(2) The basis state should approach an eigenstate of the 
four invariant operators on U(2)(g)C2X2, which are 

(2.20) 

(2.21) 

(2.22a) 

(2.22b) 

The simultaneous eigenvectors of these operators span the 
space of an irreducible representation ofU(2)@C2x2. Note 
that Eqs. (2.20) and (2.21) are Hermitian operators and have 
real eigenvalues, while the eigenvalues of Eqs. (2.22a) and 
(2.22b) must be complex conjugates of each other (since prJ 
= PJi)' Thus, the irreducible representations of 
U(2)@C2X2 are labeled by four (continuous) parameters. 

(3) The consistency requirement is as follows: Once we 
have determined the matrix elements of the infinitesimal op
erators in an irreducible representation and we have verified 
that they are consistent with the commutation relations 
(2.9), we must be able to recover these matrix elements from 
those of a finite transformation by restricting the latter to an 
infinitesimal neighborhood of the identity. Also (or rather, 
alternatively), we must verify that the matrix elements of 
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finite transformations have the proper behavior under the 
differential operators on the group manifold which realize 
the algebra of infinitesimal generators. We should note that 
the validity of the construction, then, can be established 
completely independently of that of the contraction proce
dure. We shall use the method of the contraction limit only 
to obtain matrix elements which we may plausibly conjec
ture to be those of operators in irreducible representations of 
the motion group U(2)@)C2X2; we shall then be able to estab
lish the correctness of this procedure by independent means. 

We must now look more closely at the group 
U(2)@)C2X2 and its dual object and irreducible representa
tions. This semi direct product is composed of an Abelian 
subgroup of 2 X 2 complex matrices under matrix addition. 
The group U(2) then acts on these matrices from the left. 
Every complex matrix can be decomposed uniquely into the 
product UAZ, where U is unitary, A is a real positive semide
finite diagonal matrix, and Z is a complex upper triangular 
matrix with unit entries on the principal diagonal. Thus, 
every 2 X 2 complex matrix can be brought to the form 

(2.23) 

by a unique left unitary transformation, wherepiOcp are real 
and P, ;;;.0, O';;;;cp < 21r. Hence, each distinct quartet of real 
numbers (Pi'cp) which satisfies these conditions defines a dis
tinct orbit under the operation of the unitary group U(2) 
acting on Eq. (2.23) by left multiplication. In the general 
case, then, there are no nontriviallittIe groups. In the casep I 
= 0 or P2 = ° we find nontrivial little groups isomorphic to 
U(I). If PI = P2 = P3 = 0, then, we find a nontrivial little 
group isomorphic to U(2). These special cases, of course, 
occupy sets of measure zero in the space of all orbits. Irredu
cible representations of the group U(2)@C2X2, then, will be 
specified in the general case only by quartets (PI ,P2,P3'CP) 
with Pi > 0, o.;;;;cp < 21r. In the special cases, those for which 
we have nontrivial little groups, irreducible representations 
will also be labeled by the discrete invariants of the little 
groups involved. We shall defer consideration of these de
generate cases until Sec. IV. 

Let us now consider the elements of the group U(4) and 
those of its U(3) subgroup of elements of the form 

( 
o 

(2.24) 

° 
where U3 EU(3). When we restrict U(4) to transformations 
of the type (2.1) above, then we also restrict U3 in Eq. (2.24) 
to transformations of the form 

o 
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1 
x , (2.25) 

1_ 1_ 1 i
h -ZI -Z2 +-

R R R 

where U2 EU(2), ZiEC, hER, and I denotes the 2 X 2 unit ma
trix. The group of transformations (2.25) is isomorphic, 
then, to [U(2)@C2X1]XR. The group U(2x!yC2X 1 isjust the 
inhomogeneous unitary group IU(2), whose representation 
theory has been studied by Chakrabarti.9 In the Gel'fand 
basis the basis states for the irreducible representations of 
U(3) are given by triangular arrays of three rows 

m l3 m 23 m33 

from which we obtain basis states for the irreducible repre
sentations of [U(2)@C2X']XR by means of the identifica
tion m13~RpI3 and m33~ - Rp33 , whichp'3 andp33 are 
real positive numbers, and the limit R~ + 00. Then the ba
sis state (2.26) becomes merely the lower three rows of Eq. 
(2.17). The subgroup U(3) ofU(4) under consideration [that 
specified by Eq. (2.24)] becomes under contraction the sub
group [U(2)@C2X']XRor[U(2)@C2X2]XH2x2. In the 
case of this subgroup we find that we obtain irreducible re-

presentations ofU(2)@)C2X 1 which are labeled by a discrete 
invariant m 23 as well as by a continuous invariant. The Abe
lian subgroup of 2 X 1 complex matrices under addition, 
then, is composed of elements each of which is located on an 
orbit of the type 

(2.27) 

wherep is a nonnegative real number. All points on the orbit 
of Eq. (2.27) can then be obtained by left multiplication by 
the elements ofU(2). The element (2.27) is left invariant by a 
nontrivial little group isomorphic to U(1). Hence, the dis
crete invariant m 23 in Eq. (2.26) remains a discrete invariant 
in the contracted group, the invariant which labels the irre
ducible representations of the U(1) little group. The dual 
object of the Abelian group ofC2x 1 matrices under addition 
is isomorphic to the set of elements of the group, and hence 
to the set of orbits (2.27). Hence, it is parametrized by a 
single real, positive, continuous parameter p. Whenp = 0 we 
have a distinct representation induced from that of the little 
group U(2) instead ofU(1). 

When we consider the contraction of the full group 
U(4) to the group [U(2)@C2X2]XH2X2, then, we must con
sider the action of the unitary group U(2) on complex 2 X 2 
matrices. Each C2 x 2 matrix is located on an orbit of the form 
(2.23) above, and in the general case (Pi #0) there will be no 
nontrivial little groups, and hence no discrete invariants for 
the group U(2)@C2X2. This suggests that we investigate as
ymptotic limits of the form (2.17) or (2.18) above, i.e., forms 
in which none of the U(4) invariants becomes a discrete pa
rameter under contraction. We shall defer consideration of 
the degenerate cases until Sec. IV. 

III. THE CONTRACTION OF THE IRREDUCIBLE REPRESENTATIONS OF U(4) TO THOSE OF THE GROUP 
[U(2)aC2 x 2] X H2 x 2 

We shall now consider in detail the contraction of the irreducible representations of the Lie algebra ofU (4) to those ofthe 
Lie algebra of[U(2)@C2X2]XH2x2. We operate with the generators (2.8) on the basis states (2.17) and take the limit R~oo. 
Using Eq. (2.13), we find for the H2X2 generators that 

lim (J-.E43 ) 
R ->oc R 
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m Z3 

=9 13 Pij; m l3 - I,m 33 ; m l2 m22 + 9 33 

mil 

m23 

P34 Pij; m I3 ,m33 ; m l2 m 22 = 913 Pij; 

mil 

+ 9 33 Pij; 

where 9 13 and 9 33 are the real numbers 

9 = [ (P14 - P13)(P13 -P24)(PI3 + P34)(P13 + P44)]1I2 
13 ()2 ' 

P13 + P33 

9
33 

= [(PI4 +P33)(P24 +P33)(P33 ~P34)(P44 -P33)]1I2. 

(P13 + P33) 

m Z3 

Pij; m 13 ,m33 - 1; m 12 m 22 (3.Ia) 

mIl 

m 23 

m13 + I,m 33 ; m 12 m22 

mil 

m 23 

m 13 ,m33 + 1; m 12 m 22 (3.Ib) 

mil 

(3.2) 

We note, then, that the contraction performed with the limit scheme (2.17) does not yield an irreducible representation of the 
H2X2 subgroup. The contraction yields the following expressions for the representation ofthe Lie algebra ofU(2)@C2x2: 

1982 

= [ (ml2 - m23 + I)(mll - m 22 + 1) ]1129
1 

(m12 - m 22 + 2)(ml2 - m 22 + 1) 

J. Math. Phys., Vol. 21, No.8, August 1980 

mil + 1 

mil + 1 

(3.3a) 

Wayne J. Holman, III 1982 



                                                                                                                                    

(3.3b) 

_ [ (m l2 - m23 )(m ll - m22 ) ] liZ f!lJ 

- (mIl - m 22 + l)(ml2 - m n ) I 

(3.3c) 

(3.3d) 

m ll + 1 
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_ [ (m 23 - m 22 + l)(mll - m 22 + 1) ]112 g; 
(m12 - m 22 + 2)(mI2 - m 22 + 1) 2 

(3.4a) 
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(3.4b) 
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_ [(m l2 -m23 + })(mI2 -mil + })] 1/29
2 

(m 12 - m22 + 2)(mI2 - mn + 1) 

where 

Q} [ ] 112 Q}z = [ P14P24P34P44 JIIZ, 
;y I = P13P33 , ;y 

P13P33 

(3.4c) 

(3.4d) 

(3.5) 

We note, then, that in the limit scheme ofEq. (2.17) the operators Pi4 and P 4i can shiftthe indices m 13 and m33 , both when 
i = 1,2 and wheni = 3. From Eq. (3.1) we find thatml3 andm33 are state labels for a representation of the u:2X2 subgroup, but 
Eq. (3.4) indicates that unless 9 13 = 9 33 = 0 these labels can be shifted by the operators Pi4 , P4i' i = 1,2. Hence, the limit 
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scheme ofEq. (2.17) does not yield a decomposition, in the limit R-oo, of the Gel'fandstate into the direct product of basis 
states for representations, respectively, of the groups H2X2 and U(2@C2X2 except in the special case 9 \3 = 9 33 = O. In 
taking the asymptotic limit of the matrix element ofa finite transformation between states of the form (2.17), we find that the 
resulting representation matrix for the group U(2)@)C2

X2, upon restriction to infinitesimal transformations, yields Eq. (3.4) 
with the assignments 9{3 = 9 33 = O. The states 

mIl 

are indeed eigenstates of the invariant operator (2.21): 

(3.6) 

but they are not eigenstates ofthe other invariant operators (2.20), (2.22a), and (2.22b) unless 9 13 = 9 33 = O. In this case we 

find 

m 23 m 23 

(P14 P 41 + P 24 P 42 ) m\3,m33; m l2 m 22 = (9 2 )2 Pij; m I3 ,m33 ; m l 2 m 22 

mil mIl 

(3.7) 

m 23 

(P13 P 41 + P 23 P 42 ) m\3,m 33 ; m\2 m 22 =0, (3.8a) 

mIl 

m 23 

(P31 P 14 + P 32 P 24 ) Pij; m\3,m33 ; m l2 m 22 =0, (3.Sb) 

mIl 

and we have realized the irreducible representation ofU(2)@C2X2 which corresponds to the matrix (2.23): 

t p,e}c ~J (3.9) 

P2 0 

Alternatively, this representation can be realized directly and immediately by the use of the limit scheme of Eq. (2.18) 
above. In this case we realize Eq. (3.1), (3.3), and (3.4) with 9 13 = 9 33 = 0,P14 =PI3' andp44 =P33' Hence, the use of the 
limit scheme (2.18) gives us immediately the direct product of irreducible representations of H2 x 2 and U(2) 0 C2X2

, but the 
limit in the case (2.1S) realizes only the trivial (identity) representation of the subgroups generated by the operators P34 and 
P43 . 

We can also take asymptotic limits of matrix elements of finite transformations in irreducible representations ofU(4) 
using Eqs. (2.5) as argument and limit scheme (2.17) or (2.18). In each case we find that the matrix element breaks down in the 
limit into the product of a U(2)<Vc2 x 2 matrix element and an 8 2 x 2 matrix element. Restricting each of these matrix elements 
to an infinitesimal transformation in the appropriate group [U(2xg)C2 x 2 and H2

><;2J, we recover the expressions (3.1) and (3.3) 
in limit scheme (2.17), but in the limit scheme (2.18) we recover Eq' (3.3), but Eq' (3.1) only with 9 13 = 9 33 = O. Setting 
n = 1, we recover Eq. (3.4) in both limit schemes only with &'13 = 9 33 = O. 

1987 J. Math. Phys., Vol. 21, No. B. August 19BO Wayne J. Holman, III 1987 



                                                                                                                                    

Relations (3.3) give us the correct matrix elements ofthe four generators Pi3' P3i of the Lie algebra ofU(2)@)C2X2, and 
agree with the results ofChakrabarti.9 The expressions (3.4) do not give us the correct matrix elements for the generators Pi4 , 
P4i ofU(2)@C2X2 unless fll \3 = fll 33 = 0, and under these conditions and n = 1 in Eq. (3.5) we realize only the special cases 
(3.9) of irreducible representations ofU(2)@}C2x2. 

In order to realize the most general class of irreducible representations of U (2)@)C2X2, we must resort to more general 
values for the matrix n. We shall set cu: = 1, cu~ = 0, since we already have the correct matrix elements for the generators of 
the IU(2) subgroup ofU(2)@C2X2 [where IU(2) is simply U(2@:2XI], and since, for convenience, we would like to keep m 23 
as an invariant label for the states of irreducible representations of this subgroup. We shall also set cu~ = 1 and leave cui a 
general complex number, so that 

n{ ) (3.10) 

In place of the relations (3.4), then, we have the following expressions for the generators Pi4 , P4i ofU(2)CVC2X2 (where we 
shall omit the indices m 13 , m 33 ): 

1988 

= [(m I2 -m23 + 1)(m12 -mll + 1)]1I2tijfll3 

(m12 - m 22 + 2)(m12 - m 22 + 1) 

J. Math. Phys., Vol. 21, No.8, August 1980 

m ll + 1 

(3.lla) 
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(3. 11 b) 

(3. 11 c) 
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(3.11d) 

where we have used fJJ 3 as a real, nonnegative constant and w as a complex phase of unit modulus. In terms of fJJ 2 and wi we 
have 

wi fJJ 2 = w fJJ 3 . (3.12) 

Combining Eqs. (3.3), (3.11), and (3.12), we obtain the following eigenvalues for the invariant operators: 

m 23 m 23 

(PD P31 + P23 P32 ) Pi); m12 mn = ( fJJ 1)2 Pi); m l2 mn (3.13a) 

mil mIl 

m 23 m23 

(P14 P41 + P24 P42 ) Pij; m12 m 22 = [( fJJ 2 f + (fJJ 3 )2] Pij; m12 m 22 (3.13b) 

= wfJJ I fJJ 3 (3.13c) 
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mil mil 

Hence, the relations (3.3) and (3.11) realize the equivalence class of the most general irreducible representation of 
U(2)€)C2X2, along with the usual expressions for the matrix elements of the generators ofU(2): 

m23 m23 

Ell Pij; m 12 m22 =m ll Pij; m l2 m22 

mil mll 

m23 m23 

E22 Pij; m12 m22 = (m12 + m22 - mIl) Pij; m l2 mn 

mu mil 

m23 m23 

E12 Pij; m 12 m22 = [(mil - m22 + 1)(mI2 - m l1 )]112 Pij; m l2 m22 

mll mll + I 
m23 m23 

E21 Pij; m 12 = [(m 12 - mil + 1)(ml1 - m22)]112 Pij; m l2 m22 

mll mIl -I 

since we may regard &1' &2' &' 3, UJ as quantities independent of one another. 

(3.13d) 

(3.14a) 

(3.14b) 

, (3.14c) 

, (3.14d) 

IV. MATRIX ELEMENTS OF FINITE TRANSFORMATIONS IN IRREDUCIBLE REPRESENTATIONS OF U(2)@C2X2 

Having obtained the matrix elements of the generators ofU(2)@C2X2 in the irreducible representation corresponding to 

n = (&1 UJ&3) 

o &'2 
(4.1) 

in the dual object, we shall now proceed to examine the matrix elements of finite transformations in the same representation. 
The contraction procedure, which we follow in deriving these matrix elements, is an informal, heuristic one, and so must be 
supplemented by a proof that the functions so obtained are indeed the matrix elements which we require. The limit process is 
described in Appendix A; in Appendix B we sketch the proof that the resulting functions have the right properties under 
differentiation. We shall now present the results of the calculation of the matrix elements of the irreducible representations of 
U(2)@C2X2. Let tJ (U,Z) be the operator corresponding to the element (U,z) of the group as in Eq. (2.5) above, with H = O. 
We shall replace P ij with n in our notation for the basis states of the representation. Then the matrix element of this operator is 
given by 

=(- I)mJz +m;.+mtz +mu [(m;2 -mi2 + 1)(mI2 -m22 + 1)]1/2 r rr(,812 -/322 + 1) 
/312./322 Q2.1 p,CT 
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X N (~>;)(m;, + m" - p" - PH) - m,-, + a", - a.a,-, - (112)(/3'2 + f3,,); - rn, .• + (1/2)(m;2 + m'2)'" [m~2 - P 12 

+ 21 ~(mi2 - m;zM{P12 - P22)] 

X [det(Zllt)]m,,-f3'2D~I~)(f3'2-/3]2)( - llZtZllt)[det( - llzt)r21 -
f3" 

xN -I [m -P (l/Z)(m" + m,,- f3 12 - (311) - m", + a", - p.a2.' - (112)(/3" + P,,); - m", + (I/2)(m" + m,,),p 22 12 

+ 21 ~(ml2 - m22 M{P12 - P22)] 
X [detU 1 m]2D (112)(m,,- m,,) ( n t (IIZ)(ml1+m]2-f3,,-pu)-m2.l+a2.'-P m,,-(1I2)(m'2+ m ,,) - Z U) 

= (_1)m,,+m'3+ m,,+m"[(m12 -m22 +1)(mi2 -m22 +l)]IIZ L .4. 'L(PI2 -P22 +1) 
PI2.t3n p ,r ,CT p,r,a 

XD (l12)(mi, - m,,) (Z)D (l12)(mi2 - m,,) (llt) 
mi, - (l12)(mi, + m 22) P' ,,' - m23 + (1I2)(mi, + m;2) 

xN p--:-,~, u' - "';7'.'" [m;z - PI2 + 21(1I2)(mi2 - m;2),(1I2)(PI2 - P22)] 

X [det(Zll t)]m" - f3"D (~/Z)~" -: f3,,) (ll tll)D (l/~)(/3" -f3n )( _ Z tZ) 
p+r-up+T-a r1' 

X [det( - llZ t) ]m" -P"N ;~;+ 7 _ U;".7 [m22 - PI2 + 21(1I2)(m I2 - mn ),(1I2){P12 - Pn)] 

X [detU] m"D (112)(m" - m,,) (ll)D (1I2)(m" - m,,) ( _ Z tU) 
- m" + (1/2)(m" + m,,) " p m" - (1/2)(m" + m,,) , (4.2) 

where we have used the conventions of Appendix A and assumed that the matrix Zllt is nonsingular. We note here the 
analogy between Eq. (4.2), the matrix element ofa finite transformation in an irreducible representation ofU(2) a (;2XZ, and 
the classical Bessel function, the matrix element of a transformation in an irreducible representation of U(I) a C. The latter 
has a series representation with two classical gamma functions in the denominator ofthe summand, whereas the former, Eq. 
(4.2) above, has two inverse U(2) gamma matrices N - I, which are defined in Eq. (A23). 

The matrix entries of the irreducible representations of this group can be constructed in different ways. In particular, 
when we use the standard Mackey construction of induced representations, then the matrix entries can be given in terms of the 
Bessel functions of Gross and Kunze [Eq. (1.1)].3-6 We now make the association between our matrix entries and the Gross
Kunze Bessel functions: 

( 
m~3 

m23 

miz m;z 
&(I,Z) m 12 m Z2 

mil 
mil 

= [(miz - m;z + 1)(m 1z - m 22 + 1)]112 ( dUe2iReTr(ztU.I/l)(detU]mh 
JU(2) 

XD (II2)(mi,-mh ) (U)[d tut]m"D(1I2)(m,,-m,,) (ut) 
mi, - (1/2)(mi, + m2,) m23 - (1I2)(mi, + m2,) e m" - (112)(m'2 + m,,) m" - (112)(m" + m,,) 

= ( _ 1)m2' + m'3 + m" + m"(l)m" + m" - mi, - m2' [(miz _ m;2 + 1)(m I2 _ m22 + 1))112 r dUe2iReTr(Z'VII) 
JU(2) 

X [ detUlm22D(l/.2)(mi,-m~,) . (U)[d tut]m"D(I12)(m 12 -m,,) (ut) 
m" - (1I2)(m" + m,,) - m'3 + (112)(mi, + m,,) e - m" + (l12)(m" + m,,) m" - (1/2)(m" + m,,) , 

(4.3) 

where 

(4.4) 

and dU is the normalized invariant Haar measure on the manifold of the group U(2). The identity of the series representation 
(4.2) and the integral representation (4.3) can be established by direct application of the differential operators (to be discussed 
in thefollowing section) which act as generators of the (;2 x 2 subgroup. Both Eqs. (4.2) and (4.3) have the same transformation 
properties under the operators (5.9) and (5.11) below and are eigenfunctions of the second order invariant combinations of 
these operators with the same eigenvalues. They obey the same boundary condition at the identity element of (;2 x 2; hence, all 
of their partial derivatives are identical. They are both real analytic functions of the eight variables if and if, and therefore they 
are identical at alI elements of the group. Equation (4.3), then, establishes the relation between the Bessel functions defined by 
Gross and Kunze and the matrix elements of irreducible representations ofU(2)@C2X2 as given by the infinite series (4.2). 
Specifically, we have the following relation: 
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= f eiRe Tr(xtUa)A (Uf)dU= ______ _ 
JU(2) (m l2 - m22 + 1)1/2 

where we make the identifications 

x=Z, 

a=22:yll, 

A (ut) - [d ut]mu D(1/2)(mll -mZ2) (ut) - et m13 - (1/2)(mll + m,,) m ll - (1/2)(mll + m,,) , 

or a set of identifications equivalent to these. 

o 

o &(l,Z) ll; m l2 

o 
(4.5) 

(4.6) 

We further note that the general matrix element (4.2) for the case of nons in gular Zllt has the structure of a matrix 
product. If we define 

mil /311 
= L !(_I)m2l +mh(m;2 -m;2 +1)[detZ]m22 

p',u',r' 

XD(l/2)(m ,
1 -m22 ) (Z)[d tff]m"D(1/2)(m ,2 -m2l ) (if») 

mi' - (l/2)(m '2 + m2l) p' e - m 2l + (1/2)(m'2 + m2l) (T' 

XN p-:,~, + r' _ d;(T',r' [m22 + /322 + 2 I (1/2)(m i2 - m;J,(1I2)(f312 - /322)] 

X!( _l)f322 +f3U (f312 -/322 + 1)1/2[detZt]D~~/;:~~217gtgl2+f3,,)(zt) 
X [detll t]f3"D ~~~)?'-' -;;f3~)f32J + (I/2)(f3" + f3,,) (ll t») =«m/)IX (z,if) I ( /3», 

then we find that Eq. (4.2) can be written as 

(4.7) 

L (m')IX(Z,ll)I(f3» «(f3)IX( - Z.ll)l(m». (4.8) 
(f3) 

We have replaced - /312 with + /322 in the argument of the inverse gamma matrix and in the exponents of the determinants, 
i.e., we take + /322 and !( /312 - /322) as our independent indices of summation rather then - /312 and tc /312 - /322)' In Eq. 
(4.8) the sum is taken over all real integer values of /322 . 

We shall now consider the case that Zll t is singular. We shall restrict our attention to the case that Z is a lower triangular 
matrix with real elements on the diagonal, since all other cases are unitarily equivalent to this one. Specifically, we shall write 

~
I 

Zllt= I 

-2 
I 

at: 
/-2 -
~ 2 I 

We now have two cases to consider: (I); 1 171 = 0 and (2) ;~~ = O. Proceeding from Eq. (A24), we find for case (1) 
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[(m;2 -m~2 +1)(m12 -m
22 

+1)]1122: (_1)(1I2)(mi,+mZ,+m12 +m"l+A+p 
A.p 

xC (112)(mi, - mi,) (112)(m" - ffl,,) A 
- mi3 + P + (l/2)(m12 + mi2) m23 - P - (l/2)(m12 + m n ) (l/2)(mI2 + mi2 - m 12 - m 22) - m23 + ml3 

(1I2)(m" - m,,) A xC (1I2)~ffli, - mz,) • • 
- m" + (112)(m" + m,,) m23 - (l/2)(m12 + rn22) (1/2)(mi2 + mi2 - rn12 - mu) - mil + m2J 

X D (1I2)(mi, - mz,) 
mi. - (1/2)(mi, + mi,) mh + P + (1I2)(mi, + mh) (_ y.I x tpl ) 

dettpl 

X D (1/2)(m12 - m,,) ( tpl ) y-
m" - p - (l12)(m" + m,,) mil - (1I2)(m" + m,,) y ---:::=== J2A + 1 (2 dettpl)8. 

dettp Y dettpl mum" 

[(m;2 -m~2 +1)(mI2 -m22 +1)]1I22:(_1)mi,+m12 +y+p 

xD (1/2)(mi, - mi,) ( _ .Ix tpl ) 
mi. - (1/2)(mi, + mi,) - mi, + p + (1I2)(mi, + mi,) ~ ;-::---::-

V dettpl 

X D (1/2)(m 12 - m,,) ( tpl ) [d tp]Y + (l12)(mi, - mh + m" - m,,) 
m" - p - (I 12)(m 12 + mn) mil - (1I2)(m" + m,,) y et I 

dettpl 

X N = ~i' + p + (112)(m;, + mi,). m" - (112)(ml2 + mn); - mi, + (112)(m;, + mi,). m" - p - (l12)(m 12 + m n ) Lv 
+ 21 ~(m;2 - m;2M(m 12 - m n ) ]8mi •. mll , 

where 

For cases (2), t~~ = 0, we have 

&(I,Z) 

X
" ( _ 1)(1I2)(m i , + mi, + mIl + m,,) + m" + A + p C(II2)(m;, - mi,) (112)(m 12 - m,,) A 
~ _ m" + (112)(m;, + mi,) mn - (112)(m 12 + md (1I2)(m;, + mi, - m" - m,,) 
A.p 

C(l/2)(m;, - mi,) (l12)(ml2 - m,,) A 
X (1/2)(m;, + mi,) - p p - (1/2)(m 12 + m,,) (112)(m;, + mi, - m 12 - m n ) 

X D (112)(mi, - mi,) ( -.Ix tp2 ) D (1/2)(m" - m,,) ( tp2 ) 
mi 1 - (l/2)(mi, - m,,) + p + (112)(mi, + mi') y dettp2 p - (112)(m" + m,,) mil - (l12)(m" + mn) Y dettp2 

1 --
+ J2A + I (2Y dettp2 )Dmi,.m" 

Y dettp2 

(4.10) 

(4.11) 

(4.12) 

[( ' '1)( + 1) ]112 " ( _ 1)mi, + mn + m" + p + YD (1/2)(m;, - mi,) ( -.Ix tp2 ) 
m 12 -mn + m l2 -mn ~ mi.-(1/2)(mi,+mi,) -p+(1/2)(mi,+m,,) 

~ Y~~ 

( 

IJI D (I 12)(m 12 - mn) 2 
X p - (112)(m" + m n ) mil - (I 12)(m 12 + mll) Y 

dettp2 

) [det'l'2 r + (1/2)(mi, - mi,) + (l12)(m" - mn) 

X N = ~h + (112)(mi, + mi,).p - (112)(m12 + m,,); - p + (112)(mi, + mi,),m" - (l/2)(m12 + m,,) [y 

+ 21 !(m; 2 - m;2 ).!(m 12 - m 22 ) ]8 mi"mll' (4,13) 

where _ 

(

t t 11': +;- ~ 17': - ;- : 11': ) 
tp2 = 

t : 11': t i 11': +;- ~ ~ . 
Particular cases of these matrix elements for singular Zll t are also of interest. If we set 
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_(1 0) Z- , 
i 0 

(4.14) 

then we find 

&(I,Z) 

mil 
[(mi2 - m~2 + 1)(m'2 - m 22 + 1) ]'/2 

X ~ ( _ 1) (1I2)(m,. - mh) + (1I2)(ml2 - m •• ) - A + m.3 + p C(1I2)(mi. - mi,') , (1I2)(m' 2 - m22) A , , 
~ - p + (I/2)(m.2 + m22) p - (1I2)(m'2 + m 22) (1/2)(ml2 + m2l - m.2 - m,,) 
A,p 

xC (1I2)(mj, - mi2) (1I2)(m.2 - m 22) A 
- ml.l + (J/2)(mi2 + m 22) m2.1 - (l/2)(m12 + m22) (l/2)(mI2 + mil - ml2 - m22) 

[(mi2 - m~2 + l)(ml2 - m 22 + 1) ]112 I( _1)m23+P+Y(1TDm;,-mh+ml2-m"[(1TD2(det;3)Y 

P,y 

XN =~ + (I/2)(m,. + mh),m'3 - (1I2)(ml2 + mn), - m23 + (1I2)(m'2 + mil),p - (1/2)(ml2 + md [y + 21 !(mi2 - m~2),!(mI2 - m 22 )] 

XD (1I2)(m,. - mh) (" ) D (1/2)(ml2 - m •• ) ( _ "t\~ 
m,. - (1I2)(m'2 + mh) -p + (1I2)(m'2 + mh) ~3 p - (1/2)(m12 + m •• ) mil - (1/2)(mu + mn) ~ 3JVmh.m.3' 

where 

Similarly, if 

z=(O Zi), 
o zi 

then we find 

mil 

&(I,Z) 

[(m;2 - m~2 + 1)(ml2 - m 22 + 1) ]'/2 

X ~ (_ 1)(1I2)(m'2 - mi.) + (I/2)(ml2 - mn) - A + P + u c(1I2)(m'2 - m22) (I/2)(mi2 - ,mil) , A " 
~ (1I2)(ml2 + m22) - CT U - (I/2)(m'2 + m 22) (1I2)(m.2 + m" - m.2 - m22) 

A,p.CT 

XC(1I2)(m.2-m22) (1I2)(mi2-,mi2) , A " 
(I/2)(m'2 + mn) - p p - (I/2)(m.2 + m22) (1I2)(m.2 + m22 - ml2 - m22) 

X D (1I2)(m'2 - mil 
m,] - (I/2)(m,. + mi.) - u + (1I2)(m,. + mi.) ( 

;4 ) D (1I2)(m,. - mi.) 
4 ~ - mh + (I/2)(m,. + mi.) - p + (1I2)(m,. + mi.) 
V det;4 (v6-) 

At 

(~) XD (1I2)(m12 - m •• ) 
- u + (1/2)(ml2 + m •• ) mil - (I/2)(ml2 + m.V ( 

_"t ) ~ 4 D (I/2)(ml2 - m •• ) -y--====- - p + (1I2)(ml2 + m •• ) - m23 + (I/2)(ml2 + m.3) 

det;4 
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1 {[ +/_ "'- 112 X [Tr 7<: 112 J2A + I 2 (de~4)(det11)] J 
de~4)(det11) ] 

= [(m;2 -m;2 +1)(mI2 -m22 +1)]112 I (-I)Y+P+U[(det;4)(detfl)Y 
p.a,y 

xN (~~)(m" + "1,,) ~ u.p ~ (1/2)("1;, + mi,);(1I2)(m" + mn) ~ p.u~ (1I2)(mi2 + mi2) [y + 21~(m12 - m 22 ),!(m;2 - m;2)] 

XD (1;2)(m i 2 ~ m~2) , (r ) 
"1" ~ (112)("1 12 + "1 22) ~ u + (1/2)(mi2 + "1 22 ) ~4 

XD (1/2)~mi2 ~ mi 2 )" " (ii) 
~ m23 + (1I2)(m" + mn) ~ p + (l12)(m12 + m,,) 

XD(l/2)(m,,~m22) ( rt)D(112)(ml2~m22) (fit 
~ u + (112)("1 12 + m22) mIl ~ (112)("1" + "1 22) - ~ 4 (112)(m" + m22) ~ P ~ m21 + (1/2)(ml2 + "1,,) ), (4.18) 

where 

(4.19) 

(

iTi 
"'-
11-

-~ 

~). 
n1 

These matrix elements for the case of singular Zl1 t are simpler than those for the nonsingular case, and it is easier to 
derive new relations for the special functions involved from them. We shall note some of the consequences of the representa
tion property of the matrix elements (4.18). laking two successive translations, through the matrices?; and 'TJ [as in Eq. (4.19), 
with the dual object labeled by the matrix 11], we find 

"'- 112 [ det(£ + 'TJ) ]112 J2A .. + I 12 [det(£ + 'TJ)detll] J = >< 
(det?;)( det'TJ)( det11) 

x I (_I)A+A'-A"+P+U(2A + 1)(2A" + I)C:~m' :'-p:'"--m' 
A,A'.p.u 
cA' A A" X a-m' m-a m-m' 

Setting 

_(VI - V2) _ (WI - W2) 
?; - , 'TJ - , 

V2 VI W2 WI 

det?; = IVI 12 + Iv212, det'TJ = IWI 12 + Iw212, 

det(£ + 'TJ) = IVI + WI 12 + IV2 + w212, 

(4.21) 

we find that Eq. (4.20) gives us a combination of classical Bessel functions which effect the addition of the moduli of vectors in 
two complex planes at once, in the sense that 

J2A " -+ I pY detfi [Iv, + WI 12 + IV2 + w212]' /2
J 

= I (C~.~,)J2A+I pYdetfi[lv , 12 + IV2nIl2jJ2A'+1(2Ydetfi[lwI12+ IW212]1I2), (4.22) 
,1,/1' 

whereas the representation property of the Bessel function as matrix element of a finite transformation in the Euclidean group 
of the plane gives us the addition of vectors in only one complex plane: 

+00 
Jm'~m[P(ZI +Z2)]= I Jm'~m,,(PZI)Jm"~m(PZ2)' (4.23) 

mil = - oc 

The sums in Eqs. (4.20) and (4.22) are carried out over all integral and half-integral values of A and A ' such that the conditions 
of the Clebsch-Gordan series for SU(2) are fulfilled. 

The representation property of the functions (4.18) allows us to formulate an analog of the binomial theorem for the U (2) 
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gamma matrix. If we represent a translation of the type (4.17) through the matrix '4 + 114 as two successive translations 
through '4 and 114' using the representation property of the functions (4.17). then equate the coefficients of the same power of 

'" detll on both sides, and eliminate common factors. we obtain the relation 

L (_I)U + v+ <1' +P(U + 1)(de~4Y(det114)" -x-u D ~~:~~i~;(:{:)+ miz) _ <1' + (1I2)(m;2 + mi.) ~4) 
A.u.<1',x,'7 

XN P-~(1I2)(m;2+rn;,),p-U';<1'-(1I2)(m;,+mlz)'p-p [x +21(1!2)(mi2 - m 22 ).A] 

XD~ _ u'p- ,,.{ - t! 114)N p--
l
p,(lI2)(rn'2 + "'22) - <7;0'-p,(1/2)(m" + mll) _p [n - x -U + 2/,1.. ~(m'2 - m 22 ) J 

XD (l/2)(m'2 - m ll) ( t) 
(1/2)(m'2 + m 22) - <7 mil - (1I2)(m" + '"22) - 114 

"'( l)T[d tff- + )In D (1I2)(m" - m22) ff" + ) = £,,; - e ~4 114 m,,-(lI2)(m;,+m,,) -T+(l/2)(m;,+m,,)~4 114 
T 

D (1/2)(rn" - m,,) ( f- t t) 
X (IIZ)(ml1+m,,)-Tmll-(1/2)(m,,+"''') -!>4 -114 

XN P-~ (l/2)(m;2 + ""2),(1I2)(m" + m 12) - T;T _ (112)("';1 + miz),(1/2)(m u + mll) _ P [n + 21 !(m12 - m 22 ).!(m I2 - m 22 )], (4.24) 

where the sum is taken over both integral and half-integral values of A.. In particular, we can move the Wigner D functions and 
the gamma matrix from the right side to the left side by matrix multiplication and obtain an expansion for det~4 + 114)' as 
announced in Eq. (9.3) of Ref. 2. In the simplest case, setting !(m12 - m 22 ) = !(m;2 - mi2) = 0, we find 

where X A( u) denotes the primitive character of the (U + I)-dimensional representation ofSU(2) corresponding to the group 
element u. Again, the sum is taken over all integral and half-integral values of A. such that O..;;U..;;n. This result can be 
generalized to matrices other than those of the form specified in Eqs. (4.16) and (4.19) by analytic continuation. We note that 
;4 = (de~4)t4 - I; making this replacement. we can immediately extend Eq. (4.25) to all pairs of2X2 matrices at least one of 
which is nonsingular. We can express Eq. (4.25) more succinctly by making use of the generalization of the hypergeometric 
series defined by Louck and Biedenharn. 10 With them. we define 

pyq(a, .... ,aq;b, .... ,bq;z) = L < pyq(al ... ·,ap;b, , ... ,bq)I.u) <.ulz), (4.26) 
[pl, 

where <.u Iz) is the Schur function (or primitive character) with argument zeC x t belonging to the [.u L = [u I " ... "u It] irreduci
ble representation ofGL(t,C) and 

(4.27) 

where 

(4.28) 

and, as usual, 

(a) =r(a+n). 
" r(a) 

(4.29) 

In this notation, then, Eq. (4.25) becomes 

[det(l + 0]" = ,..ro( - n;;O, t = 2, (4.30) 

in exact analogy to the classical binomial theorem 

(1 + z)" = I Fo( - n;; - z). (4.31) 

Louck and Biedenharn have established Saalschiitz' theorem and the Euler transform for their generalized hypergeometric 
series for all t; in Eq. (4.30) we obtain a third analog of a classical hypergeometric theorem for the case t = 2. We conjecture its 
validity for all t, with a minus sign before the argument in the case of odd t. 
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v. THE LIE ALGEBRA OF U(2)@C2X2 REALIZED AS AN 
ALGEBRA OF DIFFERENTIAL OPERATORS ON THE 
GROUP MANIFOLD 

We must now realize the Lie algebra of the group 
U(2)@C2X2 in terms of differential operators on the group 
manifold. We shall relegate to Appendix B the verification 
that the representation matrices which we obtained in the 
previous section do indeed have the correct transformation 
properties under the Lie algebra of differential operators. 
The derivation of the required operators can be achieved 
through the contraction process, so we shall first examine 
the comparable set of operators in U(4), following the treat
ment of Louck. 8 

The generators ofU(4) can be realized as differential 
operators on the group manifold in two distinct, mutually 
isomorphic ways. We perform the mappings 

4 k a 
Eij-+?&' ij = L Ui -k' 

k = 1 aUj 

(S.la) 

.. 4 . a 
E .. -+?&'U = " U'k - (S.lb) 

IJ ~ a' , 
k = 1 u'k 

and the resulting operator obeys the commutation rules 

[?&' ij'?&' kf] = ?&,Jjjk - ?&' kjOif> (S.2a) 

[ 
ij Wkf] _ if ?&' ,0 - ?&' Ojk - ?&' kjOil' (S.2b) 

[?&' ij,?&,k1 = O. (S.2c) 

These sets of differential operators, then, realize two distinct 
copies of the Lie algebra ofU(4) which are "kinematically 
independent" in the sense ofEq. (S.2c). In Eqs. (S.l) and 
(S.2) all indices range over the integers from 1 to 4, and the 
variables u7 denote the matrix entries of the defining (4 X 4) 
representation of the group U(4). 

The matrix elements of a general finite transformation 
in an irreducible representation ofU(4), i.e., 

D [mi. () (m')3(m), U (S.3) 

in the notation of Louck, transform as basis states of an irre
ducible representation of the Lie algebra in the following 
manner: 

(S.4a) 

?&,ifD i:::,i:(m)'(u) = L 1([m14)1£ ,([m14
)) 

(m"), \ (m ")3 IJ (m)3 

XD i:::t(m"), (U), (S.4b) 

where the bar denotes complex conjugation. In U(4) the ma
trix elements of the operators Eij may be taken to be real by a 
suitable choice of phase conventions. Hence, the matrix ele
ments (S.3) are simultaneous eigenfunctions of the corre
sponding two distinct copies of the invariant operators of 
U(4) and its subgroups and the operators of the Cartan 
subalgebras ?&'ii' ?&,ii, 1<i<4. Under the operators 

(S.Sa) 
'1·· .. ,'1. 
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(S.Sb) 

the matrix elements (S.3) are eigenfunctions which yields 
eigenvalues determined by the invariants [m]4 [in the case 
ofEq. (S.Sa)] and the entries in thejth row from the bottom 
of the left Gel'fand pattern (m')3 [in the case ofEq. (S.Sb)]. 
Under the corresponding invariant operators composed out 
of the generators?&' if instead of ?&' ij' the matrix elements (S. 3) 
belong to eigenvalues determined by [m]4 and the entries 
(m)3 of the right Gel'fand pattern. 

We must now examine the contraction of the operators 
(S.l) to those of the group [U(2@C2X2]XlElI2X2 as specified 
in Eq. (2.8) above. We recall that the general element of the 
contracted group is obtained by restriction of some of the 
entries in the defining representation to infinitesimal quanti
ties or quantities infinitesimally close to unity: 

ui 

uj 

1 1 1 2 -z -Z3 R 3 R 

1 I 1 2 -z -Z4 R 4 R 

1 1 +_Z3 
R 3 

1 Z3 
Ji4 

1 1 +_Z4 
R 4 

, (S.6) 

where the condition that the above matrix be unitary (to 
order R - I) implies the conditions 

U

2

} 1 -ZtU, 

u2 
2 

(
I Z2) ~-3 3 3 1 

l z; =i 
(S.7a) 

(

3 Z4) ~-3 3 3 3 

3 Z4 ::4 
4 4 3 

(S.7b) 

where 

(
U: Ui) 

u= 
u~ u~ 

(S.8) 

is unitary. Hence, by the prescription (2.8), these generators 
become under contraction 
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I a 2 a 
Pu = Ui az} + Ui ai; = (5.9b) The invariant operators of the group U(2)@}C2X2 are then 

given by 

a 
p/j = azI, , 

J 

(5.9c) 
(5. 13 a) 

and 

a 
PIJ= -, 

azlj 
(5.10) 

(S.13b) 

where we maintain the prescription that lower case indices 
take the values 1,2, and capital indices take the values 3,4. 

(5.13c) 

We can realize the operators of the Lie algebra in the 
isomorphic form 

(5.13d) 

p1j = ..!!-. = 
a~ 

and 

plJ =..!!-.. az: 

(5.11a) 

(5. lIb) 

(5. lIe) 

(5.12) 

The invariant operators realized in terms of the generators 
with upper indices (5.11) are identical with those given in 
Eqs. (5.13). It may be verified by a tedious but straightfor
ward calculation that the three invariant operators I ~4), 
2..;;h;;;4, given in Eq. (5.Sa), become polynomials in the oper
ators (5.1O) and (5.13) in the contraction limit. 
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APPENDIX A: THE CONTRACTION OF THE MATRICES OF IRREDUCIBLE REPRESENTATIONS OF U(4) TO 
REPRESENTATIONS OF [U(2) a (;2 x 2] X W X 2 

Our starting point is the matrix element of an irreducible representation of U( 4); Holman II has constructed the matrix 
elements of all irreducible representations of all U(n) in the canonical Gel'fand basis in the form 

D):::,J),;, ,(m)" ,(u)=.A"1/2([mJn) 2: 2: 2: .A"-1/2[aln_ID)~!;;, :(a)" ,(un_d 
laJ" I (a')" 2 (a)" 2 

(([m'Jn_I)/(n-1 )1([aJn-I))n-1 
X (') I (m;n -I - a;n - 1)0 ... 0 (') II 

m n-2 1=1 a n-2 1=1 

(([mJn_I)I(n-1 )1([aJn-I)\n-1 
X (m)n -2 i~1 (min -I - a in -I )0 .. ·0 (a)n -2 I i~ 

(U~ )q, 

[(q;)!r/2 

(Urti 

[(pJ!] 1/2 

(([m] )1[( n n-I ) ]I(m~ .. ·m'. 0)) (u
n

\!'" n L' _ L m~ 0 ... 0 In-I n-In-I nl 

X (m)n_1 i=l
mln 

i=1 In-I (a)n_1 [(Pn)!r12' 
(AI) 

where the uj are matrix elements of the n X n defining representation, Un _ I denotes the (n - 1) X (n - 1) submatrix of u 
which results from the removal of the nth column and the nth row, and the normalization constant is given by 

([ 
07= I (min + n - I)! 

.A" m]n) = ---~---
07<j{min - mjn + j - 1) 

(A2) 

The coefficients (I ( ) I) denote matrix elements of totally symmetric unit tensor operators in U(n - 1) while the coefficient 
(I [J I) is the matrix element of a reduced U{n):U(n - 1) tensor operator. In our notation for these matrix elements we follow 
the conventions ofLouck8 rather than those of Chacon, Ciftan, and Biedenharn. 12 We shall omit the upper and lower patterns 
of the tensor operators since, in the case of totally symmetric operators, these are uniquely determined by the initial and final 
states. The exponents in Eq. (AI) are given by 

j i-I 

ql = mil - ail; qi = L (mji - aj;) - L (mji_1 - aji-I)' 2<J<n - 1; 
j= I j= I 
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; i-I 

PI =m l1 -a l1 ; Pi= I, (mji-aj;)- I, (mji _ 1 -aji _ I ), 2<i<n-l; 
j~ I j~ I 

11 11-1 

Pn= I, min- I, (m;n_1+min_I-ai,,_I)' (A3) 
;=1 ;=1 

The relation (A 1), then, gives us a recursive construction of the matrix elements of all irreducible representations of all U(n). 
The matrix elements of reduced totally symmetric tensor operators are necessary for the construction and have been evaluated 
by Chacon, Ciftan, and Biedenham. 12 The result is 

(A4) 

where 

[ 
ll~~lll~~I(ms" -J-lkr +k-s)! ]112 

Snr(m,,'Jlr) = n-I s , ' 
llk~ Illk+1 (J-lkr - msn +S - k -1). 

r= n,n -1. (AS) 

Here, mIl denotes the n-tuple of Gel'fand labels [mln, .. ·,mnn ], m~_1 denotes the n-tuple [mi" -I , .. ·,m~ -In-I ,0] and m n_ 1 
and an_I denote the corresponding (n -I)-tuples. The (n -1)-tupleq" -I is given by a ln _ 1 + PI,''',an_ In -I + Pn-I' 

We recall the relation 

(A6) 

where J-lij = mij - m n", J-lij = mij - m n". We shall consider the asymptotic limit of the D function on the right of Eq. (A6), 
taking as our argument the 4 X 4 matrix 

u: u~ -kt~ -kt i 
-k3 -k4 1 -

uj u~ R 2 R 2 
U ? 

= (A7) 

-kl -k2 I +~h~ i h4 
i 

l+-H 
R 3 R 3 R R3 R 

-kl 
R 4 

-k2 
R 4 

i h 3 
R4 

1 +~h4 
R 4 

and initial and final states of the form 

I(~:~:)) 
R (P14 +P44) R (P24 + P44) R (P44 - PH) 0 

R (P\3 + P44) + m\3 Rp44 + m23 R (P44 - P33) + m33 

Rp44 + m 12 Rp44 + mn 

RP44 + m l1 

(AS) 

The factor (detu)m,,,, in Eq. (A6) now has the form 
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(A9) 

We now wish to take the asymptotic limit R __ 00. In order to do so we shall J;Dake an assumption about the form which this 
asymptotic limit will take and, consequently, about what happens to the internal indices of summation in Eq. (A 1). We shall 
assume that the exponent of any factor, such as 

~; h; (AW) 
R'R' 

which occurs with R in the denominator, will remain finite and contain only discrete indices of summation. We shall allow the 
exponents of factors of the form 

(All) 

to become infinite, i.e., 

(1 + ~ h} yq-eihJi
• (AI2) 

With this assumption we can write down the internal state [a]3 immediately as 

R (PI3 + P44) + a 13 R (P44 + a 23 ) 

, (A13) 

Rp44 +a11 
and for the substates (a')2 we find labels of the same form as those given on the right ofEq. (A 13) with aij,jo;;;2, replaced by the 
corresponding primed quantities. We also find that a transformation of the form (A7) shifts the Gel'fand labels in Eq. (A8) 
only by a finite amount, i.e., that the transformation leaves all the Pij invariant. 

We must also apply Eq. (AI) in order to evaluate 

D~:'~:(ah(u)=..ff1l2([a]3) L L ..ff-1I2([13b)Di:'~:(Jnl(U2) 
[Ph [P'1,,[P1, 

0) I {PI 2 ~22)} .rr 
\ 1311 1=1 

(AI4) 

In order to take the asymptotic limit we insert the arguments prescribed by Eq. (A7) and the states of the form (AI3) into Eq. 
(AI4). Our assumption about the exponents offactors of the form (AW) remaining finite then tells us to replace [,8]2 as 
follows: 

(AI5) 

From now on the quantities aij' 13ij' and the corresponding primed quantities will be those indicated on the right side of Eqs. 
(A 13) and (AI5). 

The asymptotic limit R __ 00 can now be taken. The process is tedious but straightforward, since the asymptotic forms of 
all the matrix elements of totally symmetric tensor operators that occur in Eqs. (AI) and (AI4) can be evaluated by means of 
Stirling'S approximation alone from Eq. (A4). Some of the gamma functions in the normalization and denominator factors in 
Eqs. (AI) and (A 14) have arguments which become infinite in the limit R-- oo , but these are canceled by factors which occur 
within the matrix elements of tensor operators. The final result contains only finite powers of R. 

We note that the D function on the right ofEq. (AI4) becomes 

[detU] Rp.., + P"D (1I2)<P12 - P12) (U) 
P,,(1I2)<P12 +p,,) p" - (1I1)<P12 +p,,) , (A16) 

where the Wigner function is given by 
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D~'m(u) = L [(1'+ m')!(t'- m')!(t'+ m)!(t'- m)!] 1/2 (uDm'+m+n(uDt'-m-n(uDt'-m'-n(U~t. 
n n!(t'- m' - n)!(t'- m - n)!(m' + m + n)! 

The factor (detU)RP ... in Eq. (AI7) is canceled by its reciprocal, which occurs in Eq. (A9). 

In the final result we find factors of the form 

[( - a Z3 + mi3 - m~z - miz + a~2 + aiz)!]1!2 ' [( - a Z3 + m Z3 - mu - m Z2 + au + a 2l )!pl2' 

which vanish except when 

(Al7) 

(AlS) 

a2J = m;3 - mi2 - m;2 + ai2 + a;2 = m 23 - m 12 - mn + a l2 + a 22 . (AI9) 

With this restriction on the summations in the next equation, we can express our final result as 
1 

(~2 ~2~' [(mu + m 2Z - au - all)!(m~Z + miz - a~z - aiz)!(a12 + azz - {3u - {3zZ)!(a~l + ail - {312 - {3lZ)!]112 

xC (I12)(a" - a,,) (112)(all + a" - {Jll - (J,,) (112)({Jll - (J,,) 
- a" + (112)(all + a,,) - (1/2)(all + a" - {J1l - (J,,) - a" + (l12)({J1l + (J,,) 

xC (1/2)(mll - m,,) (1/2)(mll + m" - all - a,,) (1/2)(a ll - a,,) 
- mll + (1!2)(mll + m,,) (1/2)(mll + m" - all - all) - a" + (1I2)(all + a'2) 

xC (l/2)(ai, - ail) (l/2)(ai, + ail - {J1l - (J,,) (112)({J" - (J,,) 
- all + (1/2)(ai, + ail) - (112)(ai, + a" - {J" - (Jll) - all + (112)({J" + (J,,) 

xC (1/2)(mi, - m,,) (l/2)(mi, + m" - ai, - ail) (l/2)(ai, - a,,) 
- mb + (1I2)(mi, + miz) (l/2)(mi, + m" - ai, - a,,) - a2J + (1/2)(ai, + a,,) 

XD [{J,I, (U)C (1~2)({J1l - (J,,) (l:'2)(ai~ + ail - {J,; - (J,~) (1:'2)(ai, - a~,) , 
({J ),({J), {J" - (l12)({J1l + (Jll) a" - {J" - (1!2)(a" + all - {J12 - (J,,) a" - (l12)(all + all) 

xC (1!2)(ai, - a,,) (l/2)(m" + m" - ai, - ah) (1/2)(mi, - mil) 
ail - (1/2)(ail + aiz) mil - ail - (l/2)(mll + mh - ai2 - aiv mil - (1/2)(mi2 + mi2) 

(9
1
; f )ai , - f3/1t(fjJ 1; ~)ai2 + all - fJll -IJ21 - all + 1311(.9'2; i)m i1 - a i1(&, 2; ~)mi2 + mi2 - alz - al2 - mi. + ail 

X~----~----______ ~ ______________________________________________ ~~ 

[(ail - {3 il )!(a~z + ail - {31l - {3lZ - ail + {3 il )!(mil - ail )!(mi2 + mi2 - ail - a l2 - mil + ail)!] 1/2 

xC (l12)({J" - (J,,) (I!2)(a" + a" - {J1l - (J,,) (I/2)(al2 - a,,) 
{J" - (1/2)({J1l + (J,,) a" - {J" - (1I2)(a" + a" - {J12 - (J,,) au - (112)(a12 - all) 

xC (1!2)(a" - all) (I12)(ml2 + m" - a" - all) (1I2)(m" - m ll) 
all - (l/2)(a 12 + au) mil - all - (l/2)(m u + m Z2 - all - a l2) mu - (1/2)(mu + m21) 

(9 1 ~ ~)alt -fJII(& 1; i)a t2 + a 2 2 -/312 - Pl.2 - au + f311(9 2; !)mll - all(.9 2; ~)m12 + m12 - au - an - mil + all 
X------------------------------------------------------------------------------

[(all -PI I )!(a I2 +a22 -P12 -P22 -all +PII)!(m ll -all )!(m 12 +m22 -a12 -a22 -mil +al1 )!r /2 

{ 

'(p , ' )h 4( h 34 
)(I/2)(m;, + m" - mlJ - m,,) X e' IJ - p,,)h 'e'(P'4 + p,. - P34 - P .. - PI.' + p" 4 - hI 

(A20) 

The sums are taken over all positive and negative integer values of aij , aij, Pij such that the betweenness conditions for the 
Gel'fand labels are obeyed. The coefficients C ::: are just the SU(2) Wigner coefficients. The quantities g; 13' g; 33' g; I , and 
g; 2 are given in Eq. (3.2) and (3.5) above. The factor in curly brackets is just the matrix element of the (reducible) representa
tion of 112 x 2 which we obtain from the contraction. Discarding it, we obtain the matrix element of a finite transformation in an 
irreducible representation ofU(2)@H2x2. In Appendix B we shall sketch the method of proof for this assertion, 

We now wish to simplify the expression (A20). We set 

(A21a) 

(A21b) 

When these matrices are nonsingular we use the identity 

~ C(1/2)({JIl- (J,,) (l/2)(all + all- {J" - (J,,) (1!2)(all- a,,) 
"'" fJ" - (1!2)({Jll + (J,,) a" - {J" - (1!2)(all + a" - {J1l - (Jll) a" - (1!2)(all + a,,) 

C (l/2)(all - a,,) (1/2)(mll + m" - all - all) (l/2)(mll - mll) 
X a 11 - (l/2)(all + an) mtt - all - (l/2)(mll + m;u - au - al2) mu ~ (l/2)(mu + m l2) 
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x )11112 
[(all -PII)!(aI2 +a22 -P12 -P22 -all +Pll)!(mll -all )!(m12 +m22 -a12 -a22 -mll + all . 

m +f3 +f3 +f3 
[ 

(m12 - m 22 + 1)(a I2 - a 22 + I)(2A + 1) ]112 
= I. ( - 1) II 12 22 1) 

A,p [(l/2)(mI2 +m22 -Pl2 -P22)-A ]![(l/2)(mI2 +mn -P12 -P22)+A +1]! 

X{ (l/2)({312 -P22) (l/2)(a I2 +a22 -P12 -P22 ) (l/2)(a I2 -a22 )} 

(l/2)(ml2 + m22 - a l2 - a 22 ) (l/2)(mI2 - m 22 ) A 

X D (1/2)(f3" - f3,,) (&' r) 
(l12)(a" + a" - f3" - f3ZZ) - P - f3" + (l/2)(f3" + f3,,) ~ 

XD (l/2)(m" - m,,) (&' r)(det&' r )m" - f3" 
(l/Z)(UI2 + a l2 - rnt2 - m 22) - P rn ll - (l/2)(m 12 + m 22) ~ ~ 

C (112)(m" - m,,) (l/2)(f3.z - f3ZZ) A 
X (1/2)(a" + a zz - m.z - m zz) + p (1/2)(a.z + a" - f3" - f3zz) - p a" + aZZ - (1I2)(m" + mzz + f3" + f3zz) 

(A22) 

We now perform the sum over !(a I2 - a 22 ), eliminating the Racah coefficient. When we have done so we find that the sum 
over A can be expressed in terms of the inverse U (2) gamma matrix discussed in Ref. 2: 

C(1/2)(m. z - m zz) (1/2)(f3" -f3,,) A 
X - mn + (l/2)(m" + m,,) an - (l/2)(f3" + f3,,) a" + an - (1/2)(m" + mn + f3. z + f3,,) 

C(I12)(m" - m,,) (l12)(f3" -f3zz) A 
X (I/2)(ull + Uu - ml2 - m n ) + P (1/2)(u12 + a l 2 - f31l - f3l2 ) - p u l2 + all - (J/2)(ml2 + m 22 + flu + f322) 

=N (1/~)(a" + an - m" - m,,) + p,aZ3 - (1/2)(f3" + f3zz); - m Z3 + (1/2)(m. z + m n ),(l/2)(a" + a" - f3" - f3zz) - p [m n - PI2 
(A23) 

This inverse gamma matrix then appears in Eq, (4.2) above (with a slightly different definition of the summation indexp). 

In the case that the matrices (A2I) are singular we cannot use the identity (A22). Instead we have 
C (l/2)(f3.z - f3,,) (1I2)(a" + a,Z - f3. z - f3,,) (l/2)(a" - a,,) 

f311 - (l/2)(f3.z + f3,,) all - f3" - (l12)(a" + aZl - f3" - f3,,) a" - (1I2)(a" + a,,) 

C(I12)(a. z - a,,) (l12)(m" + mzz - a" - a,,) (1/2)(m" - mzz) 
X all - (1/2)(a" + a,,) m ll - a" - (1/2)(m" + m ZZ - a" - azz} m ll - (1I2)(m.z + mzl ) 

X [(all -PII)!(a I2 +a22 -Pl2 -P22 -all +Pll)!(m ll -all )!(m I2 +m22 -a12 -a22 -ml1 +all )!]112 

_ ( l)m" - m,,[ (a 12 - a 22 + 1) ]112 c(1/2)(m" + mzz -f3" - f3zz) (1/2)(f3" - f3zz) (l/2)(m" - mzz) 
- - ( _ a _ a)I mil - f311 - (1/2)(m" + m ,Z - f3.z - (312) f311 - (l/2)(f3" + f3zz) m ll - (l/2)(m.z + m zz) 

m l2 + mn fJI2 fJ22' 

{ 

(l/2)({312 - P22) (l/2)(a I2 + an - PI2 - P22) (l/2)(a I2 - an) } 

X (l/2)(mI2 + mn - a l2 - a 22 ) (l/2)(mI2 - m 22 ) (l/2)(mI2 + m 22 - PI2 - P n ) 

X D (l12)(m" + m,Z - f3" - f3zz) (&' r) 
au + ull - (l/2)(m 12 + ml2 + /3u + /322) mil - /311 - (l/2)(rn12 + rnl2 - /312 - f321 ) ~. (A24) 

We note that since its argument is a singular matrix the Wigner D function on the right ofEq. (A24) can be written as a 
monomial. For singular u the D function becomes 

DI () - (2/)' (u:)m'+m(uD/-m(uDI-m' (A25) 
m'm u - . [(t'+m')!(t'--'-m')!(/+m)!(t'-m)!]I12 

in place ofEq. (AI7). When the sum over l(a l2 - a 22 ) is performed the recoupling process which leads to the expressions 
(4.10) and (4.13) is straightforward. 

APPENDIX B: THE PROPERTIES OF THE MATRIX ELEMENTS OF IRREDUCIBLE REPRESENTATIONS OF U(2,@i?X2 
UNDER DIFFERENTIATION 

We have adopted a heuristic procedure in Appendix A for the contraction of the matrices of irreducible representations 
ofU (4) to representations of[U(2@C2X2] X H2 x 2. The construction was non rigorous, based only on a plausible assumption as 
to the behavior of the matrix elements under contraction. It remains, then, to provide a proof that the matrix element which 
we have obtained as a result, given in Eq. (A20) above, is indeed the desired matrix element of a representation of 
[U(2)@)C2X2]XH2X2, and that the representation matrix ofU(2)@C2X2 is irreducible. We shall provide such a proof by 
demonstrating that the matrix element proposed in Eq. (A20) as that of an irreducible representation of U(2xg}C2X2 does 
indeed have the correct transformation properties under the differential operators which realize the Lie algebra of the group. 
Specifically, the matrix element (4.2) must obey the relations 
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PiJ«II;(m'»1 &'(U,Z)I(II;(m») = L «II;(m"»1 PiJl(II;(m'») «II;(m"»1 &(U,Z)I(II;(m»), (Bla) 
(m") 

P iJ «II; (m'» I&'( U,Z )I(II; (m») = L (II; (m"» I P iJ I (II; (m») «II; (m'» I&'( U,Z) I (II; (m"»), 
(m") 

(BIb) 

which hold, mutatis mutandis, for the generators PI} and P I}. It is evident that Eqs. (4.2) and (A20) obey the boundary 
condition at the identity element of the group. The matrix elements of the generators are given in Eqs. (3.3) and (3.11) above, 
and the realization of the generators as differential operators on the group manifold is given in Eqs. (5.9) and (5.11). We shall 
not carry out the program of verification in detail but shall merely sketch its procedure in two representative cases. Specifical
ly, we shall apply the operators P42 = J/Jzi and P24 = - J/Jz;. to Eq. (A20). To facilitate comparison we shall note the 
correspondences 

(&\t~ 92ti)=(9IZ~ +w93zi 

91t~ 9 2ti 9 1zi +w93zi 

(9It~ 9It~) 

9 2t! 92t~ =(- 9lul~ -w93ulZi - 9lui~ -w93uiz;. - 91U~~ -w93U7zi - 9[u~~ -W93U~z;.). 
(B2) 

- 9 2ulZi - 9 2uiz;. - 9 2u7Zi - 92U~z;. 
The easier of the two cases is that of P42 . Applying it to Eq. (A20), we find 

~ ~ , c (1;2)(/312 - 13,,) (l:2)(ai~ + a" - 13.,' - 13,;) (I:2)(ai2 - a~2) , a 4,L..1 13 .. - (1/2)(/312 + 1322) a" - 13" - (1/2)(a.2 + au - 1312 - 1322) a" - ([/2)(a. 2 + a22) 
'Z2 a~ I 

Xc(l,/2)(ai,-a~2) , (l;2)(mi,2+mh-a!2-13~2) , , (1:2)(mi2-m~2) ,I 
all - (1/2)(a 12 + all) mil - a 11 - (1/2)(m I 2 + m Z2 - all - all) mil - (1/2)(m I 2 + m 22 ) 

(9 1zi + w9 3zit i• -13i'(9 1 zi + w9 3ziti, + a
" 

- 13" -/322 - ai, + 13i'(9 2 zi)mi. - ai'(9 2zi)mi, + m" - ai, - a" - mi. + ai, 

X~-----------------------------------------------------------------------------------[(ail -p';I)!(a;2 +a22 -P'12 -P'22 -a;1 +p';l)!(m;1 -a;[)!(mi2 +m22 -a;2 -a22 -m;1 +a;I)!)1/2 

x 
[(ail -p';1)!(a;2 +a22 -P'12 -P'22 -ail +P'i\)!(m;, -a;,)!(m;2 +m22 -ai2 -ai2 -mil +a;,)!]'/2. (B3) 

The first of the two terms in square brackets on the right of Eq. (B3) corresponds to the first two terms on the right of Eq. 
(3.11d), and the second corresponds to the last two terms ofEq. (3.11d). We note from Eq. (B1a) that we expect the complex 
conjugation of the matrix elements given in Eq. (3.11 d); hence, the complex conjugate w 9 3 of the eigenvalue w 9 3 appears in 
the first term in square brackets on the right ofEq. (B3), whereas w9 3 appears in the first two terms ofEq. (3.11d). We shall 
now limit our attention to the first term in square brackets in Eq. (B3) and sketch the derivation of the first two terms ofEq. 
(3.11d) from it. A completely analogous procedure holds for the second term in Eq. (B3). The first term on the right of Eq. 
(B3) can be written as 

- w9 3 II c::: c::: I 
a;, 

X ( , + a' _ P' _ a + 1) \/2C(lI2)(a i, + a" - 1312 - 1322 ) (1/2) (l/2)(ai, + a" - 13., - 1322 - I) 
a l2 22 12 fJ22 a~I-{3it-(1/2)(ai2+a;:z-/312-(J22) (1/2) a;I-/3II-(1/2)(UIZ+UZz-/3I2-f322-l) 

We shall now relabel the index of summation ai2' replacing a;2 with a;2 + 1. Making this substitution in Eq. (B4) and 
including the other relevant structures of Eq. (A20), we find ourselves dealing with the expression 

_ ill9 I L (; (ail + ai2 - P'12 - P'22 + 2) )1/2 
3 [a'!, (a'), (mi2 + mi2 - a;2 - ai2 - 1)!(ai2 + ai2 - P'12 - P'22 + I)! 
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xC (lIZ)(tI" - (3,,) (lIZ)(a" + aiz - {3" - (3" + I) (l/Z)(a" - ai, + 1) 
{3" - (lIZ)(tI" + (3,,) a" - {3 i, - (I/2)(ai, + ai, - {312 - (3" + 1) ai, - (lIZ)(ai, + a,,) 

C(lIZ)(a;,+ai ,-{3,,-{3,,+ I) (liZ) (1I2)(a,,+aiz-/3,,-/3,,) 
X a;, - /3;, - (1IZ)(a" + ai, - (312 - /3" + I) (1/2) a;, - /3" - (lIZ)(a;, + ai, - {3" - (3,,) 

xC (lIZ)(a" - ai, + I) (112)("", + miz - I - aiz - aiz) (I/2)(m;, - mi,) 
all - (l/2)(aI2 + ail + I) mil - ail - (I/2)(mi2 + miz - 1 - ai2 - ai2) mi. - (l/2)(mil + m2Z) 

X C(lIZ)(m" - mi,) (l/Z)(m;, + m

" 

- I - a" - a2') (1/2)(a" - ai, + 1) 
- m1J + (I/2)(mil + m:i2) (l/2)(mil + mi2 - 1 - ail + a2Z) - mh + mil + mh - (1/2)(ai2 + ah + 1) 

C (1/2)(a;, - (liz + I) (1/Z)(a;, + ai, - /3" - {3" + I) (IIZ)(tI" - {3,,) 
X _ mi. + m" + mi, - (1I2)(ai, + ai: + I) - (l12)(a;, + a" - (3" - /3" + I) - mh + mi, + mi, - a;, - (liz - I + (1/2)(tI" + /3,,) 

(&' I Z; + w&' 3Z~)"" - {3 i,(&, I Z~ + w&' 3zi)"i, + ai, - {3"-{3,, - a" + /3 "( &' 2Z~)m" - a" (&' 2zi)mi' + m
" 

- J - ai, - aiz - m" + a" 

x--------------------------------------------------------------------------
[(ail -,8 il )!(a lz + a;2 -,8n -,822 - all +,8 11 )!(mll - ail )!(mi2 + m 22 -1 - ai2 - a 22 - m ll + all )!)'12. 

(B5) 

The normalized arguments, the factor in curly brackets in Eq. (B5), now have the correct form prescribed by Eq. (3.11d): The 
operator P4Z shifts the sum mi2 + m22 to m12 + m22 -1. It remains only to perform recoupling operations on the Wigner 
coefficients in Eq. (B5) in order to obtain an expression of the form (Bla) and verify the correspondence with Eq (3.11d). We 
use the following identities: 

C (1/2)(fJ" - (3,,) (l/2)(a" + ai, - {3" - (3" + I) (1/2)(a" - ai, + I) 
(3" - (I/2)(fJ" + (3,,) ai, - /3 i, - (l/2)(a" + ai, - {3" - (3" + 1) ai, - (l/2)(a" + ah + I) 

X C(1/2)(a i , + ai, -/3" -(3" + Il (liZ) (1/Z)(a" + ai, -{312 -(3,,) 
a~ 1 - /3 it - (1/2)(ah + a Zl - P\2 - /322 + 1) (l/2) a; I -- /3 i1 - (l/2)(aiz + ai2 - {311 - /322) 

2:(-1)a i,-{3"[(2A'+1)(aiz +a22 -,812 -,822 +1»),/2 
A' 

{ 

(1/2)(alz - a 22 + 1) 

X (1/2)(a 1Z + a~Z -,8\2 - ,822) (1/2) 
xC (1/Z)(fJ12 - {3,,) (l/2)(a" + ai, - (312 - /3,,) A' 

(3 i, - (I/Z)(fJ" + /3,,) ai, - {3" - (lIZ)(ai, + ai, - /3" - (3,,) ai, - (1I2)(ai, + a,,) 

Xc A ' (112) (112)(a,,-ai,+I) 
a" - (lIZ)("" + ai,) - (112) a" - (lIZ)(a" + ai, + I)' 

and then 

C A' (112) (lIZ)(a;, - aiz + I) 
a" - (l/Z)(a;, + a 2,) - (1/2) a" - (l/Z)(a" + ai, + I) 

xC (l/2)(a" - ai, + 1) (1I2)(mi, + ",i, - I - ai, - ai,) (I/Z)(m" - "'i,) 
ail - (1/2)(a I2 + all + 1) mil - ail - (l/2)(mi2 + mll- I - ai:: + ai2) mil - (l/2)(mil + mil) 

2: ( - I)M' - ai, + (l/2)(m;: + mi, + 1) [(2M' + 1)(a1z - aiz + 1) ]'IZ 

M' 

A' (l/2)(ai2 - a;2 + 1)} 
M' 

cA' (112)(m" + mi, - 1- a,,- aiz) M' 
X ai, - (lI2)(ai, + ai,) mi, - ai, - (l/2)(m" + mi, - 1 - "'I, - ai,) mi, - (lI2)(m" + mi, - I) 

xC M: " (112) (I:Z)(m" - m~,) ,. 
mit - (l/2)(m" + "'" - I) - (lIZ) mit - (l/2)(m" + m,,) 

(B6) 

(B7) 

We now wish the eliminate the Racah coefficients in Eqs. (B6) and (B7) and perform the summation over !(a;2 - a22 + 1) by 
means of the completeness relation for the SU(2) Wigner coefficient, Thus, the sum over !(aiz - ai2 + 1) becomes 

2: ( - l)M' + a" + alz - /312 + (l12)(m" + ",i, + 1) 

(1/2)(a;, - a 22 + I) 

X [(2A' + l)(al z +ai2 -,8n -/322 + 1)(2M' + 1)(a1z -ai2 + 2)]1/2 
xC (1/2)(m" - mi,) (1/2)(",.: + mi, - 1 - ai, - ai,) (1/2)(a" - ai, + 1) 

- mh + (l/Z)(m 1z + mi2) (I/2)(mi2 + mil - 1 - aiz + ail) - mi3 + miz + mh - (I/2)(al1 + aiz + 1) 

A' (l/2)(a 1z - a l2 + I)} 
M' 

xC (1/2)(a" - ai, + 1) (1I2)(ai, + a2' - (3" - fJ" + I) (1I2)(fJu - (3,,) 
- mh + mil + mil - (l/2)(ail + all + 1) - (12)(0:11 + aiz - P u - (322 + 1) - mh + mi2 + mil - all - aiz.- 1 + (l/Z)(Pu + f3zz) 
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{ 

(l/2)(ai2 - a;2 + 1) 

X (l/2)(aiz + ai2 - {312 - (3n) (1/2) 

(l/2)(ai2 + a;2 - {312 - (3n + 1)} 

A' 

I ( - I)M' + {3" + (1/2)(m" + mi, - 1)( ,(2M' ~ 1) )1/2 

(1/2)(ai,-a2'+ I) (m 12 - m 22 + 1) 

X "e
p
(I12) M' 

~ - mil - p + (l12)(m" + mi,) 
(l12)(m" - mi,) 
- mi, + (l12)(m" + m,,) 

p 

x eA'. .. .. (1/2) (112)~u" - .ai , + ~) .. 
~ m 23 + m.2 + m 22 - P - (l/2)(UI2 + a22 + 1) p - rn13 + m12 + m 21 - (l/2)(a u + all + 1) 

X e(I12)(m" + mi, - 1- c:z., - u;') M' A' 
(1/2)(rn;2 + mi2 - 1 - a;2 - ail) - mh - p + (l/2)(m~2 + miz) - m;b + m~2 + mi2 - (1/2)(a;2 + ail + I) - P 

X" e (112)(a" + a;, - {3" - (322 + I) 
~ - (l12)(a" + a" - {3" - (3" + I) 

(112) (V2)(a" + ai, - {3" - (3ll) 
(7 (7 - (l/2)(al' + a;, - {3" - (3ll + I) 

a 

X eA'. .. .. (112) (V2)~a" - ,ai, + ~) ., 
- m23 + mu + m22: - a - (l/2)(ul2 + a22 + 1) a - m23 + ml2 + '"22 - (1/2)(° 12 + a 22 + 1) 

X e (V2)(a', + .ai, -~" - /3,,) A'." " (112)(/3" - (3,,) 
a - (1/2)(a 12 + all --/3u - (322 + 1) - m23 + m12 + m22 - a - (1/2)(a 12 + a 22 + 1) - mi3 + m;2 + mil - ai.2 - a 22 + (1/2)(l:J12 -4- 1322) - 1 

_ [ (2M' + 1) ]112 e(V2) M' 
- (' , 1) (V2) - m" + (112)(mi, + mi, - I) 

m l2 - m22 + 
(1/2)(m" - mi,) 
- mi, + (112)(m', + mi,) 

X e(1/2)(ai , + ai, - (3n - /3" + I) (1/2) (l12)(ai, + ai,- /3" - (3,,) 
- (112)(ai, + a" - /3" - /3" + I) (1/2) - (112)(ai, + ai, - (3" - /3,,) 

XeM' , " (1/2)(m!,+m~,-I-a!,-a~,) A', ., ,. 
- m" + (l12)(m" + m" - I) (112)(m" + m22 - I - a., - a,,) - m" + mil + m" - I - (1/2)(a" + a,,) 

X eA', " .. (l/2)(a" ~ ai, -: /312 - /3,,) (l12)~" - ~22) , ., • 
- m 23 + m 12 + m 2 2 - 1 - (/2)(a12 + au) - (l/2)(au + all - {312 - /322} - m;Z3 + m 12 + mZ2 - 1 - a 12 - au + (1/2)<P1l + Pn) 

(B8) 

We are now in a position to collate the results ofEqs. (B4)-(B8) compare the final expression with Eq. (B1a). We have already 
established thatmi'2 + m~2 = mi2 + m;2 - 1. We now find thatm~3 = mi3 and thatM' = !(mi'2 - m~2)can take on the two 
values !(mi2 - mi2 - 1) and !(mi2 - mi2 + 1). The former corresponds tothefirstterm on the right ofEq. (3.11d) and the 
latter to the second term. We set A ' = !(ai2 - a;2), i.e., we allow A 'to serve as the corresponding index of summation in Eq. 
(A20). The final result is 

= -9 e(1/2)(mi, - mil) (1/2) (1/2)(m"- m;' - I) e (I/2)(mi, - mi, - I) (1/2) (1I2)(rn" - mh) 
Q) 3 - mil + (I/2)(mi, + mi,) - (112) - mi, + (1/2)(ml' + mi, - I) mi. - (1/2)(mi, + mi, - I) - (1/2) mi. - (1/2)(mi, + mi,) , 

_ -9 e (1/2)«m" - mi,) (1/2) (1/2)(mi, - mi, + I) e O/2)(mi, - m;' + I) (1/2) (I/2)(mi, - mi,) 
- Q) 3 - mi, + (1/2)(mi, + mi,) - (1/2) - mi, + (1/2)(ml' + mi, -I) mi. - (1/2)(mi, + mi, - I) - (1/2) mi. - (1/2)(mi, + mi,) , 

(B9) 

which correspond exactly to the first two terms of Eq. (3.11d). 
We have now consider the operation of P24 = - (al aZi) on the representation matrix (A20). In our treatment of the case 

of P42 above we have given a paradigm of the recoupling process needed for the verification ofEq. (Bl) for all the generators 
P1j and P Ij. The generators P iJ and P jJ require a distinct and, unfortunately, more complicated paradigm. From Eqs. (A20) 
and (B2) we have immediately 

2006 J. Math. Phys .. Vol. 21, No.8, August 1980 Wayne J. Holman, III 2006 



                                                                                                                                    

= [li).9'3u~(all _/311)1/2 

( 
(.9' I ; ~)(.9' 2; 1)(.9' 2; ~) ) 

X [(a I2 +a22 -/312 -/322 -all +/3I1)(m ll -a ll )(m 12 +mn -a12 -an -mIl +all )r12 

+li).9'3u~(aI2 +a22 -/312 -/322 -all +/311)1/2 

( 
(.9'I;D(.9'2;!)(.9'2;D )+.9' ul(m -a )112 

X 1/2 2 2 II II 
[(all -/3II)(m ll -all )(m I2 +m22 -a12 -all -mIl +all» 

X( (.9'1; D(.9'I;~)(.9' 2;~) ) 
[(all -/3II)(a 12 +an -/312 -/322 -all +/3II)(m I2 +mn -a12 -an -mll +all )]112 

+ .9'2ui(mI2 +m22 -a12 -a22 -mil +all )1I2 

X [(all - /311 - 1)!(al2 + a 22 - /312 - /322 - a\1 + /311 - I)! 

X(m ll -all -1)!(mI2 +m22 -a12 -a22 -mil + all _1)1]-112 (BlO) 

The first two terms in square brackets on the right ofEq. (B I 0) correspond to the first two terms on the right ofEq. (3.11 b) and 
the second two terms ofEq. (BlO) to the second two terms ofEq. (3.llb). Again, we shall limit our attention to the first two 
terms ofEq. (BlO), and we shall carry out the recoupling process in explicit detail only for the first term and merely present the 
final result for the second. It is our goal to express the operation on the left ofEq. (Bla) in terms of the expression on the right. 
The matrix element of the finite transformation on the right ofEq. (B la) will be called the "reconstituted matrix element." As 
its structures emerge from the recoupling process they will be denoted by insertion in boxes for easy comparison with Eq. 
(A20). The matrix element of the finite transformation on the left ofEq. (B I a) wiII be called the "original matrix element." We 
shaH proceed as before, introducing the structures of the original matrix element as they are needed in the sequence of the 
recoupling process, then recoupling, and then labeling the structures of the reconstituted matrix element as they emerge. Once 
the reconstituted matrix element is completely assembled we shall be able to compare its coefficients in the expansion on the 
right ofEq. (Bla) with those given in Eq. (3.11b). 

We now consider the first term on the right of Eq (B I 0) and make the replacements 

C (1/2)(au + a" - flu - fl.,) (112) (l/2)(au + all - flu - flu - I) 
X _ (l/2)(a" + all - flu - fl .. ) + a" - fl" - (112) - (1/2)(a" + all - flu - fl" + I) + a" - fl" (BII) 

and 

u~ =D(!!UI2) (112) (u). (BI2) 

Hence, 

u 1 (detu)fl" D (112)({1u - fl.') (u) 
2 fl i. - (l/2)({1" + fl.') fl" - (112)({1u + fl,,) 

= (detu\fJ"D (112) (u)D (I~2)(,8u - p,,) (u) = ~ (detu)(112)(,8" + flu + I) - B 
) - (1/2) (1/2) fl" - (l/2)({1" + flu) fl .. - (112)(,8u + fl •• ) ~ 

B 

xC (112)({1u - 13,.) (1/2) B 
fl i. - (112)({112 + fl.') - (112) 13 i. - (112)(,8" + fl,. + I) 

X B (u (112)({1 .. - flu) (1/2) B 
fl' - (1/2)({1 •• + 13,. + I) fl .. - (112)({1 .. + flu - I) 13" - (112)(,8 .. + 13,.) (1/2) pu - (112)({1u + Pll - I)' (BB) 

Bringing in a Wigner coefficient from the original matrix element, we then use the identity 

C (112)({1" - fl,.) (1/2)(au + all - 13 .. - flu) (1I2)(all - a,,) C(1I2)(,812 - fl.,) (112) B 
13 .. - (I/2)({1" + fl.,) - (I/2)(al2 + a" - flu - fl.') + all - flll all _ (I/2)(a" + all) p" - (112)({11l + fl,') (1/2) flll - (112)({11l + 13" - I) 

xC (1I2)(all + all - flu - 13.') (112) (1I2)(a .. + all - flu - P21 - I) 
- (l/2)(al2 + au - fl" - p,,) + all - 13" - (112) - (1I2)(au + a,. - 13 .. - flu + I) + all - 13" 

2007 J. Math. Phys., Vol. 21, No.8, August 1980 Wayne J. Holman, 11/ 2007 



                                                                                                                                    

L [(au - a 22 + 1)(2K + 1)(2B + 1)(a\2 + a 22 - /312 - /322)]112 
K.A 

(1/2)(/312 -/322) (1/2)(a I2 + a 22 - /3\2 - /322) (1/2)(a I2 - an) 

X (1/2) (1/2) K 

B (1/2)(a I2 + a 22 - /312 - /322 - 1) A 

xe(l/2) (1/2) K e(II2)(a12-a12) K A 
(112) -(112) o all - (1I2)(a" + a,,) 0 all - (l/2)(a" + a,,) 

X B (1I2)(a" + a" - (3" - /3" - I) A (B14) /311 - (112)(f312 + /3" - I) - (1I2)(a" + all - /3" - /3" + I) + "11 - /3ll all - (1I2)(a" + all) 

Taking the second Wigner coefficient on the right ofEq. (BI4) and introducing another Wigner coefficient from the original 
matrix element, we obtain 
e(1I2)(a,,-azz) K A 

all - (I/2)(a., + a,,) 0 all - (1I2)(a" + au) 

X e (1I2)(a" - au) (1I2)(m" + m" - a" - a,,) (1I2)(m" - m,,) 
all - (l/2)(ull + an) - (l/2)(ml2 + mIl - all - a21) + mu - a1l m ll - (l/2)(mu + mu) 

x( _ I)A + (1I2)(m" + m 21 - a" - a,,) - Me M K (1/2)(m" - m,,) 
m ll - (l/2)(m" + m,,) 0 mll - (I/2)(m" + m,,) 

X e A (I/2)(m" - m" - a" - a,,) M 
all - (l/2)(a" + a,,) - (1I2)(m" + m" - a" - all) + m ll - all mil - (112)(m" + rn,,) (B1S) 

However, then 
e (I 12)(m " - mlZ) (112)(m" + mu - a" - an) (112)(a" - a,,) 

- m13 + (l12)(m" + m,,) (1I2)(m" + m" - a" - a,,) - a23 + (1/2)(a" + a,,) 

A 

( _ 1)M + (112)(m" + m" + a" + all) - A 

= [(2A 1)( 1)]112 L e~ ~m13-K+(II2)(m12+m22) + m 12 - m22 + . K 

(l12)(m" - m,,) 
- m" + (1I2)(m" + mu) 

X
eA K (1I2)(a,,-a,,) 

- a13 - K + (112)(a 12 + a,,) K - a" + (112)(a" + a,,) 

x e M (1I2)(m" + m" - a" - a,,) A 
- "''' - K + (112)(m" + m,,) (112)(",,, + m" - a" - a,,) - a" - K + (1I2)(a" + a,,) 

(B16) 

We now introduce the last Wigner coefficient of the original matrix element which contains !(a\2 - an) and sum over this 
parameter, eliminating the (9-]) symbol constructed in Eq. (B14): 

~ ( l)1/2e(1I2)(a" - a,,) (1/2)(a12 + a" - /312 - /321) 
£.- a 12 - an + - a" + (l12)(a" + a2') - (1I2)(a" + «" - (3" - /3,,) 

(112)(f312 - /3u ) 

- a" + (112)(a" + a,,) 
(1/2)(a" - a,,) 

xeA K (112)(a,,-a,,) 
- au - K + (112)(a" + all) K - a" + (112)(a" + au) 

x (1/2) 0/2) K 

B (1/2)(a I2 + a 22 - /312 - /322 -1) A 

[(a\2 + a 22 -/3\2 -/322 + 1)(2K + 1)(2B + 1)]112 

X e (112) (112) K e (112) B (I/2)(f312 - /3,,) 
K - (112) (112) K I< - (112) - a23 - K + (I12)(f3" + (3" + I) - a23 + (1I2)(f312 + /3,,) 

A 
- a" - K + (112)(al2 + a,,) 

(1/2)(a" + a'2 - /3" - /3" - I) B 
- (1I2)(a 12 + a" - (3" - /3" - I) - a" - I< + (I/2)(f3" + /3" + I) 

(B17) x 

The rest is nothing but a straightforward recoupling process which involves only Wigner and Racah coefficients. We intro
duce a Wigner coefficient from the original matrix element and pick up a hitherto unused Wigner coefficient from Eq. (B 13) to 
form 
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e (I;2)(f3u - /322) (1I2)(ai2 -: air;- P12 - P.,) , (1I2)(ai. - ai2) 
p" - (1/2)(/312 + P22) - (1/2)(al2 + a22,- /312 - P22) + a" - /3" ail - (1I2)(ai2 + ail) 

X e (112)(/312 - /322) (112) B 
/3 i. - (1I2)(f312 + /322) - (1/2) /3 i. - (1I2)(f3'2 + /322 + 1) 

L ( - 1),'" + (l/2)(ai2 + ai2 +/312 +/322) - B [(2B + 1)(2A I + 1)] 112 

A' 

{ 

(1/2) 

X (l/2)(a;2 + ai2 - /312 - /322) (1/2)(a;2 - ai2) 

B (1/2)(,812 -/322)} 

A' 
e A' (1/2) (1/2)(07;2 - ai2) 

X a,. -(1I2)(ai. + aiz + 1) (112) ail - (1I2)(ai. + aiz) 

B (1I2)(ai2 + aiz - /3u -/322) A' 
/3 i. - (112)(/3" + /322 + 1) - (1I2)(ai2 + aiz - /312 - /32zl + ail - p" ail - (1/2)(ai2 + aiz + 1) X 

Then 

e A' (112) (1I2)(ai2 - ail) 
ail - (1I2)(a'2 + ai2 + 1) (112) ail - (1/2)(ai2 + ail) 

X e (1/2)(ai2 - ai2) (1I2)(mi2 + mil - ai, - ail) (l/2)(mi. - miz) 
ail - (1I2)(ai2 + ai2) - (l/2)(mi2 + mil - ai2 - ail) + mi. - ail mi. - (1I2)(mi. + mil) 

A' (1/2)(a;2 - a i2 )} 

M' 
X eM' (112) (1I2)(mi2 - miz) 

mi. - (1I2)(mi, + mi2 + 1) (112) mi. - (1/2)(m;' + miz) 

X 
A' (l/2)(mi. + miz - ai2 - aiz) M' 
ail - (1I2)(ai. + ai. + 1) - (l/2)(mi. + miz - ai. - aizl + mi. - ail 

(BI8) 

(BI9) 

It is now a straightforward matter to introduce the remaining two Wigner cOefficients from the original matrix element, 
eliminate the Racah coefficients in Eqs. (BIS) and (BI9), and perform the summations over !(,812 - /322) and !(a;2 -ai2)' 

We are then able to assemble the whole reconstituted matrix element simply by redefining the following indices of summation: 

/312 +/322 + 1-/312 +/322' 

/311 + 1-/3tt, 

(B20) 

Once we have made these redefinitions to bring the reconstituted matrix element into the form (A20) and assembled our final 
results, we find that the right side Eq. of (B 1 a) which results from the terms corresponding to the first two terms on the right of 
Eq. (BlO) has the form 

{J)f}'J 3 L L [1 + ( - I)K]( _ I)M' - M - (1I2)(mi2 - mi. - 1) + (1I2)(m" - m2zl[ (2M + 1)(2M' + I) ]1/2 

K,K M',M (m12 - m 22 + 1)(m;2 - mi2 + 1) 
X e (112) (112) K e (112) (112) K eM K (1I2)(ml2 - m22) 

- (112) (1/2) 0 K - (1/2) (112) K mil - (l/2)(mll + m.. 0 mil - (l/2)(m 12 + m .. ) 

XeM K (1I2)(m,,-m22) eM' (1/2) (1I2)(mi2- mi2) 
- m23 - K + (1/2)(m" + m 22) K - m., + (1I2)(m 12 + m22) mi. - (1I2)(mi. + mi. + I) (112) mi. - (1I2)(mi. + mi.) 

eM' (112) (1I2)(mi2- mi2) 
X _ mi, - K + (1/2)(mi. + mi2 + I) K - (112) - mb + (1I2)(mi2 + miz) 

- M' + (1/2)(m;2 + mi2 + 1) 

I t1(U,Z) I ll; M + (1/2)(mI2 + m22 ) - M + (1/2)(mI2 + m 22 ) (B21) 

Let us consider the factor [I + ( - 1 )K] which occurs in the summand. The first term corresponds to the first term on the right 
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ofEq. (B 10), which we have been working out in detail; the second term ( - I)K comes from the second term on the right ofEq. 
(BIO). Since K can take on only the values + I and 0, it follows that the K = I term vanishes identically. This necessarily 
implies that K = 0 and M = Hml2 - m 22 ), i.e., as expected, the operator P24 does not shift the labels on the right side of the 
original matrix element. Writing Eq. (B21) in the form (Bla), we find 

&' C(1/2)(m i , - miz + I) (l!2) (1I2)(mi, - mi,) C(l12)(mi , - m,,) (112) (112)(mi, - mi2 + I) 
= (j) 3 _ mi3 + (l!2)(rni, + mi, + 1) - (112) - mb + (1!2)(mi, + mi,) mi, - (1/2)(rni, + rn,,) - (112) mi, - (112)(mi, + m" + I)' 

m23 

_ &' C (112)(mi, - m" - I) (1/2) (l!2)(mi, - m,,) C (l!2)(mi, - mi,) (1/2) (112)(mi, - m" - I) 
- (j) 3 _ mb + (l!2)(mi, + m" + I) - (112) - mb + (l12)(mi, + m,,) mi, - (112)(mi, + m,,) - (112) mi, - (l!2)(mi, + m" + I)' (B22) 

which is in accordance both with the first two terms ofEq. (3.llb) and with Eq. (B9) and the requirement P 24 = (P42 )t. 
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Clebsch-Gordan coefficients for type II Shubnikov space groups, containing the inversion as 
point group operation are expressed by simple formulas in terms of convenient Clebsch-Gordan 
coefficients for the unitary subgroup. 

INTRODUCTION 

This paper continues a series of articles which dealt 
with the problem of decomposing Kronecker products of 
anti unitary representations into their irreducible constitu
ents. Within the present work we transfer the general formu
las which have been derived in Refs. 1-6 to type II Shubni
kov space groups containing the inversion I as point group 
operation. 

Due to the general approach given in Refs. 1-6, conve
nient Clebsch-Gordan coefficients (CG coefficients) for the 
unitary subgroup ( = ordinary space group) have to be com
puted at first, which are then used to calculate unitary trans
formations linking CG coefficients for type II Shubnikov 
space groups with them for the unitary subgroup. 

The material is organized as follows: In Sec. I we recall 
briefly the basic definitions and notations concerning ordi
nary space groups and their unitary irreducible representa
tions (unirreps). In the following section we summarize the 
main properties of type II Shubnikov space groups and write 
down their co-unirreps in standard form. Assuming for the 
following considerations that the inversion I is contained as 
point group operation in the unitary subgroup, conditions 
are derived under which a given space group unirrep can be a 
constituent of a co-unirrep of type I or type II. Type III co
unirreps are easily distinguishable, since they contain two 
inequivalent unirreps from the unitary subgroup. Section III 
is devoted to the problem of determining those unitary ma
trices which link CG coefficients for type II Shubnikov space 
groups with convenient ones for the unitary subgroup. Uti
lizing the fact that for nearly all cases the multiplicity prob
lem for ordinary space group CG coefficients can be solved 
in a very special way,? the corresponding coefficients are 
given by special expressions. These coefficients are then used 
to compute for all possible cases unitary matrices which lead 
immediately to the desired CG coefficients for type II Shub
nikov space groups. Since restricting our considerations to 
space groups which contain the inversion I as the point 
group operation, we are able to give simple solutions for the 
multiplicity problem (containing among others the "wave 
vector selection rules") and the corresponding unitary 
matrices. 

I. DEFINITIONS AND NOTATIONS 

Let M = G X I E,O 1 = I G,OG 1 be a type II Shubnikov 
space group,8 where G is the corresponding ordinary space 
group: 

M= l(al1'(a)+tIO k ):aEP, tET, k=O,IJ, (Ll) 

(a I 1'(a) + tIO k )(a'I1'(a') + t'IO k
') 

= (aa' \ 1'(aa') + t + D (a)t' + t(a,a') I e k + k ,), (1.2) 

t(a,a') = 1'(a) + D (a)1'(a') - 1'(aa'). (1.3) 

The symbols t denote primitive lattice translations. 1'(a) 
nonprimitive lattice translations, D = {D (a) : aE P 1 is a 
faithful representationS of the point group P-=:::::.G IT of the 
crystal, and 0 the time reversal operation. Since M is a direct 
product, we write sometimes the elements of the subgroup G 
for the sake of simplicity as (al1'(a) + t) instead of 
(al1'(a) + tiE) and 0 instead of(eIOIO). 

The matrix elements of the vector unirreps of G can be 
written in the following form9

: 

D ~:~'!~: G(fJ 11'( 13) + t) 
= A q( a ,{3a/)e - iq(,T)-tB :.0" (13 )R! (a- l f3a'), 

qEABZ, KEApq(sq), a,a/Ep:pq. a,a'=1,2, .... ny , 

pq = {a: D(a)q = q + Q/q(a)j; aE P}, 

A q(y,y/) = 0rpq• ypq, for all Y.Y/E p. 

q(y) = D (y)q, 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

B :.0"' (13) = exp [ - iq( a)· {1'(j3) + D (f3 )1'( a') - 1'(a) J ], 

for all f3E P. (1.8) 

Thereby ABZ denotes the fundamental (representation) do
main of the Brillouin zone BZ, G q the group of the q vector. 
and Q/ q(a») reciprocallattice vectors; a,a/EP: pq left coset 
representatives of P q~G qlT with respect to P and R Y 

= I Rfl' (a) : aE pq) ny-dimensional projective unirreps of 
pq which belong to the standard factor system 

Sq(a,{3)=exp[ -iq.(D(a)-I)1'(fJ»), for all a,/3Epq. 
(1.9) 

(In this connection we have to note that for symmorphic 
space groups the projective unirreps RA'" reduce to ordinary 
vector unirreps, whereas for nonsymmorphic space groups 
this proposition only holds for q's not lying on the "surface" 
ofABZ.) 

II. ·CO-UNIRREPS OF M 

In order to be able to write down the three different 
types of co-unirreps of M, it is necessary to consider 

D (Y.q)rG «e 1 0 1 e )(a 11'(a) + t IE)(e 1 010» 
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(ILl) 

which is an obvious consequence of the direct product struc
ture of M. Thus, it suffices to compute a I P ; P q I n.Jr -dimen
sional unitary matrix U(if',q) satisfying 

D (Y,q)TG (a/T(a) + t). 
= U(Y,q)tD (Y.q)TG (a/1'(a) + t)U(Jr,q), 

for all (a\1'(a) + t)E G, (11.2) 

where the same notation for identical equivalence classes is 
introduced as in Ref. 10, i.e., 

{(JiY,q)tGj*=(JY,q')tG, q'E..1DZ and KEApq(sq). 

(11.3) 

Hence, it follows that the first step must be to determine for a 
given equivalence class (JiY,q)tG the corresponding equiv
alence class (K,q')tG. This can be done by means ofthe 
character test given by Dimmock and Wheeler, g or by inves
tigating the formulas (111.3), (III.S), or (111.16) of Ref. 10, 
which however presuppose that the inversion I is a symme
try operation for the crystal in question, and to consider Eq. 
(V.3) of Ref. S for the general case. 

Provided this task has been solved we are in the position 
to write down the three different types of co-unirreps of Min 
their standard form: 

type I: ( (JiY,q)tG j* = (JiY,q)rG, 

][)(Y,q)TG (a\T(a) + t) = D (K',q)TG (a/1'(a) + t), 
for all (a\1'(a) + t)E G, (11.4) 

][)(Y,q)TG(O) = U W .q ), (11.5) 

U(Y,q)U(Y.q)", = + l(Y.q)TG ; (11.6) 

type II: ( (JiY,q)rG J * = (JiY,q)tG, 

D(Y~q)tG (a 11'(a) + t) 

= [D(y.q)TG(a

o
i1'(a)+t) 0 J 

D(.:K',q)tG(a\1'(a) + t) , 
(11.7) 

J1)(Y.q)TG (0) = [ 0 
_ U(JI',q) 

U(.:K'·q) ] 

o ' 
U(Y,q)U(JY·q)· = - l(JI".q)TG ; 

type III: ! ($",q)tG } * # (JY',q)tG, 

][)(X,q)TG (al1'(a) + t) 

(11.8) 

(11.9) 

= [D(y,q)TG(a

o
\1'(a)+t) a ] 

D(Jr·q)TG(al1'(a) + t)* ,. 

D(y,q)TG(a\T(a) + t). 

= U(.:K',q)tD CY,q')TG (al1'(a) + t)U(JY,q>, 

l(Jr.q)TG ] 
o ' 

(11.10) 

(11.11) 

(11.12) 

U(Y,q)U(JY,q)t = l(y.q)TG . (11.13) 

These matrices are satisfying well known properties which 
are inherent to corepresentations, namely, 

D(y,q)TG«e/OIO)(aIT(a) + t)(eIOIB»* 
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= D(y,q)TG(O)t][)(y~q)TG(aIT(a) + t)][)(y,q)TG(B), 

(11.14) 

J1)(Y.q)TG (B )][)(Y,q)tG (B)* = ][)(Y,q)TG (e / ° 1 E), (11.15) 

D(Y.q)TG (0 )][)(y,q)TG (aIT(a) + t)* 

= ][)(y,qHG(a\T(a) + t/O), for all (a/T(a) + t)E G. 
(I1.l6) 

For the following we restrict our considerations to 
space groups which contain the inversion I as point group 
operation. The reason for this restriction is that only for such 
space groups are we in the position to give closed expressions 
for the unitary matrices U(Jr,q) (see Ref. 11). The first conse
quence is 

( (JY',q)tG J* = (£',q)tG, qEADZ and K,£'EApq(sq) 
(II. 17) 

[compare Eq. (11.5) of Ref. 10], which implies that i~quiva
Ience of [ (JY',q) t G 1* and (JY',q) t G occurs only if JY' # JY'. 
Furthermore, we derived in Ref. 11 two different types of 
unitary matrices U (Y~q), depending on whether the inversion 
I belongs to P q or not, namely, 

u~~:q) = 8",,,, U Y, IE pq, 

BY (a). = iQlq(1)\'T(a)U5YtBY(a)UJr, 

U (Y.q) = 8, eiq(a).t(a,I)u·Y · 
Uta' atla , 

(I1.1S) 

for all aEpq, 
(11.19) 

(11.20) 

aY(a)* = e'Qlq«,-·)I· ... (I)uJYta.Y(a)U Y , for all ae pq, 

(11.21) 

where we have partly used matrix notation for UVf",q). Obvi
ously, Eq. (II. IS) can only be realized for q's lying on the 
surface of ADZ, whereas Eq. (11.20) is either possible for q's 
which are elements of the surface of ADZ or lying inside of 
ADZ. In this connection we have to note that the first situa
tion is rather rare whereas the second possibility will be the 
usual one. Nevertheless, we are forced to discuss both situa
tions. Furthermore, for the last case (i.e., qEsurface of ABZ) 
the unimodular factor appearing in Eq. (11.21) reduces to 1 
and Eq. (11.21) represents the usual equivalence relation for 
ordinary vector unirreps. 

Provided £' = JY' is valid we can readily verify for 
both cases [Eqs. (11.18) and (II.20)] 

(11.22) 

which implies that the property 

U(y,q)U(Y,q)* = ± l(Y,q)TG , (11.23) 

characterizing type I or type II co-unirreps, can only be a 
consequence of 

uJYU
y

• = ± 171' . (11.24) 
Thus, we arrive at the important result that the property of a 
space group unirrep to be a constituent of a type I o~ type II 
co-unirrep [ofa type II Shubnikov space group whIch con
tains the inversion (I 11'(1)] originates only from the projec
tive point group unirreps of P q. (This holds of course also for 
type III corepresentations.) Now let us consider in more de
tail Eq. (11.24) in order to see whether we can make general 
predictions with respect to the type of co-unirreps or not. 
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For this purpose we recall that the matrix elements of the 
ny-dimensional unitary matrix U:r can be written as 

~c>or { ~ '>or } -112 UY. = -"- ~ ei/t(a)R" (a)R": .(a) 
d diP q I £.. II coco 

aEpq 

X 2: ei/t(/3 )RJ; ({3 )lff:'co ({3), (11.25) 
/3E p. 

where the unimodular factors ei/t(a) are defined by 

ei/t(a) = ' 
{ 

eiQlq(l)I·~(a) for Ie pq, 

eiQlq(a-')J.~(1), for Ii pq 
(11.26) 

[compare Eqs. (11.7), (11.20), (11.33), and (11.45) of Ref. 11]. 
Introducing the following definitions (see Ref. 12): 

we obtain immediately 

= /pqllD EYJr;OB ) 
\..,lc~' Ic~ 

= Ipq/IIBO(lco)1I 2 = IpqlllBO(col)I1 2 

since mYJr;o = 1. On the other hand, we obtain for 

= 8d 'd" Ip q l-IIIB°(lCo)n-2 2: ei/t(a)R:'; (a)R~(a) 
a 

= Od'd" IIBO(lcO)II-2 (Bc;, I ,E.W'W";oB lco > 
= 0 ' "1IBO(lco)II-2 (B EWW";OB > 

d d leo' Col 

(Il.27) 

(11.29) 

(II. 30) 

(II.31) 

(11.32) 

which has as a consequence that the phase factor eip can take 
only the values ± 1, i.e., 

eip = ± 1, (11.33) 

since Erw-;o is a Hermitian matrix. In order to be able to 
verify the first line ofEq. (11.32) one has to use among others 
the equivalence relations (111.9) and (Ill. I?), of Ref. 10. 
Thus, we have shown generally that the unitary matrices 
U Y satisfy Eq. (11.24), but we cannot predict for the general 
case whether the phase factor eip is + 1 or -1. Only for 
such cases where we can choose cb = Co = 1 must the corre
sponding co-unirreps be of type I. 

III. CG COEFFICIENTS FOR TYPE II SHUBNIKOV SPACE 
GROUPS 

Due to the general approach given in Refs. 1-6 the first 
task is to determine convenient CG coefficients for the nor
mal subgroup G. Obviously, it suffices to compute only those 
columns of the corresponding CG matrices, which refer to a 
fixed column index ao of the considered unirrep, since the 
remaining column vectors are immediately obtained by pro
jection techniques as was described in Refs. 13 and 7. Pro
vided such vectors have been determined, one has to calcu
late with the aid of them the unitary matrices Band C which 
link CG coefficients for M with those for G. Thereby it is 
very useful to utilize the additional symmetry properties of 
the submatrices ofF, which are the nontrivial constituents of 
Band C. 

As already pointed out, we have shown in Ref. 7 that 
the multiplicity problem for space group CG coefficients can 
be solved in a very special way for nearly all cases by taking 
special column indices of the considered Kronecker product 
as the multiplicity index. This has the consequence that we 
are able to give closed expressions for the corresponding CG 
coefficients without reference to a special space group. This 
implies that it suffices to transfer special formulas (which 
have been derived in Refs. 1-6) to space group representa
tions, which are needed to calculate the m!,-,!,-,;!,- -dimensional 
sub matrices F!'-{JL'!'-')of F. 

In order to simplify the notation let us use sometimes 
the following symbols: 

ft-(Jr" o,qo)l G, 

ftl-(Jr",q)iG, 

ftz-(Jr'" ,q') i G, 

i-(O',c), 

j_(O",c'), 

v = 1,2, ... ,m('.oF.q)(w",q');(y"q,) , (Ill. 1) 

AG =A, uA" uA", . (111.2) 

Now we are in the position to write down the columns of the 
convenient CG matrices for G, which are needed for the 
following considerations. 

Case A ®B:C:A,BEA, uA" and CeA G • According to 
Eqs. (111.24), (111.48), and (111.90) of Ref. 1 and Eqs. (11.30), 
(11.67), and (11.112) of Ref. 2, and Eqs. (11.29), (11.68), and 
(11.114) of Ref. 4, we have to consider in principle the vectors 

M/t,/t,;J.t(i,.j,) A EA u,,I h t 
a, ,ftE G' ft,,J.L2 ,Vi", w ose componen s are 

given by 

{M,u,,u,;,u(i .. J')J -IIB,u,,u,;/t(i,·J'·)II-'o ny, ~ A q( (.1 )Bq ({3)RY ( -1(.1 )A q'( '(.1 ') 
a, ij - a, q(O') + q'(O"),q, + Q[q(O') + q'(O") I I pq, / ~P ""' O',pO'v 0',0',. CC" 0' pO'v:.u 0' ,pO'v 

(111.3) 
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Thereby we have to note that the multiplicity indices 

(111.4) 

of course depend on the considered case. The remaining vectors M~:/L,;ii(i,j.),jiE Am andfLI"u2E A)uAu' which are defined by 
Eq. (111.91) of Ref. 1, Eq. (11.113) of Ref. 2, and Eq. (11.115) of Ref. 4, take the following form: 

I M/L,/L,;ji(i,j,.)} .. = IIB/L,/L,;ji(i,·j'.)11-18 " 
a. IJ a. q(u) + q (u), - q. + Q[ ... J 

x 1;:llP..d q(U'/3U'JB~.u,(f3)R'?;(U'-I{3U'V>..d q'(U",fJU'~)B~'.u:(f3)R::;(U"-lfJU'~)..d q·(e/3)B~.·e(f3)R~·(f3), 

Comparing the wave vector selection rules, which are con
tained in Eqs. (111.3) and (111.5) for the case fLE Am 
~jiE Am' we are confronted with two different situations, 
depending on whether the complex conjugation of D (.r .. q.)tG 
is governed by Eq. (11.18) or (11.20). Provided 

q(U'u) + q/(U'~) = qo + Q[q(U'V> + q/(U'~)], qoE..dBZ 
(111.6) 

is valid and Eq. (11.18) connects D (r .. q.)tG ... with D w .. q.)tG, 
i.e., 

I U(Y.qltD(w.q)tG(J3IT(f3) + t)U<r,q)Ju"u, 

=..d q(U'I/3U'2)e - iq(u,).tB ~"u, (f3)U XtR r (U'I-1 fJU'2)U X , 

(111.7) 

it follows that 

q(U'u) + q/(U'~) = - qo + Q[ ... ] 

= qo + Qlqo(l)} + Q[ ... ], (111.8) 

where the reciprocal lattice vector QI qo(l) J arises from the 
definition of the corresponding little co-group P q •. Equation 
(III. 8) has as a consequence that for both situations (M~~ and 
M~~) the same left coset representatives (U'u,U'~) can be used 
as a part of the multiplicity index, whereas the indices Cu and 
c~ are not necessarily the same, On the other hand, if Eq. 

I 
fLI,fL2EA) uAn, jiEAm· (111.5) 

(11.20) connects D (k' .. q.)tG ... with D (JY.,q.)1G, i.e., 

I U(k',q)tD(P,q)tG(J3IT(f3) + t)U(·r,q)lu .. u, 

= ..d q( U'1/3U'2)eiq(u. ).te - iq(u. ).t(a. ,I) + iq(u,)·t(a,'/) 

we have 

q(IU'u) + q/(IU'~) = qo - Q[q(U'V> + q/(U'~)] (111.10) 

since Ii P q •• Thus, we arrive in this case at the result that at 
least one of the two left coset representatives U'v and U'~ has to 
be replaced by I U' u and/or I U';', since it is impossible that 
IE U'uPqU'u- 1 and/or IE U'~pq'U'~ -I • That/U'u and/or IU'~ can 
be chosen as the left coset representative has been shown in 
Ref. 10. This implies that D (,7>',q)tG* and/or D (7)',,q')tG* are 
related by matrices of type (11.20) with D (7)',q)tG * and 
D (?i' ',q')tG, respectively. 

CaseA ® III:C:AEA)uA II andCEAG.AccordingtoEq. 
(11.35), (11.36), (II. 77), (11.78), (11.131) and (11.132) of Ref. 
3, and Eqs. (11.37), (11.38), (11.85), (11.86), (11.143), and 
(11.144) of Ref. 5, we have to consider the vectors M/L"l,;/L(i,j,) 

a" 

and N~,:ji';/L(i,j,), fLlEA)uAn' fL2EAm' and fLEAG' whose com-
ponents are given by 

X n7>';, I..d q(U'/3U' )Bq (f3)R?i'(U'-I/3U' )..d q'(U"/3U")Bq', ,(f3)R;;:(U"-I{3U")..d qo(e/3)Bq"*(f3)R7>'·(f3)* I p qo I (3 U 17,0'" ee" u v (J' ,0'" C Cl' v e,e 1 J , 

(111.11) 

{N/L,ji2;/L(i,j,)},.. = IIB/L,ji2;/L(i,j')II-1 8 " ~ '" ..d q(U' aU' ) B q (f3)RW(U'-I/3U')..d q'(U'/ aU") B q', , (fJ)* 
a o I) a() q(O') - q (0' ),qu + Q[ ... I I p qo I "7t ,p v O',u" eel' v ,p' v II ,0', 

X R~~; ... (U'/-lfJU'~)..d q"(e,/3) B ~:~(f3)R'{;(f3)"', fLlEAI uA n , fL2EAm; fLEAG' (111.12) 

whereas the remaining vectors M~,~ and N~,~ are not written down, since they are immediately obtained from Eqs. (111.11) and 
(111.12), respectively by replacing the wave vector selection rules q(U'u) ± q/(U'~) = qo + Q[ ... ] through q(U'u) ± q/(U'~) 
= - qo + Q[ ... ] and {B ~:~ (f3 )R'{;"(f3)}* through their complex conjugate values. Now, comparing the wave vector selection 

rules which are contained in Eqs. (111.11) and (111.12), we can use the same left coset representatives (U' u ,U'~) as a part of the 
multiplicity index, if D (X',q')1G* is linked by a unitary matrix of type (11.18) with D (,Y',q')tG and we have to take (U'u,IU'~), if 
D (.W',q')tG* is connected by a unitary matrix of type (11.20) withD OV',q')tG. By similar arguments as for Eq. (111.8) or (111.10) it 
is possible to predict appropriated left coset representatives appearing in M~,~ and M~<~, fLEAm (N~<~, and N~<~, respectively, 
fLEAm ). 

Case III ® III: C: CEA G. Finally, in accordance with Eqs. (11.46)-(11.49), (11.101 )-(11.104), and (11.166)-(11.169) of Ref. 
6, we express the corresponding vectors K~,~,u.:<~,M~<~, and N~,~ by a single formula, where the vectors K, L, M, and N are 
abbreviated by the symbol P: 

{~I/L';/L(i,,1',Jl. = IIB/LI/L,;/L(i,,1''')II-1 8 ' . n/iv'o 
ao IJ a" ± q(u) ± q (u ),qo + Q[ ". J I p q" I 
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Thereby it is obvious what combinations have to be taken in 
order to obtain the corresponding vectors KI-'v LI-'v MI-'V and aI)' a()' aI)' 

N~,~, Predictions concerning appropriated left coset repre
sentatives (uv'u~) are obtained by similar arguments as in 
the previous cases. Finally, the remaining column vectors 
P:,~2;j1(i,j.) are readily derived from Eq. (III. 13), if the wave 

vector selection rules ± q(uv ) ± q'(u~) = qo + Q[ ... ] are re
placed by ± q(uv) ± q'(u~) = - qo - Q[ ... ], and 
{B ~:~ (p )R;\'<>(p )}* by their complex conjugate values. 

Now we are in the position to give closed expressions for 
the unitary submatrices F"(p.,,,,) of F, which are the nontri
vial constituents of Band C. According to Eq. (II.18) and 
(II.20) we have to take either 

{n(:1r,q)rG(p 11'(8) + t)U(w,q)} 
0'110'2 

into account or 

{n(:1r,q)rG(p IT(P) + t)U(r,q)t."u
2 

=.::1 q(u,,/Jla2)e-iq(<T,j.t + iq(O',)-t(O',,l) Bq fa) 
O't,ICJ'2 \}J 

XRW(Ui-' f3I(2)U'*'~ 

= e - iq(u,H {n (.r,q)IG fa ITra»U(J¥',q)} (I 
I}J I}J "1,"2' II,IS) 

where we have partly used matrix notation for 
npf",q)rG(p /T(P) + t)U(K.q). Thereby we have to remember 
that Eq. (11.18) and therefore Eq. (1II.14) are rather rare, 
whereas Eq. (II.20) and therefore Eq. (1II.1S) will be real
ized for nearly all cases. Nevertheless, both situations, de
pending on the case in question, are possible and are there
fore considered. 

Case A ® B:C: A,B,CEA1uAu ' Corresponding to the 
general formulas 

F;,,~1-'11-'2) = (~,~,UI-'I ® UI-'2 {~U~o/Mfvr), 

and III #2' ilEA I uA II (1I1.16) 

which cover the cases (1II.23) and (III.47) of Ref. 1, Eqs. 
(II.24) and (I1.61) or Ref. 2, and Eqs. (1I.24) and (11.62) of 
Ref. 4, we have to compute 

F':"SI-',1-'2) = I!B~,:1-'2;1-'(i"j")1l-' IlB~,:1-'2;1-'(i"j,)!I-1 

n,~· 
X8, _'~_o 

q(",,) + q (0';,.).<10, + QI .. ·) I P q" I 
X r {n(:1r',q)rG(p IT({3»UW,q)}".,c.;".,c, 

/3 

x{n(dY"·q·)IG(P!T(P»U(dY"·q')} " " 
O'u,cu;a"c lI 

x{n Wo,qo)IG(P IT(P»UWO,<Io)}:'l;el (III. 17) 

since we assume that the corresponding CG coefficients for 
G can be expressed by Eq. (III.3). Obviously, Eq. (III. 14) or 
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(III. B) 

(III. IS) has to be taken into account. Equations (IIU7) re
present the formulas (III,2S) and (III.49) of Ref. I, Eqs. 
(11.31) and (I1.67) of Ref. 2, and Eqs. (II.30) and (11.69) of 
Ref. 4. In calculating the matrix elements (III.17), it is very 
useful to utilize the property of the matrices FI-'(I-',I-',) to be 
either symmetric or antisymmetric [compare Eqs. (111.17) 
and (III. 39) of Ref. I, Eqs. (11.27) and (II.64) of Ref. 2, and 
Eqs. (II.27) and (11.65) or Ref. 4]. In. this connection it is 
reasonable to make some remarks concerning the row and 
column indices of the matrices F 1-'( 1-',1-',). These indices are 
composed on the one hand by the left coset representatives 
(uv,a~)EP(q,q') [compare definition (III. 1) of Ref. 9], and on 
the other hand by special column indices Cv and c~ of the 
projective unirreps W'v and R:.f"". Although for many cases 
1 P (q,q' ;qo) / = 1 is realized, we cannot exclude the possibil
ity ! P(q,q';qo)! > 1 (compare remarks in Refs. 9 and 14). 
For both cases the left coset representatives (uv,a~)EP(q,q') 
are linked by special formulas [see Eqs. (11.4), (1I.l2), 
(11.25), (11.35), (II.42), and (II.65). of Ref. 7] with the ele
ments (ua,O'~)EP(q,q';qo). whose definitions are given 
through Eqs. (III.7S) and (III.76) of Ref. 9. For the second 
case we may expect a block structure of FI-'(I-'II-',) originating 
from (aa,u~)EP(q,q';qo), respectively, there arises the ques
tion whether the matrix elements of F 1-'( 1-'11-',) can be different 
from zero for different pairs (ua,a~)EP(q,q';qo)' In order to 
be able to answer this question it is necessary to decide each 
case on its own merits. Provided such a matrix element 
would be different from zero, the corresponding CG coeffi
cien~s for M would link CO coefficients for G which belong 
to dIfferent wave vector selection rules. Obviously, similar 
arguments will hold for all following cases. 

Provided the matrix elements (III. 17) have been calcu
lated for the various cases, the corresponding CO coeffi
cients for M are immediately obtained from the general for
mulas which have been derived in Refs. 1,2, and 4. Apart 
from the first two cases, where one has to find solutions of 
FB· = B [see Eq. (III.20) of Ref. IJandFB * = BG T[seeEq. 
(111.44) of Ref. 1], we summarize our results as follows: 
(I ® II : I) CO coefficients for Mare given by Eqs. (1138) and 
(11.39) of Ref. 2 by taking the definitions (II. II) of Ref. 2 into 
account. (I ® II : II) CG coefficients follow from Eqs. (II.73) 
and (II.74) of Ref. 2 by using the corresponding definitions 
(II.47) of Ref. 2. (II ® II: 1) CG coefficients are obtained by 
means of Eqs. (II. 37)-(II.40) of Ref. 4, where Eq. (II. 12) of 
Ref. 4 has to be used. Finally, (II ® II :II) CG coefficients are 
given by Eqs. (1I.76) and (11.77) of Ref. 4, where the defini
tions (II.49) of Ref. 4 have to be taken into account. Besides 
this the nontrivial components of~v". are fixed through Eq. 
(111.3). " 

Case A ®B :III: A,BEA1uA II , Due to the general 
formulas 

(IIU8) 
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which represent the cases (111.89) of Ref. 1, Eq. (11.110) of Ref. 2, and Eq. (11.112) of Ref. 4, we have to calculate for the 
present approach the following expressions: 

F{i(}",}",) = IIB}",}",;{i(i"j")II-1 IIB}",/i,;/i(i',)')II-1 ~ ~ 
wu all «0 q(O',,) + q'(rr;,), - ql) + Ql··· j I P Qt) I 

X ~ {D ('JI,q)lG (f3 \T(f3»U('JI,q)}u".-,,;u,c, {D ('JI',q')tG (f3 \T(I1»U<W',q')}.,.:,c:,;a:c: D ~~~lqo)lG(I1 11'(11», (111.19) 

where depending on the considered case either Eq. (111.14) or (111.15) has to be used. Equations (111.19) coincide with the 
formulas (111.92) of Ref. 1, Eq. (11.114) of Ref. 2, and Eq. (11.116) of Ref. 4. Conceming the row and column indicesofFJi(/i,/i2), 
one has to be very careful, since they are not necessarily identical [compare remarks to Eqs. (III.8) and (111.10) of the present 
paper]. Presupposing the matrix elements (III. 19) have been computed, the corresponding CG coefficients for M are obtained 
as follows: (I ® I : III) CG coefficients are given by Eqs. (111.87) and (111.88) of Ref. 1. (I ® II : III) CG coefficients are defined 
by Eqs. (11.115) and (11.116) of Ref. 2 where the definitions (11.87) and (11.88) of Ref. 2 have to betaken into account. Finally, 
(II ® II : III) CG coefficients are immediately obtained from Eqs. (II.117) and (11.118) of Ref. 4 by using the definitions (11.89) 
and (II.90) of Ref. 4. Analogously to the previous cases, the nontrivial components of the vectors <Yo;'" and <Yo;'" are given by 
Eqs. (III.3) and (111.5), respectively. 

Case A ® III: C A,CEAIuA II . In this case it suffices to consider the formulas 

F/i(/L,1'2) = (M/LW U/i, to. 1 {~U/L N/iV}*) €A ," €A wv a" ' vy /L, ~ a,,1 I , /-l,/-li I Utili' /-l2 lIi 
I 

(111.20) 

which cover the cases (11.28) and (11.70) of Ref. 3 and Eqs. (11.30) and (11.78) of Ref. 5, since the remaining matrices F/L(/L,Ji2) 

are obtained by symmetry relations ofthe kind F/L(/L,/L2)T = ± F/i(/L,ji2) [compare Eqs. (11.33) and (II.75) of Ref. 3 and Eqs. 
(11.35) and (11.85) of Ref. 51 and D/iz(O 2) = I/L,' Thus, we have to calculate the following matrix elements: 

F/L( /L,/L,) = IIB/i,/L,;/L(i" )")11 -I IIB/L,Ji2;/L(i,j,jll -I ~ , , nw" 
wv a" a" q(a",) + q (a"j,q" + Q\ ... 1 I p q" I 

X 2: {D (7(",q)tG (/3IT(/3 »U(&"q)} a",c",O',,c,, D ~~'([';:~~( fJ 11'(/3)){ D (&".,q.)tG (fJ 11'(/3 »U(K"q')j :1;el , (HI.21) 
(3 

where for the unitary matrices U(·,·) either Eq. (III. 14) or (III. 1 5) has to be inserted. Equations (III.2l) represent Eqs. (II.37) 
and (11.79) of Ref. 3 and Eq. (11.39) and (11.87) of Ref. 5. Provided the matrix elements (III. 2 1) have been determined for the 
various cases, the corresponding CG coefficients for M are immediately obtainable as follows: (I ® III : I) CG coefficients 
follow from Eq. (11.45) and (11.46) of Ref. 3 by using Eqs. (11.14) and (11.15) of Ref. 3. On the other hand, (I ® III :11) CG 
coefficients are given by Eqs. (11.86) and (II.87) of Ref. 3, where the definitions (11.55) and (II. 56) have to be used. (II ® III :1) 
CG coefficients are defined by Eqs. (II.49)-{1I.52), (II. 14) and (II. 15) of Ref. 5. Finally (II ® III : II) CG coefficients follow 
from Eqs. (II.96)-{H.98), and (11.61), and (II.62) of Ref. 5. Thereby we have to note that the nontrivial components of the 
vectors <Yo,~'" are fixed through Eqs. (III.lI) and (III. 12). 

Case A ® III :III :AEA,uAIl . In this case we have to consider 

(111.22) 

(III.23) 

which coincide with Eqs. (II. 127) and (II. 128) of Ref. 3 and Eqs. (III. 139) and (111.140) of Ref. 5. Due to our approach it is 
only necessary to compute 

Fii( /L,/L,) = IIB/L,/L2;ji(i"'),,.lII-! IIB/L,ji';/L(i,j'.)II- 1 {j , , n,w;, 
wv a" a" q(a")+q(O',,.),-qo+Q[ .. ·] lpq,'l 

x 2: {D (W ,q)tG (/3I1'(f3»UU( ,q)} a"c",,,,.,D ~~:;::'[.;:~~( fJ 11'(f3» D ~r.Tq,')tG( fJ 11'(/3», (III. 24) 
(3 

Fji(/L,ji,) = IIB/L,ji,;ji(i,,·j".)II-1 IIB/L,/i2;1'(i,j'.)II-1 {j , . n w" 
wv ao ao q(O'".) - q (ao.), - qo + Q[ ... ] I p qo I 

XL {D (,W,q)tG (/3I1'(/3»U(W,q)} a"c";a,,c,D ~'7:.'::'[.;:,~~( fJ 11'(/3»* D ~~)i'qo)tG( fJ 11'(f3», (111.25) 
(3 

which are in accord to Eqs, (II. 135) and (II. 136) of Ref. 3, and Eqs. (II, 147) and (II. 148) of Ref. 5, In this connection we have 
to note that the definition of row and column indices of the matrix FiiX/L,/L,) and Fji(/L,Ji2J should not be confused. Provided the 
calculation of the matrix elements (111,24) and (III.25) has been carried out, the corresponding CG coefficients for Mare 
obtained as follows: (I ® III :111) CG coefficients follow from Eqso (II. 137)-(1I. 139) and (II, 102)-{1I0105) of Ref. 3, whereas 
(II ® III :III) CG coefficients are defined by Eqs, (II. 149)-(II. 151) and (ll.I12)-{11.115) of Ref. 50 For both cases the nontri
vial components of the vectors 0';;'" and <Ya:~'" are given by Eqs, (III. 11) and (IIU2) and analogously defined expressions, 

Case III ® III : C: CEA I uA ll' In this case it suffices to consider 
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F~~/J'/J') = (K~~'{+ U~u/Njv}*), (111.26) 

F':v~/J,ii,) = (L~,~,{+ U~"/Mjv}*) JLEA,uAn (111.27) 

since the remaining matrices £1« ii,ii,) and F/J( ii,I',) are obtained by relations of the kind F /J( I',/J,)T = ± F /J({i,ii,) [see Eqs. (11.42) 
and (11.97) of Ref. 6] and F/J(!'·ii,)T = ± F/J(ii./J,) [see Eqs. (11.43) and (11.98) of Ref. 6]. Obviously Eq. (111.26) coincides with 
Eqs. (11.32) and (11.87) of Ref. 6 and Eq. (lII.27) is identical with Eqs. (11.33) and (11.88) of Ref. 6. Provided the corresponding 
column vectors can be expressed by Eq. (111.13), we obtain 

F/J( /J./J,) = 11W"/J2;/J(i"J".)II- 1 IIBii.iL,;Jl(i,J')II- 1 /j . . n:;r;, 
wv a" all q(a,,) + q (au.), - q., + Q[ ... j Ipq" I 

X I D ~~:~~,~.(P 11"(.8»D ~:i;!::.~?(f3 11"(.8» {D (:;ru.Qu)lG(.8/1"(.8»U(JV,,,qu)}:'I;el' 

/3 

F/J( /J.ii,) = 11W',iL,;!'(i"·)".)II- 1 IIBii./J,;/J(i'.)'.)II -I /j . . n:;ru 
wv au a" q(a".)-q(a,,,).q,,+Q[ .. ·j Ipq"l 

X I D ~~:~~,~(.8 11"(.8 »D ~7);!::.:?·( f3 11"(f3» {D (:;ro.q..)lG (f3 11"(f3 »U(J!'~·q.')}:'I;e1' 
/3 
p 

(111.28) 

(111.29) 

which are just the formulas (11.50) and (11.105) and (11.51) and (11.106), respectively, of Ref. 6. Hence, the corresponding 
(III ® III : I) CO coefficients for M are given by Eqs. (11.60)-(11.63) and (1I.17)-(II.20) of Ref. 6, whereas the (III ® III : II) 
CO coefficients follow from Eqs. (11.115)-(11.117) and (11.71 )-(11. 74) of Ref. 6. For both cases the nontrivial components of 
the vectors Qi:,~ ... are given by the corresponding vectors (111.13). 

Case III ® III : III: In the last case we are forced to compute 

FiL(p.,/J,) = (KiiW N/Jv.> 
wv Qo' Go ' 

(111.30) 

(111.31) 

(111.32) 

(111.33) 

which are identical with Eqs. (11.157)-(11.160) of Ref. 6. Presupposing the column vectors K~,~,L~:,M~:, and N~: and 
K~~,L~~,M~,~, and N~~ can be expressed by Eq. (111.13), and analogously defined vectors, we have to calculate 

FiL( p.,p.,) = IIB/J,/J,;ii(i".)")II -I IlsJL,iL,;/J(i")")II-1 /j . . nyo 
wv au all q(O'u)+q(uw).-q,,+Q[ .. ·j Ipq.'1 

X I D~~:~~,~(f3 11"(f3»D~~!.::::.:?(f3 11"(f3»D%'iq,)IG(f3 11"(f3», (111.34) 
/3 

Fii( !'.iL,) = IIW',ii,;iL(i".)'.)II- 1 IlsJL.P.,;/J(i'.).)II -I /j . . n:;r~ 
wv au all q(U".)-q("u).-q.,+Q[ .. ·j Ipq.'1 

X I D ~~:,~~,~( f3 11"(f3 »D ~!.;!:::?( f3 11"(f3 »D ~f';'iq')IG( f3 11"(f3 », (111.35) 
/3 

FiL( iL,/J,) = IIBii.P.,;ii(i"j".)II- 1 IIB/J,ii';/J(i,J'.)II-1 /j . . n:;r;, 
wv all au -q(u,)+q(u,).-q..+Q[ ... j IPq,,\ 

X I D ~~:~~,~*(f3I1"(f3»D <::(;!.;!:::?( f3 IT(f3 »D ~r.'iq,)!G( f3IT(f3», (111.36) 
/3 

which coincide with Eqs. (II. 170)-(II. 172) of Ref. 6. Note that for this case Fi[,,~iL,iL') = /jwv [compare Eq. (II. 173) of Ref. 6] is 
valid. Furthermore, one has to note the different definition of row and column indices of FiL("') and that the dimensions of the 
four matrices Ffi(''') will be in general not equal. Provided the matrix elements (111.34)-(111.36) have been computed, the 
corresponding (III ® III: III) CG coefficients for Mare given by Eqs. (11.174)-(11.178) and (II. 129)-(II.136) of Ref. 6. 

SUMMARY 

The aim of this paper was to specialize the general re
sults of Refs. 1-6 to type II Shubnikov space groups, which 
contain the inversion as the point group operation. Assum
ing that convenient CO coefficients for the unitary subgroup 
can be determined by means of the method given in Ref. 7 
(what is really true for nearly all cases), we succeeded in 
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deriving simple formulas for unitary transformations which 
link CO coefficients for type II Shubnikov space groups with 
such ones for the unitary subgroup. The crucial point ofthe 
present method is that the dimensions of these unitary trans
formations are essentially smaller than that of the consid
ered Kronecker products. 
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In particular when calculating the matrix elements 
(II. 17), (II. 19), (II.21), (II.24), (I1.25), (11.28), (II.29), 
(11.34)-(11.36) for the various cases, it is useful to use direct
ly the special solutions (11.4), (11.12), (11.25), (11.35), (H.42), 
(11.65) of the multiplicity problem, which have been dis
cussed extensively in Ref. 7. However, we must be aware that 
for cases where not all multiplicity indices can be traced back 
to special column indices of the considered Kronecker prod
uct, one is forced to determine the corresponding CG coeffi
cients for the unitary subgroup by projection techniques (see 
Ref. 13) and to compute with them the general expressions 
(111.16), (111.18), (II1.20), (III.23), (II1.26), (III.27), 
(III.30)-(III. 33). Concluding this paper we mention that the 
utility of the present method will be demonstrated in the 
following paper on the type II Shubnikov space group 
Pn3'n by considering a series of different examples. 
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Clebsch-Gordan coefficients for the type II Shubnikov space group Pn 3'n are calculated in 
terms of such coefficients for the unitary subgroup Pn 3n . 

J. INTRODUCTION 

In the previous paper we have specialized our general 
approach to type II Shubnikov space groups. In particular, 
we were able to calculate by simple formulas unitary matri
ces which link CG coefficients for type II Shubnikov space 
groups with convenient ones for the unitary subgroup. This 
approach, however, requires a special solution of the multi
plicity problem. In this paper we shall give the results of 
calculation of CG coefficients for the type II Shubnikov 
space group Pn3'n by considering a series of examples. The 
only demerit of Pn3'n is that type II co-unirreps do not occur 
and that (III ® III : III) CG coefficients are impossible. The 
organization of the material of this article is as follows: In 
Sec. I we recall briefly some definitions and notations con
cerning the unitary subgroup Pn3n with its unirreps and list 
a series of examples which shall be considered in the follow
ing. Convenient CG coefficients for Pn3n are determined for 
these examples in Sec. II, at which for each case the multi
plicity indices can be traced back to special column indices of 
the corresponding Kronecker products. In the last section 
we compute for our examples unitary matrices which link 
CG coefficients for Pn3'n with them for Pn3n. Finally, CG 
coefficients for Pn3'n are listed in full detail for the consid
ered examples. 

I. DISCUSSION OF VARIOUS EXAMPLES 

Starting from the nonsymmorphic space group Pn3n, 
the definition of the corresponding type II Shubnikov space 
groupPn3'n is obvious. Furthermore, throughout this paper 
we use the same definitions and notations concerning Pn3n 
as was introduced in Refs. I and 2. For convenience some of 
them are recalled. Nontrivial lattice translations -rea); aEtJ h 

= tJ X t e,I I are defined by 

-r(n) = 0 , (J.l) 

-r(In) = (I/2, 112, 112), for all nEtJ , (1.2) 

where the group element I denotes the inversion and where 
for the sake of simplicity the lattice constant is chosen as 1. 
The fundamental domain tlBZ (being identical with the ba
sis domain) for Pn3n is defined by Eq. (I.3) of Ref. l. The 
orthogonal matricesD (a); aEtJ h are readily obtainable from 
Table 1.4 of Ref. 3. Complete sets of projective unirreps to
gether with their factor systems of the little co-groups pq 
=GQIT are listed in full detail in Ref. 4 for all points of the 
"surface" of tlBZ and for some q's lying inside of tlBZ. Fi
nally, special sets P : P q of left coset representatives will be 
used within this paper (compare Sec. I of Ref. 5). 

In the following we list a series of examples. Thereby 

the following quantities are written down explicitly: Starting 
from a qEilBZ, we specify the corresponding group of the q 
vector, namely, pq, an appropriate set of left coset represen
tatives P :pq, by taking Eq. (1.20) of Ref. 5 into account, if 
N:pQ. Furthermore, those projective unirreps of PQ with 
their corresponding unitary matrices U(w.Q) (which have 
been calculated in Refs. 2 and 6) are listed which shall be 
considered. Concerning the equivalence classes J¥'EA pq(sq), 

we use throughout this paper the same notation as in Refs. 1 
and 2. However, for each case where 

(1.3) 

the trivial unirrep is not written down. Due to Eq. (II.7) of 
Ref. 6 the corresponding co-unirrep of Pn3'n must be of type 
1. This can be seen from 

u(o.Q) = 8. eiQ(a).t(a./) n-'E A9 
a,f7 u,la , v,O' U h (1.4) 

since IEP = tJ hand Eq. (II.22) of Ref. 7 gives U(o.Q) U(o.q)* 
= l(O.q) 1 G' Finally, the sets P(q, q', qo) are specified whose 

definition was stated in Ref. 8 [see Eqs. (III.75) and (III.76) 
of Ref. 8]. 

Example 1: (i) I ® I: I, (ii) 1 ® I: III 

q = 1T(x,y,z)EilBZ, 1> y>x>z>O, (1.5) 

q' = 1T(l - x, I - z, 1 - Y)E tlBZ , (1.6) 

q + q'(O'df) = qo = 1T(1, 1, 1) = qR , 

pqo = tJ h<;;:::=:}P: pqo = lel=:}IEPqo, 

D(u'f) ~ [~ 
0 !]. 0 

1 

P(q,q',qo) = {(e'O'df)}; 

(i) R ~ 0: J¥'o = (Jl = 0) t tJ h = t (Jl = 0) t tJ h J * , 

-I" 0 0 0 0 0 
0 0 0 0 0 

C2x -

0 0 -1 0 0 0 

0 0 0 -1 0 0 

0 0 0 0 0 

0 0 0 0 0 -1 
1 0 0 0 0 0 

0 -1 0 0 0 0 

C2z -

0 0 -1 0 0 0 

0 0 0 0 0 
, 

0 0 0 0 -1 0 
0 0 0 0 0 -1 

(1.7) 

(1.8) 

(1.9) 

(1.10) 
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0 0 0 0 0 
1 0 0 0 0 0 

C 31 -.. 
0 1 0 0 0 0 
0 0 0 0 0 
0 ° 0 I ° 0 

0 0 0 0 1 0 

0 0 0 0 0 
0 -1 0 0 0 0 

C2d -.. 
0 0 0 0 ° 0 0 0 0 0 -I 

0 0 0 0 0 

0 0 ° -1 ° ° 0 0 0 -1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 -1 

(Lll) 1-.. 
0 0 0 0 0 

0 1 0 0 0 0 

0 0 ° ° ° 
0 0 0 ° ° 0 ° 0 ° 0 

U(lYo.'I,,) = 0 0 1 0 0 0 = U,/r(); 
0 0 0 -1 0 0 
0 0 0 ° -1 0 

0 0 0 0 0 -1 
(Ll2) 

(ii) R,yo; jy'o = (O,j.t = 2) i (J h = I(l,j.t = 2) t (J h j*, 

C2x - [~ ~], C2z -.. [~ ~], 
C 31 -.. [~ ~2 ] (ill = e - i21T/3» , 

C2d -.. [~ ~],/- [~ ~ J ' (1.13) 

u( /( ".'1,,) = U ,y" = [~ ~]. (Ll4) 

Equations (1.12) and (1.14) are identical with Eqs. (III. 14) 
and (111.12), respectively, of Ref. 2. 

Example 2: I ® III : I 

q = 1T (x, y,z)E41BZ, 1> y > x > z > 0, (Ll5) 

q' = 1T(O,l,O) = ~ , (1.16) 

pq' = {e,lj XC4v~P: pq' = {e,C 31 ,C 31 I =>IEP 'I'; 
(1.17) 

R k' : jy" = (0,5) i px = (1,5) t pXI* , 

[ 
- i 0] [0 1] [ i 

C 4+Y - 0 i' (Tx - 1 0' 1-+ 0 o .] , 
-c 

(1.18) 

U ' .'1 - U' -(/(" ') 6 )Y" U)Y' [0 
u',a - a',a , - 1 

-1] , pq' ° ' (T,(T EP : , 

(1.19) 

q(S 6~) + q' = qo = 1T(y, 1 - z,x)Ei:!BZ 

(l > 1 - z> y > x> 0) , (1.20) 
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D(S.j)~[~ ~ ~ll. (1.21) 

P(q,q',qo)= I(Soi,e)j. (1.22) 

Equation (1.19) is identical with Eq. (IV.2) of Ref. 2, where 
for U,J(' Eq. (lII.7) of Ref. 2 has to be inserted. 

Example 3: (i) I ® III : I, (ii) I ® III : III 

q = 1T(l, 1,0) = qM (1.23) 

p'l = D4h = le,(Tx IG)Oe,l1 XC2v)~P: pq 
= (e,(Tde,(Tdf }~IEPq, 

lR J( ;jy' = (0,0,0) rpM = 1(0,0,0) t pM j* , 

C2a - [~ ~], (Tz -+ [~ ~ J 
I -+ [~ ~ J (Tx -+ [~ ~1] , 

q' = 1T(0, 1,0) , 

lRJ(':jy" = (0,5) t px = \(1,5) i PX}*, 

q + q'(C 31") = qo + Q[ ... ] ~ qo = 1T(0,1,0), 

D(C31)=[~ ~ ~l, 
100 

P(q,q',qo) = {(e,C 31)j ; 

(i) lR /(":jy'o = (IJ. = 0) i px = \ (J.t = 0) t pXj * , 

C 4~ - [~ ~], (Tx - [~ ~1] ,/- [~ 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

(1.31) 

-1 ] 

° ' (1.32) 

U('It'o.'I,,)=t) , U'lt'" U'It',,= [0 1] (T(T'EP:pq". 
a'.a a ,(7' 1 0' , , 

(1.33) 

(ii)R/(":jy'o =(0,5) i px= 10,5) r pXj*. (1.34) 

Equation (1.26), to be more precise U /( = 1,y , can be read
ily verified by means ofEq. (II. 36) of Ref. 6, since the factor 

system S q" reduces to one for the generating elements. Equa
tion (1.33) is identical with Eq. (III. 8) of Ref. 2. 

Example 4: III ® III : I 

q = q' = 1T (0,1,0), (1.3 5) 

~'= jy" = (0,5) i px = 1(1,5) i pXj * , (1.36) 

q+q'(C 31 )=Qo =1T(l,l,O)=qM' (1.37) 

~o = (0,0,0) i pM = 1(0,0,0) i pM 1 * . (1.38) 

II. CG COEFFICIENTS FOR Pn3n 

The first step of the present approach is concerned with 
the task of determining convenient CG coefficients for Pn3n, 
whose corresponding multiplicity indices are identifiable 
with special column indices of the considered Kronecker 
products. Thus, the first problem will be whether for our 
examples the multiplicity problem can be solved indeed in 
this special manner. Provided this can be done, the corre-
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sponding columns of the CG matrices in question for Pn3n 
are readily obtained from the general formulas given in Ref. 
9. Of course, for those cases which have been already solved 
in Ref. 1 we only summarize our results. 

Example 1 (i): This example has been extensively dis
cussed in Ref. 1. Thereby we obtained for the multiplicity 
indices 

v +----+ (xv ;xvud/), v = 1,2, ... ,6, (11.1) 

where the group elements xvEtJ h are fixed through 

Xl =e, 
X 2 = C 31 , 
X3 =1, 

X 4 = C 31 I, 

X5 =C2d C 31, 
X6 = C2d C 31 I. (11.2) 

Inserting the special values (11.1) and (II.2) into Eq. (11.18) 
of Ref. 9 and using the abbreviated notation (as in the pre
vious paper) for the CG coefficients, we obtain 

f-ll ~ (O,q) f G, 

J.L2 ~ (O,q') r G , 

J.L +---+ (d¥'o,qo) r G, 

i,j~u,U'EtJh , 

ao-e,l, 

v ~ (iv;j,,) ~ (xv;xvud/), v = 1,2, ... ,6, (II.3) 

which represent convenient columns of the corresponding 
482-dimensional CG matrix M for Pn3n. 

Example 1 (ii): Before starting our considerations let us 
recall that we have to compute not only M~:Jl';Jl(i,j,) but also 

M~,:Jl,;ii(i,},) (compare the previous paper). This forces us to 
investigate the general formula (II. 17) of Ref. 9 for both 
cases separately. For the first case we obtain by using Eq. 
(1.13) 

v +--+ (XV;X"udJ ), v = 1,2, (11.4) 

where the group elements xvEtJ h are given by 

XI =e, 
X 2 = CZd • (II.5) 

Obviously, the result (11.4) is in accordance with the corre
sponding multiplicity m(O,q)(O,q');(W",q,,) = nw, = 2 . For the 
second case, i.d.,,u ~ ii we can choose the same multiplicity 
indices (11.4) and (11.5). since the complex conjugation of 
D(W".q,,) r G is governed by Eq. (1.14). which is of type 
(11.18) of Ref. 7. However. the corresponding CG coeffi
cients for Pn3n are quite different. namely. 
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f-l - (d¥' o.qo) r G • 

v _ (iv;j,,) +--+ (Xv;XvUd/)' v = 1,2; 

JM'"tJl,;ii(i,.}..>} .. = {Miiv}., 
1.1 a o t} au fJ 

(II. 6) 

= -v'24-
1
-24- OCI.o'CId/ B:,~(UXv-l) B ~.x,(UXv-l) 

ii - (JY'o.qo) f G = (~o,qo) t G. 

V - (i".jv) - (Xv;xvud/), v = 1.2. (II.7) 

since RW" and R W
;'. are inequivalent projective unirreps of 

pq, . 

Example 2: In this case we are confronted with the task 
of determining the mUltiplicity indices v for M~,:Jl';Jl(i,j,) and 

N~,:fi';Jl(i,j,J • Due to the general solution (11.25) of Ref. 9 and 
Eq. (1.22) we find for both cases 

v +---+ (S 61 ;e,v), v( = cJ = 1.2,. ... nw·, .n}!", = 2 • 
(11.8) 

where, however. c~ = v for the second case is defined by 
w·. _ _ ,lv' 

Rd·C; (e) - 0d'.c, - Rd'C;(e) , (11.9) 

i.e .• the column indices c~ originate from R W
••• and not from 

R h" as for the first case. Thereby we have to note that Eq. 
(1.19) is the reason that Eq. (11.9) has to be investigated for 
the second case, since Eq. (1.19) is of the type (II. 18) of Ref. 
7. Provided the complex conjugation of D (W',q') T G would be 
governed by unitary matrices of the type (11.20) of Ref. 7, the 
left coset representatives of (u;u',v) would have to be re
placed by (u;lu'.v). However this situation is not realized for 
Pn3n. Returning to our problem. we find for both cases the 
same vectors. namely. 

J.L 1 +---+ (O.q) f G , 

J.Lz - (JY".q') t G. 

J.L - (O.qo) f G • 

i;j_u;u'.d' • 

ao-e. 

v - (i";jJ +--+ (S 6j ;e,v). v = 1.2. (11.10) 

Equation (II. 10) is a direct consequence ofEq. (11.26) of Ref. 
9. 

Example 3 (i): Obviously. this example belongs to the 
most complicated ones. since P!?;~' is nontrivial, namely, 

P~?;;~" = P'lnC 31 pq'C 31nP q
, 

= {e,I} X {e,ux J X !e,uz J . (11.11) 

The first task which has to be solved is to determine the 
multiplicities. If taking among others Eq. (I.31) into ac-
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count, it follows from Eq. (II1.83) of Ref. 8 that 

(11.12) 

at which the characters of the respective projective unirepps 
are immediately obtained from Eqs. (1.25), (1.18), and (1.32). 
Since (Jf'o,qo) i Gis of type I, it is only necessary to deter
mine suitable multiplicity indices for MP,p,;p(/,j,) and 

N~,:ji';P(/,j,) in terms of special column in~ices of the consid
ered Kronecker products. When applying the general for
mulas (I. 5) and (1.6) of Ref. 9 to the first case, it can be shown 
by simple calculations that 

(11.13) 

can be chosen as multiplicity indices. For the second case, 
i.e., J-l2 ~ il2' which implies that the matrix elements 
D (7r ',q') r G (/3\1'(13) + t ) have to be replaced by their com
plex conjugate values, we can use the same multiplicity indi
ces (11.13). By similar arguments as previously, the left coset 
representative C 31 remains because of Eq. (1.19) un
changed. Consequently, the corresponding columns of the 
CG matrices M and N are given by 

where the special values J-ll ~ (Jf',q) i G; 
J-l2 ~ (Jf" ,q') i G; J-l +---+ (Jf' o>qo) i G; i ~ a,c; 

(II. 14) 

(11.15) 

j +---+ a',c'; ao +---+ e,l; and v +---+ (e,l;C 31,1) have to be 
inserted into Eqs. (III. 1 I ) and (111.12) of Ref. 7. 

Example 3 (ii): As in the foregoing case one obtains for 
the mUltiplicities 

(11.16) 

where J-l +---+ (Jf' o,qo) i G is now oftype III. Therefore, one 
has to determine for four different cases the corresponding 
multiplicity indices v. We obtain for each case (M~,p,;p(i,).l, 
NP ,ji';II(1,J,) M1,,!,,;ii(i,.j,) and N!"ji2;ji(i,.j,) in principl; the 

af) ) ao ' 0 0 

same multiplicity indices v, namely, 

v +---+ (e,l;C 31,2), v = 1 , (11.17) 

where similar arguments concerning C 31 hold as before, 
The corresponding columns of the CG matrices 

01.18) 

(II. 19) 

(11.20) 

(11.21) 

are readily obtainable from Egs. (Ill. I I) and (111.12) of Ref. 
7 by taking the special values for Ill' 1l2' J-l, i,j, ao, and v into 
account. 

Example 4: Analoguously to the previous cases we are 
because of 

p!~~" = pqnC 31 pq'c 3j nP q
, = [e,J 1 X [e,ax 1 X [e,az J 

(11.22) 
confronted with the most complicated situation. Simple cal
culations yield 

(1I.23) 

and lead us to the same solution for the four different multi-
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plicity problems, namely, 

v +---+ (e,I;C 31,2), v = 1 . (11.24) 

Hence, the corresponding columns of the CG matrices K, L, 
M, and N, i.e., 

K!"!'2;ji(i,.j,.} = KPv 
0 0 0 0 ' 

v = 1, (11.25) 

L",ji,;!'(i,j,) = V'" 
a o a o ' v = 1, (11.26) 

Mji,!,,;!'(i,j,) = M!'v 
Q<l 0 0 ' 

V = 1, (11.27) 

Nji,ji,;P(i, j,) = N!'v 
ao Go' V = I, (11.28) 

are readily obtained from Eq. (111.13) of Ref. 7 by inserting 
the special values for J-ll> J-l2' J-l, i,j, ao, and v. Concluding this 
example we summarize without proof the following results: 

m!,,!,.;(7r,q,,) 

=m!',jid?r.q,,) = 1, for all Jf'EAp>l(s''') ' 

m!,,!,,;(\jl,a),O) 

(11.29) 

J-l =:= 0,1 and CT = 0,1, 

J-l = 2 and a = 0,1, 

J-l = 4,3 and CT = 0,1, 

(mod 2), 

J-l = 0, 1 and CT = 0, 1 , 

J-l = 2 and a = 0,1, 
J-l=4,3 and a=O,I, 

(mod 2), 

(II. 30) 

(11.31) 

whose knowledge is necessary in order to be able to compute 
the whole CG matrix W. Thereby we use the same notation 
as in Ref. 4 for equivalence classes of projective unirreps of 
pq, [see Eqs. (5.12)-(5.15) of Ref. 4], where the unirreps of 
[e,ll are characterized by a( = 0,1). A simple inspection of 

4lip: pqin.y 12 

= 144= 

show its correctness. In this connection we have to note that 

some of the multiplicities mll,!,,;(\jl,a),O) and m!"ji,;«m.a),O) are 
not equal. 

III. CG COEFFICIENTS FOR Pn3'n 

Due to our approach the next step requires us to com
pute the unitary matrices F!'(P,II,l, which are constituents of 
those unitary matrices which link CG coefficients for Pn3'n 
with convenient ones for Pn3n. In this connection we remark 
that the knowledge of the multiplicity indices v ~ (a", c,,; 
a;" c;,) suffices in order to be able to compute the matrices 
FIt(I""'), i.e., it is not necessary to calculate the correspond
ing columns p~,:' (apart from their norm) of the considered 
CG matrices for Pn3n. 

Example I (i): Specializing Eq. (III. 17) of Ref. 7 to this 
example, we have to calculate 

F'~,~"I") = IIB~,:J"t'(i"j")U-JIIB~:I,·;},(i,j,)II-J 

X k L lD~~:~, 1 G( f3 \1'( /3) I e )lD~~:~,~ /;x~ad I «(J \1'( (J) \ e ) 
/3 

X lD\ ~ ,,,q,,) I G( (J 11'( /3) le)* , (III. I ) 
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where we have partly used an abbreviated notation (as in ReJ 
7), i.e., Eq. (II. 16) of Ref. 7 and Eqs. (II. 1) and (II.2), and 
superftuous indices are omitted. Inserting Eq. (1.4) twice and 
Eq. (1.12), it is readily verified that only the matrix elements 
F 13, F24, and F56 can be different from zero, at which the 
remaining nonzero matrix elements of F are obtainable by 
utilizing the symmetry relation F wv = Fvw [see Eq. (111.17) 
of Ref. 10]. Simple calculations yield 

FJ3 = F24 = exp{2iq'(C 31 ad! )"1' (I)} 
= e2iq"1" (l) = eiq,.(t. + t, + t,) = W , (111.2) 

{t i}j = fjij' i,j = 1,2,3 , (111.3) 

F56 = exp{ - iq(C2d C 31)-[1 - D(C2dC 31)]1' (I)} 

= exp{iq-t l + iq'(ad! )"(~ + t 3)} = w' , (IliA) 

where Table 1.4 of Ref. 3 and Eqs. (1.1) and (1.2) have to be 
used. Thus, our matrix F takes the form 

0 0 w 0 0 0 

0 0 0 w 0 0 

F!-'U.·!-',) = W 0 0 0 0 0 
(111.5) 

0 w 0 0 0 0 

0 0 0 0 0 w' 

0 0 0 0 w' 0 

where the row and columns of F!-'U.·!-',) are enumerated by the 
multiplicity indices (11.1) and (11.2). Due to Eq. (III.20) of 
Ref, 10 we have to find a solution ofF B • = B for some 
unitary B. Obviously, 

1 0 -i 0 0 0 

0 1 0 -i 0 0 

1 w 0 -iw 0 0 0 
B=-

v'2 0 w 0 -iw 0 0 
0 0 0 0 -i 

0 0 0 0 w' -iw' 
(111,6) 

represents a solution of FB· = B. Hence, it follows that the 
corresponding columns of the CG matrix Ware given by 

6 

w~: = L BwuM~::", v = 1,2, .. ,6 (III. 7) 
w=J 

[see Eq. (III. 15) of Ref. 10], where the vectors M~~ are de
fined by Eq. (11.3). A comparison of dim B = 6 with 
dimM = dim W = 2304 demonstrates the utility of the pre
sent method. 

Example 1 (ii): Since D (W •• q,) f G is of type III, we have 
to calculate Eq. (111.18) of Ref. 7, i.e., 

F~<::'!-") = IIB~:!-,,;"(i")".)II-1 IIB~:!-,,;!-'(i,j')U-I 

x t. L D~~:~"1,f G( {3 11' ({3) 18 ) D~~:':?/:'Udf ({3 11' ({3) 18 ) 
p 

X D \'f'"q,) f G( {3 11' ({3» , (111.8) 

where the special indices (II.4) and (11.5) have been already 
inserted. We obtain after simple calculations 

Fi •i + l = 0, for i = 1,2, 

F - e2iq'(Udf)'1" (I) _ eiq,.(t, + t, + t,) _ / .• 
11- - -"'I' 

F22 = exp{iq( C2d )"(D (C2d - l)-r (I) 
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(III.9) 

(III. 10) 

+ iq'(C2dad f)-[1 + D (C2dadf)] l' (I)} 

= exp{iq-t) + iq'(adf )·(t2 + t3)} = wz, (111.11) 

which implies the following for the matrix FiiU..!'-,): 

FiiU..!'-,) = [~I ~J, (111.12) 

where row and columns are enumerated by Eqs. (11.4) and 
(11.5). Hence, the corresponding columns of the CG matrix 
Ware immediately obtained from Eqs. (III.87) and (III.88) 
of Ref. 10, namely, 

Wf,~. = M~.u, v = 1,2 , 

Wi~a, = wuM~:, v = 1,2, 

(111.13) 

(111.14) 

where the vectors M~: and M~: are defined by Eqs. (II. 6) and 
(U.7). 

Example 2: In this case it suffices to calculate the matrix 
elements (III.2t) of Ref. 7. These matrix elements tum out to 
be 

F~<::'!'-') = 1IB;::!-";!-'u,,j,,)U-' 1lB;::",;!-'(i'),)II-1 

X D~:~);;X(I 11' (I) 18) D ~::':~ f G(I 11' (I) 

X D~O;q,) f G(I 11' (I) 18) , (III. IS) 

where we have already used Eq. (11.8) and the fact that, for 
example, the matrix elements D~~;4.) f GU] 11' ({3)18), {3E& h 

can be different from zero only for {3 = I. Utilizing this fact, 
we obtain for Eq. (III. 15) 

F ~<::. !-',) = exp{iq(S 61 )"t (S 61 ,/) - iq' '1' (l) }R!' (I) 

= fjwv exp{iq(S 61 )-(t) + t3) - iq"1' (l)}R;;:(l) 
=eiq.(t.+t')(_I)u+lfjwv, W,V= 1,2. (111.16) 

It can be shown by a simple calculation that F':;;<::'!'-,) 
= F~:;:,ii,) is indeed satisfied, which is in accord with Eq. 

(II.33) of Ref. 11. Introducing the abbreviation 
expf iq·(tl + t2) J = p, we arrive at the final results 

F= [~ ~ ~ ~oo p] (111.17) 

o -p 0 
and 

: ~ !], 
ip 0 -p 

(111.18) 

where B represents a solution of FB ... = B [see Eq. (11.43) of 
Ref. 11]. Consequently, the corresponding (1 ® III: 1) CG 
coefficients for Pn3'n read as [compare Eqs. (11.45) and 
(IIA6) of Ref. 11] 

W!,-(lu) = ~ {~ul + P (-1) u~u2} 12 
a. V 2 '-i!:a, '-i!:a. ' V = , , 

(IlL 19) 

W!,-(2u) = _1_ {~UI _ P ( -1) u~u2} 2 a, v'2'-Ca. '-Ca, ' V = 1, , 

(III. 20) 

where the nontrivial components of [see Eqs. (II. 14) and 
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(II. 15) of Ref. lIJ 

{q;;ll.bj =15bl{M~;L, 

{q;;2}i,bj =15b2{N~~lj' 
(III.21) 

(111.22) 

are given by Eq. (11.10). Note that dim FfLfp,fL,) = 2, whereas 
dim M = dimN = 288 = !dim W. 

Example 3 (i): This example is analogous to the pre
vious one, but with the only difference that both q vectors q 
and q' belong to stars of higher symmetry. Equation (111.21) 
of Ref. 7 turns out to be for this case 

F':"Y:·/l,) 

= IIB~:/l';/l(i .. j")I1-1 IIB~:ji';/l(i,j")II-1 

Xl" D(JJr,q) t G ({311' ({3» D(~,q') t (] ({311' ({3» 
8 ~ e,l,e,l C 3I ,J,C J1 .I 

f3 

XD~:t;:~') t G ({311' ({3)10)., 
(111.23) 

where the summation about {3Etl h reduces because of Eqs. 
(I. 32) and (1.18) to the single group element I. Furthermore, 
we have to note that DW,q) t G ({311' ({3)10) 
= D (,;,y',q) t G ( {311' ({3» has already been taken into account 
[see Eq. (1.26) of the present paper). A simple calculation 
yields 

since B ~,e (I) B L ,c" (I) B ~,~ (I). 
= exp{ - iQ [ ... ].1' ({3)} . Therefore we have 

and 

1 [i 
B= v2 1 ~ J . 

(111.24) 

(111.25) 

(111.26) 

which give rise to the following (I ® III : I) CG coefficients; 

W/l(lv) = _i_ InJlV1 _ ;£\fLU2 } V = 1. 
a, v2 1.\~·a, ~a" (111.27) 

W/l(2v) = ~ {£\fLul + ;£\fLU2 } V = 1, 
a, Y 2 'wla, 'wla" 

(111.28) 

where the nontrivial components of <ra:a are given by Eqs. 
(II. 14) and (II. IS). 

Example 3 (ii): In contrast to the foregoing example 
D (,W "q,) t G is of type III. Therefore, we have to compute Eqs. 

(III.24) and (1I1.2S) of Ref. 7, The first formula specifies to 

F~y:·/l') 

= IIB~:/l,;ji(i .. j")II-III~:ji';/l(i,j')II-1 

Xl" D ( W ,q) 1 G( 1311' (13 »D (.w ',q') 1 G ({3 11' ({3» sL e,J,e,J C'1.2,Cl,l.2 
f3 

X D (A~"q,) 1 G( {J 11' ({J» , 
e.l,e,l 

(III.29) 

whereas for the second formula the matrix elements 
D (W ',q') 1 G ({J 11' ({J », (JEtl h have to be replaced by their 
complex conjugate values. A simple inspection of RJ';( (J), 
lR~'(C 31" (JC 31)' and RJ';'({J) shows that the summation 
about (J reduces to e and I. Carrying out the corresponding 
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calculations we obtain for both cases 

F~y:·/l·) = F~y:·{i·) = 1, w,v = 1 . (111.30) 

Using Eqs. (11.137) - (11.139) of Ref. 11, we arrive immedi
ately to the final results 

W~,<:,u) = <ra;a, a = 1,2 and v = 1 , 

W~,<:,v) = ~;a+l, a = 1,2 and v = 1, 

where the nontrivial components of 

{<ra:ll,bj =15bl{M~~L, 

(111.31) 

(111.32) 

(111.33) 

{q;:21,bj = 15b2 {N~:lj , (III. 34) 

{~:Il,bj =15bl{M~:}ij' (111.35) 

{~:21.bj = 15b2{N~~lj' (111.36) 

are given by Eqs. (11.18)-(11.21). Comparing the dimensions 
of the unitary matrices F{ifp·/l·) and F{ifp·{i·) (dim F{i(·) = 1) 
with those of the CG matrices M, N, and W (dim M 
= dim N = :! dim W = 36), we realize once more the utility 

of the present method. 
Example 4: This case is of course the most complicated 

one which shall be considered and requires only the calcula
tion of the matrix elements (111.28) and (111.29) of Ref. 7, 
since the remaining are obtained by the symmetry relations 
(II.42) and (11.43) of Ref, 12. Equation (111.28) of Ref. 7 
turns out to be 

F':"Y:'fL,) = IIB~:/l';/l(i"j")WII1B~:{i';I'(i,j'll 

Xl" D(W,q) t G({J 11' ((J» D(JY',q') t G ({J 11' ({3» 8L e,l,e,l C 31 ,2,C,j,2 
f3 

XD ~,t;;:?,) 1 G( 1111' ({3». ; (111,37) 

the analog to Eq. (111.29) of Ref. 7 is readily obtainable from 
Eq. (111.37) by replacing the matrix elements of D (W',q') 1 G 

through their complex conjugate values. Simple calculations 
yield for both cases 

(111.38) 

which leads immediately to 

F~ [~ ! ; t] (111.39) 

and to a possible solution of FB· = B, namely, 

0 0 

~] B~ ~[ ~ i 1 
(111.40) 

-; 

-/ 0 0 
[compare Eqs. (11.41) and (11.58) of Ref. 12]. Hence, the 
corresponding (III ® III: I) CG coefficients for Pn3'n take 
the form 

{

i [£\fLvab _ £\fLva + I b + I ] 
'La!,! ~a" , 

W/l(abv) = _l_ 
a, y'2 [<ra:a + I b + 1 + q;;ab], 

where the nontrivial components of 

a = l,b = 1,2, 

and v = 1, 

a = 2,b = 1,2, 

and v = 1 
(I1I.41) 
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{q::I1}ai.bj = 8al 8b 1 {K~:lj , (111.42) 

{Q:~lltj.bj = 8al 8bl {u.;~ };j , (111.43) 

{q::ll}ai.bj =8a28bl{M~:}ij' (111.44) 

{q::22}ai.bj = 8a2 8b2 {N~:}ij , (111.45) 

are given by Eqs. (1I.25}-(II.28). Concluding this section, we 
mention once more that, also for this example, there exists a 
remarkable difference between the dimensions of FIl( .. ·) 

(dim FIl(..) = 1) and that of K, L, M, N, and W (dim K 
= dim L = dim M = dim N = !dim W = 36). 

IV. CONCLUDING REMARKS 

It was the aim of this article to demonstrate the utility of 
the present method on hand of the type II Shubnikov space 
group Pn3'n by discussing a series of examples. Thereby we 
have showl) that even for the most complicated examples the 
determination of CG coefficients for Pn3'n requires the com
putation of simple formulas. The only demerit of the group 
Pn3'n is that type II co-unirreps are not realized and that all 
possible type III corepresentations are characterized among 
others by the fact that the corresponding little co-groups pq 
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always contain the inversion. Apart from this we can sum
marize that the main points of our method consist of deter
mining convenient CG coefficients for Pn3n (which belong 
to a fixed column index of the considered unirrep of Pn3n) 
and to compute with them unitary matrices which link CG 
coefficients for Pn3'n with those for Pn3n. In this connection 
we remark that these unitary matrices can be computed 
without explicit knowledge of the corresponding CG coeffi
cients for Pn3n, presupposing their multiplicity indices can 
be traced back to special column indices of the considered 
Kronecker products. 
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Congruence number, a generalization of SU(3) trialitya) 
F. Lemire 
Department of Mathematics, University of Windsor, Windsor, Ontario, Canada 

J. Patera 
Centre de Recherche de Mathematiques Appliquees, Universite de Montreal, Montreal, Quebec, Canada 

(Received 3 December 1979; accepted for publication 14 March 1980) 

Congruence classes of finite-dimensional representations of semisimple Lie groups are defined. 
Each class is characterized by a congruence number. For the group SU(3) the concept reduces to 
the familiar triality number. 

The well-known triality number' of irreducible representations ofSU(3) and, more generally, "n-ality" number for 
SU(n), is a label which facilitates many of the standard computations on such representations. These labels also have impor
tance as quantum numbers of elementary particles. Only particles having triality ° should be observable according to some 
models. Similar labels for representations of other semisimple Lie groups are not generally known although particular 
properties of this type have been part of particle physics folklore for some time. 

In this note we define the general concept of congruence classes characterized by congruence numbers of irreducible 
representations of a semisimple Lie group G which reduces to the concept on n-ality when G = SU(n). Particularly interesting 
and apparently unknown are the results for orthogonal groups 0(2n); there are four congruence classes of irreducible 
representations ofO(2n) labelled by two-component congruence numbers. These congruence numbers add as vectors under 
the tensor product of representation and furthermore, nonequivalent spinor representations of equal dimensions belong to 
different congruence classes. [In particular, the three representations of 0(8) of dimension eight are all distinguished by their 
congruence numbers.] 

We say that two irreducible representations A and A ' of a semisimple Lie group G belong to the same congruence class or 
are mutually congruent iff the difference of any weight from the representation A and any weight from the representation A 'is 
a linear combination of simple roots of G with integer coefficients. 

An irreducible representation A of G of rank n is specified by n nonnegative integers 

(a 1a2 .. ·an), aj = 2(A,aj )l(aj ,aJ, 

where the SUbscript j of aj refers to the jth simple root a j of G; we adopt Dynkin's numbering of simple roots.2 
Let us first summarize the results. 
The congruence number c of an irreducible representation (a,a 2 • .. an) of a simple Lie group G is given by 

n=l 

C = L ka k (mod n) for G = SU(n), 
k~l 

c = an (mod 2) for G = 0(2n + 1), 

c = a 1 + a3 + as'" (mod 2) for G = Sp(2n), 

c = a 1 - a2 + a4 - as (mod 3) for G = E6 , 

C = a4 + a6 + a7 (mod 2) for G = E 7 , 

C = ° for all representations of E8, F4 and G2 groups. 

There are four congruence classes of irreducible representation ofO(2n) groups. Each class is labeled by a two-component 
vector 

c=(an_ 1 +an,2al+2a3+···+2an_2 +(n-2)an __ 1 +nan) for n odd 
(mod 2, mod4). 

c = (a n- 1 + an,2a l +2a3 + '" +2an_ 3 + (n -2)an I + nan) for n even 

That is, the first component is calculated mod 2, the second one mod 4. When n is even the only vectors c which may occur are 
(0,0), (0,2), (1,0), and (1,2). For n odd, the four different congruence vectors are (0,0), (0,2), (1,1), and (1,3). 

If the group G is not simple, the congruence number c is a vector with components corresponding to each simple ideal of 
G. 

The above classification of irreducible representations of semisimple Lie group into congruence classes and their charac
terization by congruence number c is a straightforward generalization of a theorem of Dynkin.3 

"'Work supported in part by the Ontario--Quebec Exchange Programme, 
by the National Science and Engineering Research Council of Canada, 
and by the Ministere de I'Education du Quebec. 
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We now draw particular attention to two properties of these congruence classes which prove to have practical application 
to computations. First, if R; denote irreducible representations of the simple Lie group G and c(R;) denote their correspond
ing congruence numbers then R, ® R z = ... = R3 ffi ... ffi Rk implies that 

C(R3) = ... = C(Rk) = c(R,) + C(R2)' 

where equalities and addition are to be interpreted relative to the appropriate modulo of the congruence numbers. 
We illustrate this property with some examples. First a completely trivial example ofSU(3) representations, 

(1,0) ® (0,1) (1,1) ffi (0,0) 

3 X 3 8 + 1, 

+ 2 ° ° (mod 3). 

The first line describes the tensor product and its decomposition, the second line gives the corresponding dimensions, and the 
final line provides the appropriate relation of the congruence numbers of the representations. 

A less trivial example involves representations of E6 • 

(1,0,0,0,0,0) ® (0,1,0,0,0,0) 

27 X 351 

(1,1,0,0,0,0) 

5,824 

ffi (0,0,1,0,0,0) 

+ 2,925 

ffi (1,0,0,0,1,0) ffi (0,0,0,0,0,1), 

+ 650 + 78, 

1 + 2 ° ° = ° ° (mod 3). 
Subsequent examples concern the 0(2n) groups. For 0(8) one has 

(1,0,0,0) ® (0,0,0,1) = (1,0,0,1) EB (0,0,1,0) 

8 X 8 56 + 8, 
(0,2) + (1,0) (1,2) = (1,2) (mod 2, mod 4). 

And finally, for O(lO) we have 

(0,0,0,1,0) ® (0,0,0,0,1) = (0,0,0,1,1) ffi 

16 X 16 2lO + 
(1,3) + (1,1) = (0,0) 

(0,1,0,0,0) 

45 

(0,0) 
+ 

(0,0,0,0,0), 

1, 
(0,0) (mod 2, mod 4). 

A second important property of these congruence classes relates to their application to the decomposition of irreducible 
representations of a group G with respect to a subgroup G'. For each group-subgroup pair (G,G') one can specify rules as to 
which congruence classes of irreducible representation ofG' can occur in the reduction of a given irreducible representation of 
G. This is particularly simple when G' is an integral 4 subgroup ofG, i.e., the adjoint representation ofG decomposes into 
irreducible representations of G' which all belong to the zero congruence class. If G' is an integral subgroup G then any 
representation ofG considered as a representation ofG' decomposes into irreducible G' representations which all must belong 
to the same congruence class. 

'G. E. Baird and L. C. Biedenharn, in Symmetry Principles at High Energy, 
edited by B. Korsunoglu and A. Perlmutter (Freeman, San Francisco, 
1964). 

'Table I of Ref. 4. 
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'Theorem 3.1 of Ref. 4. Note that the statement of the theorem concerning 
the groups O(2n) requires a correction. 

4E. B. Dynkin. "Semisimple Subalgebras of Semis imp Ie Lie Algebras," Am. 
Math. Soc. Trans!. Ser. 2. 6. III (1957). 
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Simple derivation of the Newton-Wigner position operator 
Thomas F. Jordan 
Department of Physics. University of Minnesota. Duluth. Duluth. Minnesota 55812 

(Received 6 November 1979; accepted for publication 28 March 1980) 

The kind of operator algebra familiar in ordinary quantum mechanics is used to show formally 
that in an irreducible unitary representation of the Poincare group for positive mass the Newton
Wigner position operator is the only Hermitian operator with commuting compo~ents that 
transforms as a position operator should for translations, rotations, and time reversal and does not 
behave in a singular way that contradicts what can be learned from Lorentz transformations in 
the nonrelativistic limit. 

1. INTRODUCTION 

In basing the description of a particle on an irreducible 
unitary representation of the Poincare group, we begin with 
the operators for transformations of states corresponding to 
transformations of space-time coordinates. I From these we 
have to derive the operators representing variables such as 
position and velocity. The velocity operator can be identified 
very simply by its transformations under the Poincare 
group, together with the assumption that it is a Hermitian 
operator whose components commute with each other.2

.
3 

Our goal here is a simple derivation of the Newton-Wigner 
position operator. 

The corresponding problem for the Galilei group is 
very simple. Suppose we want to identify the position opera
tor R in an irreducible unitary representation of the Galilei 
group for mass m, spin s, and lowest energy Eo. The gener
ators are P for space translations, 

H = Eo + (1!2m)p2 

for time translations, 

for rotations, and 

K=mQ 

(1.1) 

(1.2) 

(1.3) 

for Galilei transformations.4 We use (2s + I)-component 
momentum-space wavefunctions on which P is mUltiplica
tion, Q is i'il, and the three components ofS are the usual 
(2s + 1)X(2s + 1) irreducible spin matrices for spin s. For a 
position operator R that transforms right for space transla
tions and Galilei transformations we must have5 

(1.4) 

and 

[Rj,Kk ] = 0 (1.5) 

for j,k = 1,2,3. [See Eqs. (5.5)-(5.8).] Let 

R=Q+D. 

Then D must commute with Q and P. IfR is to be Hermitian 
and rotate as a vector, then D must be Hermitian and rotate 
as a vector. The only possibility is 

D=bS, 

with b a real number. IfR is to be invariant for time reversal, 

then D must be invariant, which implies D is zero (because to 
fit in with the unitary transformations of the Galilei group, 
the antiunitary time-reversal operator must commute with 
Hand K and anticommute with P and J, which means it 
commutes with Q and anticommutes with S).5 We may 
choose to not assume R is invariant for time reversal but 
instead assume the components of R commute with each 
other. Then again D must be zero. Either way, we find that R 
isQ. 

For the Poincare group, the classic and rigorous deriva
tions of the Newton-Wigner position operator are not so 
direct.6

.
7 Here we give a formal derivation, along the same 

lines as for the Galilei group, using the same kind of operator 
algebra that is familiar in ordinary quantum mechanics. 

We show that in an irreducible unitary representation 
of the Poincare group for positive mass, the Newton-Wigner 
position operator is the unique Hermitian operator with 
commuting components that transforms as a position opera
tor should for translations, rotations, and time reversal and 
does not behave in a singular way that contradicts what we 
know of Lorentz transformations in the nonrelativistic limit. 
The assumptions we make about the latter are discussed in a 
separate section at the end of the paper. They replace the 
regularity conditions used by Newton and Wigner6 and 
Wightman. 7 

We write the generators of the Poincare group in two 
different forms, but use the Foidy form at the beginning and 
end of the derivation and the Moses form for just one techni
cal step, so the idea of the derivation can be followed using 
only the Foldy form. 

2. FOLDY FORM 

We consider an irreducible unitary representation of 
the Poincare group with positive mass m, spin s, and positive 
energy . We use units such that c and -Ii are 1. Let P denote the 
generator for space translations. The generator for time 
translations is 

(2.1) 

where Pis (P2) 1/2. In the Foldy formK the generators for 
rotations and Lorentz transformations are 

J=QXP+S, (2.2) 
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K = (l/2)(HQ + QH) + (H + mtlpXS, (2.3) 

Here Q is iV, and SI'S2,S3 are the usual 
(2s + 1) X (2s + 1) irreducible spin matrices for spin s, on 
momentum-space wave functions with 2s + 1 components 
labeled by the eigenvalues A. = - s, - s + 1 , ... ,s of the diag
onal matrix S3' with inner product 

(t/I,4» = A ~_ s f d 3p t/lA (P)"'4>A (p). 

The Pauli-Lubanski four-vector is 

(2.4) 

Wo = p.J = p·S, (2.5) 

W = H J + PXK = (H + mtl(p.S)p + mS. (2.6) 

From this we see that in terms of the generators, the spin 
operator is 

S = m-I(H J + PXK) - m-I(H + mtl(p.J)P. (2.7) 

The Newton-Wigner position operator6 is Q. In terms 
of the generators it is 

Q = H-I(K -IP/2H) 

- H-Jm-I(H + mtIPX(H J + PXK). (2.8) 

Clearly Q is Hermitian, and its components commute with 
each other. It transforms as a position operator should for 
space translations because 

(2.9) 

for j,k = 1,2,3. That Q rotates as a vector is evidentfrom the 
form (2.2) of J or the formula (2.8) for Q in terms of the 
generators. From the latter we can also see that Q is invar
iant for time reversal, because to fit in with the other trans
formations the time-reversal operator must commute with H 
and K, anticommute with P and J, and be antilinear (anti
commute with i). We can see similarly that Q changes sign 
for parity, and from the form (2.1) of H and the commuta
tion relations (2.9) we see that the commutator of Q with H 
gives the correct2

.
3 velocity operator P/H, but these two 

properties are not needed to identify the Newton-Wigner 
pusition operator. We will consider Lorentz transformations 
later. 

If instead of the inner product (2.4) we were to use the 
inner product defined with the invariant (p2 + m2

)-1/2 d 3p , 
we would change from momentum-space wave functions 
t/I(p) to (p2 + m2)'!4t/1(p). Then the Newton-Wigner position 
operator would appear as6 

(P 2 + m2)'/4Q(P 2 + mlt'!4 

= Q - i(l/2)(P2 + m2)-'p, 

where Q is still iV. 

3. MOSES FORM 

In the "standard helicity" form ofH. E. Moses,9 which 
can be obtained from the Foldy form by a unitary change of 
basis, the generators for rotations and Lorentz transforma
tions are 

2029 

J=QXP+MS, 

K = (l/2)(HQ + QH) + (H /P)NS 
- (m/P)(E2T, - E,T2), 
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(3.1) 

(3.2) 

where 
M = (P,/(P + P3),P1/(P + P3 ), 1) 

= (Pi + P)/(P + P·i), (3.3) 

N = (P1/(P + P3), - P1/(P + P3),O) 

= PXi/(P + P.i), (3.4) 

E] = (P,P2IP(P + P3), 

-P~/P(P+P3)-P3IP,P2/P), (3.5) 

E2 = (Pi/P(P + P3) + P3IP, 
- p]P2/P(P + P3), - PiP), (3.6) 

again Q is iV on (2s + I)-component momentum-space 
wave functions with the inner product (2.4), but now TI, T1,S 
are the usual (2s + 1) X (18 + I) spin matrices for spin s, the 
same as used for SI,S2,S3 in the Foldy form, and the compo
nents of the wavefunctions are labeled by the eigenvalues 
A. = - s, - s + 1 , ... ,s of the diagonal matrix S. The vectors 
E],E2 and P = PIP are orthonormal and P XE] is E2 , etc. 

The point is that S represents the helicity. The Pauli
Lubanski four-vector is 

Wo = p.J = PS, (3.7) 

W = H J + PXK = HPS + m(E,TI + E2T2). (3.8) 

Substituting these into Eq. (2.7) we find that the spin opera
tor S of the Foldy form is 

E, T, + E2T2 + Ps. 

Making the same substitution in the formula (2.8) for the 
Newton-Wigner position operator in terms of the gener
ators we find that in the Moses form the Newton-Wigner 
position operator is 

R = Q + P-1NS - P-](E2T1 - E,T2). (3.9) 

4. UNIQUENESS PROOF 

We can see rather directly that the N ewton-Wigner po
sition operator is unique. Our proof uses the Foldy form at 
the beginning and end and uses the Moses form for just one 
technical step that is easy to accept intuitively, so the idea of 
the proof can be fol1owed using only the Foldy form. 

We will show that in the irreducible unitary representa
tion of the Poincare group there is no other Hermitian opera
tor R with commuting components that transforms as a po
sition operator should for translations, rotations, and time 
reversal and does not behave in a singular way that contra
dicts what can be learned from Lorentz transformations in 
the nonrelativistic limit. 

Suppose R is such a position operator. Using the Foldy 
form now, we let 

R=Q+D. 

Then D must be Hermitian, invariant for translations, a vec
tor for rotations, and invariant for time reversal. 

Consider D.P. It is invariant for translations and rota
tions; it commutes with P and J. Therefore it commutes with 
P and p·S = P.J. Now P, p.S is a complete set of commuting 
operators, so since D·P commutes with them, D.P must be a 
function ofP, p·S. Since D.P and p-:S are rotation invariant, 
D.P must be a function of P, p.S. The time-reversal operator 
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anticommutes with P and J, so it commutes with P and 
p.S = p.J. The time-reversal operator must anticommute 
with D.P, so D.P must be an imaginary function of P and p·S. 
But D.P is Hermitian, because D and P commute with each 
other. Therefore D·P is zero. 

For zero spin, our proof is easily completed. To be in
variant for translations and a vector for rotations, D must be 
of the form 

D=F(P)P 

for some function F of P. Then, since D.P is zero, D is zero. 
Therefore R is Q. 

In general, since D is invariant for translations and a 
vector for rotations, and D,Pis zero, we might expect D to be 
of the form 

D = - BP X(P XS) + CP XS, 

with Band C functions of P and p·S. Our next step is to prove 
that. If you believe it, you can skip to Eqs. (4.9) and (4.10). 

For this step, we transform everything to the Moses 
form. For the Newton-Wigner position operator we now 
have Eq. (3.9) instead of Q, so we have 

R = Q + P-fNS - P-f(E2TI - E fT2) + D. (4.1) 

Since D.P is zero, we can let 

D = BIEI + B2E2• 

From Eq. (3.8) we have 

(llm)P XW = E2Tl - EITz, 

(-lIm)P X(P XW) = EITI + EzTz· 

Then 

D-(l/m)P XW = B2TI - B IT2, 

D·( -lIm)P X(P XW) = BITI + BzTz· 

(4.2) 

(4.3) 

(4.4) 

These operators are invariant for translations and rotations; 
they commute with P and J. Then they commute with 
S = p.J. It follows that they are functions of P,S, because 
they commute with P,S and P ,S is a complete set of commut
ing operators. The representation of the Poincare group is 
spanned by eigenkets ip.A. > ofP,s, in terms of which we have 

(BJ ± iB2)(TI + iT2}lp,A ) 

= [B\ T\ + B2T2 ± i(BzT\ - Bl T2 )]ip.A. > 

ex: ip,A ). 
We can see similarly that 

(T\ + iTz)(B\ ± iB2)/p.A. > ex: Ip,A). 
Of course 

(4.5) 

with a proportionality factor that is zero only when A is the 
maximum or minimum eigenvalue of S and there is no 
ip.A. ± 1) in the representation. It follows that 

B 1 ± iB2 = f ± (T/ ± iT2) + 'IT ± ' 

or 

D = B(E1T\ + E2Tz) + C(E2Tl - E1T2) 

+ (l/2)('IT+ + 'IT_)EI - (iI2)('IT+ - 'IT-)Ez' (4.6) 

where! + and B,C are functions ofP,S, and 'IT ± are opera-
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tors restricted such that 

'IT ± /p,A) ex:O".±s/P,A = +s). 

Then 

'IT ± S = ± S'IT ±' S'IT ± = + S'IT ± ' 

['IT ± ,S ] = ± 2s'IT ± . 

Since D is translation invariant and rotates as a vector, we 
must have 

[D,P.J] = lFXD 

or 

[D,S] = iP XD. 

This implies 

s('IT+ - 'IT_)EI - is('IT+ + 'IT_)Ez 

= i(1I2)('IT+ + 'IT-)E2 - (l/2)('IT+ - 'IT_)Ep 

so 'IT ± are zero. 
From Eqs. (4.3), (4.4), and 

[T\,Tz] = IS, 

Ti + n =s(s+l)-Sz, 

we get 

D.(lIm)P XW = - iBS + C[s(s +1) - SZ], (4.7) 

D.( -l/m)P X(P XW) = B [s(s +1) - 5 2J + iCS. (4.8) 

To the extent that these equations determine Band C, they 
imply that Band C are rotation invariant. Solving Eqs. (4.7) 
and (4.8) does determine Band C except for the value of 
B + iC at the minimum eigenvalue A = - s of Sand B - iC 
at the maximum eigenvalue A = s which are superfluous be
cause they do not occur in 

D = (1/2)(B + iC)(E\ - iEz)(TI + iT2) 

+ (1I2)(B - iC)(E\ + IEz)(TI - iTz). 

Therefore we can regard Band C as functions of P and S. 
Now we transform everything back to the Foldy form. 

Using Eqs. (4.3) and (4.4), we see from Eq. (4.6) that with 
'IT ci being zero we have 

D = - B(llm)P X(P XW) + C(lIm)P XW. 

From Eq. (2.6) we also see that in the Foldy form 

(lIm)P XW = P XS, 

(lIm)P X(P XW) = P X(P XS), 

so in the Foldy form we have 

D = - BP X(PXS) + CPXS, 

R=Q+D. 

(4.9) 

(4.10) 

Since Band C are functions of P and S in the Moses form, 
from Eqs. (3.7) and (2.5) we see that in the Foldy form Band 
C are functions of P and P.S. 

Clearly 

R·P=Q·P. 

Since we assume that the components of R commute with 
each other and that 

(4.11) 
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forj,k = 1,2,3, we have 

(1I2)[R,Q·P] = (lit) [R,R.P] = R. (4.12) 

For a function/ofP, 

(lIt)[J(P),Q.P] = - p·V/(P) = - PJ/(P)IJP. 

These equations determine the P dependence of Band C; 
they must be proportional to p-I. 

For nonzero spin there is more than one Hermitian op
erator R with commuting components that transforms as a 
position operator should for translations, rotations, and time 
reversal, because there are unitary transformations generat
ed by p.J that preserve all these properties. 10.11 To get a 
unique position operator we have to consider Lorentz 
transformations. 

From Eq. (2.3) we see that 

K·P = (l/2)(HQ'P + Q·PH). 

Since D commutes with P, it must commute with H, so 
[R,H]is the same as [Q,H], whichisiPIH. From thisandEq. 
(4.12) we get 

(l1t)[R,K.P] = (112)1 (P/H)Q·P + Q·P(PIH) 

+HR+RH]. 

Then using Eqs. (4.11), (4.10), and (2.3) we find that 
3 

(liz) L [R,Kk ]Pk = (lIi)[R,K·P] - K 
k~1 

= (112)!(PIH)Q.P + Q.P(PIH)] 

+ HD - (H + mtlpXS. (4.13) 

Since Band C are proportional to P -I, we see from Eq. (4.9) 
that D is proportional to P -I, and from Eq. (4.13) we see that 
ifD is not zero, the [R,Kk ] contain terms proportional to 
P -2. This allows us to conclude that D is zero, and thus com
plete our proof that R is the N ewton-Wigner position opera
tor, because this singular dependence ofD and [R,Kk ] on P 
would contradict what we know of Lorentz transformations 
in the nonrelativistic limit, which we discuss next. 

5. NON RELATIVISTIC LIMIT 

We cannot say exactly what [R,Kk ] should be. The clas
sical Poisson-bracket equation 12 

(5.1) 

is ambiguous for quantization because the position and ve
locity on the right do not commute. Lorentz transformations 
are not simple for the Newton-Wigner position operator and 
its localized wavefunctions. 6 A unitary transformation gen
erated by K takes a wavefunction for time t = 0 for one frame 
to the corresponding wavefunction for t ' = 0 for another 
frame, and a wave function localized in space at t = 0 is 
spread out in space at the different times t corresponding to 
t ' =0. 

However, we need to consider Lorentz transformations 
only in the nonrelativistic limit, that is for states where the 
velocity is smaIl. We can identify the velocity operator as 
being 

(lIl)[R,H] = (l/l)[Q,H] = PIH. (5.2) 

In fact we can show the velocity operator is P/H without 
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even considering the position; we just need to assume it is a 
Hermitian operator with commuting components that 
transforms as a velocity should under the Poincare group.2.3 
Thus small velocity means small P 1m. 

From Eq. (5.1) we expect [R,Kk ] to be smaIl compared 
to Rk when the velocity is small. We found that ifD is not 
zero, the [R,Kk ] contain terms proportional to P-2. Since 
that could not give the right nonrelativistic limit, we con
clude that D is zero. 

For small velocities, the leading terms of the Poincare 
generators in the Foldy form are the Galilei generators 
(1.1)-(1.3). In the same order of approximation, Lorentz 
transformations of position are described by Eq. (1.5). In
deed, if we neglect the terms of Hwith higher powers of P 1m 
than those ofEq. (1.1), then to preserve the commutation 
relation 

(l/i) [K,H ] = P, (5.3) 

which holds for both the Poincare and Galilei groups, we 
must also neglect terms ofK with higher powers than that of 
Eq. (1.3). We take S to be of the same order as QxP. Then 
(H + mtlpxS is of order p 21m2 compared to mQ. With 
Eq. (1.3) for K, we have 

(lIr) [Kj,Pk ] = mDjk , (5.4) 

for j,k = 1,2,3. Since m is just a number, the unitary opera
tors for infinitesimal translations and Lorentz transforma
tions commute with each other to within a phase factor, 
which means the corresponding transformations of space
time coordinates commute. That happens only in an ap
proximation where transformations of time coordinates are 
neglected. Then Lorentz transformations of position to first 
order in the transformation velocity (3 are the GaliIei 
transformations 

eif3oKR(t)e - ,,3oK = R/(l) = R(t) - (3t. (5.5) 

For t = 0 we have 

(5.6) 

from which we obtain Eq. (1.5). For nonzero t, the transfor
mations (5.5) result from the Hamiltonian (1.1) giving 

(l/t)[R,H] = (lIr)[Q,H] = Plm, 

R(t) = R(t = 0) + (Plm)t, 

and the commutation relation (5.4) giving 

eif3oK(p Im)e - if30K = P 1m - (3. 

(5.7) 

(5.8) 

For the Galilei group, using Eqs. (1.3) and (1.5), we 
showed that the position operator is Q. Thus we expect that 
in the Foldy form the difference between the position opera
tor and Q wiIl be small when the velocity is small. We found 
that D is proportional to P -I. That can not give the right 
nonrelativistic limit unless D is zero. 
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On each six-dimensional symplectic manifold a coordinate-free realization of the so(4,2) algebra 
can be constructed, the generators of which satisfy the polynomial relations fulfilled by the 
so(4,2) generators associated with the Kepler problem. This realization contains as a particular 
case several realizations of soC 4,2) known in the literature. An expression of the symplectic form 
on a six-dimensional symplectic manifold, in terms of the so(4,2) generators defined on this 
manifold, is obtained. In particular, on the six-dimensional orbit of the 80(4,2) group in so(4,2)* 
this symplectic form coincides with the symplectic form introduced by Kirillov Kostant and 
Souriau. The symplectic form is given a Darboux expression with the aid of three pairs of 
canonically conjugated variables, which are a generalization of the Delaunay elements defined in 
the Kepler problem. 

1. INTRODUCTION 

A canonical realization of a Lie algebra G is a realiza
tion of G as an algebra of functions defined on a symplectic 
manifold [Il, the Lie bracket being the Poisson bracket asso
ciated to the symplectic 2-form on [Il.1.2 

Canonical realizations of Lie algebras are an essential 
tool in the study of classical dynamical systems which pos
sess a group of symmetry, as a preliminary step for the ca
nonical realizations of this symmetry group. One of the best
known examples of canonical realizations of Lie algebras is 
the algebra so(4) formed by the constants of motion of the 
nonrelativistic three-dimensional Kepler problem (the in
variance algebra of the Kepler problem)?-5 

Another interesting canonical realization related to the 
Kepler problem is its noninvariance so(4,2) algebra pointed 
out by Gyorgyi. 6-9 The generators of this algebra satisfy a 
number of homogeneous second-degree polynomial rela
tions, called in Ref. 9 kinematic identities, which have been 
obtained in Refs. 6 and 9 as consequences of the equations 
related to the Kepler problem (trajectory and hodograph 
equations) and of the specific construction of the canonical 
realization considered. 

The aim of the present paper is to investigate the infor
mation contained in these polynomial relations. From this 
analysis the following results have emerged: 

(a) The set of polynomial relations satisfied by the 
so(4,2) Gyorgyi generators is constituted by three distinct 
ad-invariant subsets. The first two subsets have the property 
that under the adjoint action the polynomials of each subset 
transform into polynomials of the same subset. The third 
subset of relations contains only one element, the equation 
obtained by putting the Casimir invariant of the so(4,2) alge
bra equal to zero. 

(b) Among these polynomial relations nine are func
tionallyindependent. 

(c) Using properties (a) and (b), a coordinate-free real
ization ofthe soC 4,2) algebra, induced from the realization of 
its soC 4) subalgebra, has been obtained. It has also been 
proved that such an induced canonical realization of the 
so( 4,2) algebra satisfying the above polynomial relations ex
ists on any six-dimensional manifold (Sec. 3). 

(d) The coordinate-free canonical realization of the 
so(4,2) algebra contains as particular cases the realizations 
associated in Ref. 6 to the Kepler problem as well as other 
canonical realizations of the so(4,2) algebra known in the 
literature. 10-13 The generators of each realization satisfies all 
three sets of polynomial relations; as a consequence of a 
theorem of Lie these realizations are all canonically 
equivalent. 

This situation is of general validity for Lie algebras. 14 
The inspection of a canonical realization R of a Lie algebra G 
reveals the presence of a set of functional relations among the 
generators. To each couple (G,R ) corresponds a given set of 
such relations. As a consequence of the same theorem of Lie, 
two realizations, the generators of which satisfy the same set 
of functional relations, are canonically equivalent. 

(e) In Sec. 5 a coordinate-free expression of the sym
plectic 2-form on a six-dimensional symplectic manifold [Il 
is obtained in terms of the generators of the canonical real
izations of soC 4,2) which can be constructed on [Il, as stated 
above. 

(f) A canonical expression for this symplectic form is 
obtained in Sec. 6. A system of coordinates called action
angle variables, in terms of which the symplectic form takes 
the canonical expression given by the Darboux theorem, I is 
defined. These coordinates, which are functions only of the 
generators of the soC 4,2) algebra, represent a generalization 
of the Delaunay elements, 15 which are of use in the study of 
the Kepler problem. The Delaunay elements acquire thereby 
a definite Lie algebraic meaning. 

(g) The Gyorgyi polynomial relations characterize a 
class of canonically equivalent six-dimensional canonical re
alizations of the so(4,2) algebra. Canonical equivalence is an 
equivalence relation which divides the set of canonical real
izations ofso(4,2) into equivalence classes: Each class may 
be represented modulo canonical equivalence by any of its 
elements. Nevertheless, a deeper insight into the whole class 
may be obtained by considering a representative element 
which is naturally connected with the structure of the so( 4,2) 
algebra. We denote as "natural" a canonical realization of 
the so(4,2) algebra defined on an orbit of the SO(4,2) group 
in the dual of the soC 4,2) algebra, in the sense of KiriIlov, 
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Kostant, and Souriau (KKS).16.17 It is known18 that there is 
a one-to-one correspondence between the canonical realiza
tions of a Lie algebra and the set of orbits of the correspond
ing group in the dual algebra. It may now be observed that 
the nine independent equations extracted from the three sets 
of polynomial relations [points (a), (b)] are precisely the 
equations of the six-dimensional SOC 4,2)-orbit given in Refs. 
19 and 20. This orbit possesses a natural symplectic struc
ture given by the KKS 2-form ill. On the other side, we can 
particularize to this six-dimensional orbit the results de
scribed above. The coordinate functions in so(4,2)* form a 
realization of the soC 4,2) algebra and a symplectic form (J 

can be thus defined in terms ofthem, as stated in (e). It is 
proved in Sec. 8 that on the six-dimensional SOC 4,2) orbit the 
two symplectic forms ill and (J coincide. By proving that, we 
have obtained an explicit expression of the KKS symplectic 
form on the six-dimensional orbit of SOC 4,2). 

For the sake of consistency we have presented in Sec. 7 
several elements from the KKS orbit theory, which have 
been given a local formulation refering to Lie algebras only. 

2. THE CANONICAL REALIZATIONS OF THE 80(4) AND 
sO{4,2) ALGEBRAS RELATED TO THE KEPLER 
PROBLEM 
A. Realization of the so(4) algebra3-5 

Let us consider the three-dimensional Kepler problem, 
the Hamiltonian of which is (m = Z = e = 1) 

H = p2/2 -1iq, (2.1) 

where21 q = (qiq;)I/2 andp = (Pi pJ1!2. 
The set formed by the following six functions defined on 

R3 X R3 

Li = (qXP)i = €jkiqj Pk (i = 1,2,3) (2.2) 

(the components of the angular momentum) and 

Ai = (IN -2H )(LXp + q/q)i (i = 1,2,3) (2.3) 

with H < 0 (the components of the Laplace-Runge-Lenz 
vector) form a canonical realization of the so(4) algebra, i.e., 
they satisfy the so(4) Poisson bracket relations 

[Li,L j J = €;jkLk' 

[Lj,A)J =€jjkAk, [Ai,A)] =€ijkLk' (2.4) 

where 

[,I=~~- ~~ 
Jqi JPi Jp; Jq; 

(2.5) 

is the standard Poisson bracket in R 3 X R 3. 

The generators of this realization of the soC 4) Lie alge
bra satisfy also the homogeneous polynomial identity 

L·A=L;A i =0. (2.6) 

The elements of this so(4) Lie algebra are constants of 
the motion for the Kepler Hamiltonian (2.1), i.e., [Li,H J 
= [ A;,H I = O. This may be seen from the relation 

1 
2H= -, (2.7) 

LiLi +AiAi 

where LiLi + Ai Ai is the so(4) Casimir invariant. 
Canonical realizations of the soC 4,1) algebra have been 

obtained in Ref. 22. 
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B. Realization of the 80(4,2) Lie algebral-il 

The set of15 functions defined on R 3 X R 3 by the equali
ties (2.2), (2.3), and by the following nine equalities: 

B;=qpi cos(\!' -2H u) + (IN -2H ) 

X (qJq - up;) sin(\!' -2H u), (2.8) 

Cj= - qpj sin(Y -2H u) + (IN -2H ) 

X (qJq - UPi) cos(\!' -2 H u), (i = 1,2,3), (2.9) 

B4= _ (IN -2H )(qp2 -1) cos(\!' -2H u) 

- u sin(\!' -2H u), 

C4=(l/~ )(qp2 -1) sin(\!' -2H u) 

- u cos(Y -2H u), 

M=IN -2H, 

(2.10) 

(2.11) 

(2.12) 

U=qiPi (2.13) 

form a canonical realization of the so(4,2) algebra; i.e., these 
functions satisfy the soC 4,2) Poisson bracket relations given 
in Table I. [We see from this table that each set offunctions 
B; (i = 1,2,3) and C; (i = 1,2,3) forms a vector with respect 
to 0(3). We shall therefore use also the notations Band C 
instead of (BI>B2,B3) and (C1,C2,C3) respectively.] 

The generators of this realization of the so(4,2) algebra 
satisfy, in addition to relation (2.6), the following homogen
eous polynomial identities [Ref. 6, relations (3.26), (3.27) or 
(3.30), (3.31)]: 

and 

L·B = 0, 

L'C = 0, 

AXB- B4L =0, 

AxC-C4L=0, 

BXC+ML=O, 

M A + C4B - B4C = 0 

BaC,,=B.C +B4C4 = 0, 

C.A- B4M =0, 

A·B +C4M=0, 

B B - C C =SZ + B 42 
- c 2 

- C ~ = 0, 
c:! a a a 

C2 + A2 - B ~ - M 2 = 0, 

A 2 + B2 - C ~ - M 2 = 0, 

AXL+B4B+C4C=0, 
BXL+B4A - MC =0, 

CXL+ C4A+MB =0, 
T=A®A-L®L-B®B-C®C 

+ i (L 2 
- A 2 + B ~ + C ~) = 0 

U=L®L-A®A+B®B+C®C 
_ i(L2+B2+B~ _M2)=0 

V=L®L-A®A+B®B+C®C 
_ t(L2 + C2 + C~ + M2) = ° 

where 

X·Y denotes the scalar product, 

M. losifescu and H. Scutaru 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.31) 

(2.31) 
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TABLE I. Lie multiplication table of the so(4,2) algebra. The multiplication law is 

X I (X~Yd 
L, 
L2 
L3 
A, 
A2 
A3 
B, 
B2 
B3 
C, 
C2 

C3 

B. 
C. 
M 

L, L2 L3 A, 

0 L3 -L2 0 
-L3 0 L, -A3 

L2 -L, 0 A2 
0 A3 -A2 0 

-A3 0 A, -L3 
A2 -A, 0 L2 
0 B3 -B2 -B. 

-B3 0 B, 0 
B2 -B, 0 0 
0 C3 -C2 -C. 

-C3 0 C, 0 
C2 -C, 0 0 
0 0 0 B, 
0 0 0 C, 
0 0 0 0 

XXV denotes the vector product, 
X ® Y denotes the tensor product, 

A2 A3 B, 

A3 -A2 0 
0 A, -B3 

-A, 0 B2 
L3 -L2 B. 
0 L, 0 

-L, 0 0 
0 0 0 

-B. 0 L3 
0 -B. -L2 
0 0 M 

-C. 0 0 
0 -C. 0 
B2 B3 A, 
C2 C3 0 
0 0 C, 

of the vectors X and Y and where i denotes the Kronecker 
tensor. 

It may also be observed that the generators of this real
ization of the so(4,2) algebra satisfy the identity 

LiLi + Ai Ai + M2 - BaBa - Ca Ca = 0, (2.32) 

i.e., the quadratic invariant of the so(4,2) algebra vanishes. 

3. A COORDINATE-FREE CANONICAL REALIZATION 
OF THE 80(4,2) ALGEBRA 

In this section we shall construct a coordinate-free ca
nonical realization of the so( 4,2) algebra, the generators of 
which satisfy the polynomial identities (2.6), (2.14)-(2.32), 
which are verified by the genrators (2.2), (2.3), (2.8)-(2.12) 
associated with the Kepler problem. 

Let us first examine some properties of the polynomial 
relations (2.6), (2.14)-(2.19), and (2.20)-(2.31). The follow
ing proposition shows that the two sets of polynomial rela
tions (2.6), (2.14)-(2.19), and (2.20)-(2.31) among the gen
erators of an so( 4,2) algebra may be obtained by applying the 
adjoint action to one relation of the set. 

Proposition 1 (cf. Refs. 23, 24): Let m be a symplectic 
manifold and let the following functions, defined on m, Li' 
Ai (i= 1,2,3),Ba , Co- (a = 1,00.,4), andM, be the generators 
of an so( 4,2) algebra with respect to the Poisson bracket (in
duced on m by the symplectic 2-form associated with m), 
i.e., let them satisfy the Poisson bracket relations given in 
Table I. 

(I) The set of functions formed by the lhs of relations 
(2.6), (2.14)-(2.19) is closed with respect to the adjoint ac
tion of the so( 4,2) algebra. In particular, if relation (2.6) is 
valid, then relations (2.14)-(2.19) are valid. 

(2) The set of functions formed by the Ihs of relations 
(2.20)-(2.31) is closed with respect to the adjoint action of 
the so( 4,2) algebra. In particular, if relation (2.20) is valid, 
then relations (2.21)-(2.31) are valid. 

2035 J. Math. Phys., Vol. 21, No.8, August 1980 

B2 B3 C, C2 C3 B. C. M 

B3 -B2 0 C3 -C2 0 0 0 
0 B, -C3 0 C, 0 0 0 

-B, 0 C2 -C, 0 0 0 0 
0 0 C. 0 0 -B, -C, 0 
B. 0 0 C. 0 -B2 -C2 0 
0 B. 0 0 C. -B3 -C3 0 

-L3 L2 -M 0 0 -A, 0 -C, 
0 -L, 0 -M 0 -A2 0 -C2 
L, 0 0 0 -M -A3 0 -C3 
0 0 0 -L3 -L2 0 -A, B, 
M 0 L3 0 -L, 0 -A2 B2 
0 M -L2 L, 0 0 -A3 B3 
A2 A3 0 0 0 0 -M -C. 
0 0 A, A2 A3 M 0 B. 
C2 C3 -B, -B2 -B3 C. -B. 0 

Proof By taking the Poisson bracket between the 
so(4,2) generators and the function LiA;, we obtain func
tions which vanish due to relation (2.6). Taking now the 
Poisson bracket between the so( 4,2) generators and the func
tions obtained in the previous step, we obtain again vanish
ing functions. The iteration of the process leads to all the 
relations (2.14)-(2.19). The system of functions formed by 
the Ihs of relations (2.6), (2.14)-(2.19) can be reached by 
starting from any function of the system; this system is thus 
closed vs. the adjoint action. These facts are shown in Table 
II. 

A similar procedure leads from relation (2.20) to the 
relations (2.21)-(2.31). The system off unctions (2.20)
(2.31) is also closed vs. the adjoint action. These properties 
are shown inTable III. 0 

The following two propositions show that the polyno
mial relations (2.6), (2.14)-(2.31) are not algebraically 
independent: 

Proposition 2: If relations (2.18), (2.19) are satisfied, 
then relations (2.6), (2.14)-(2.17) are satisfied. 

Proof Scalar multiplication of (2.18) with Band C leads 
to (2.14) and (2.15), respectively. Scalar multiplication of 
(2.19) with L and use of (2.14), (2.15) leads to (2.6). Vector 
multiplication of (2.19) with Band C and use of (2.18) leads 
to (2.16) and (2.17) respectively. 0 

Proposition 3: If relations (2.18), (2.19), (2.20), (2.23), 
and (2.32) are verified, then (2.6), (2.14)-(2.31) are verified. 

Proof From (2.18)-(2.20), (2.23), and (2.32), we get 

M2 = L2 + A2 = BaBa = CaCa, (3.1) 

A2=B~ +C~, (3.2) 

and from these relations, we obtain (2.24)-(2.25). Vector 
multiplication of ML = CXB with M A = B4C - C4B (or 
with C4B = B4C - M A or B4C = M A + C4B) and use of 
(2.20) leads to (2.26) or (2.27) or (2.28), respectively. 

The nondiagonal components of Eqs. (2.29), (2.30), 
(2.31) are verified if Bo Ci,Ao Li are replaced by their values 
taken from (2.28), (2.27), (2.19), and (2.18), respectively. 
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T ABLE II. Adjoint action of the 50(4.2) algebra on the set of polynomials (2.6). (2. l4}-(2. (9). The multiplication law is 
X, 

pp\ .... ,xI5) I-I~. ~(X~ .. ~,x~,>T __ -_1 
The following notations have been used: 

(I) IfX(X\,x,.X,). Y(Y\. Y,. Y,). Z(Z\.Z,.Z,) are vectors with respect to 0(3). then I X.YI = Z stands for the set of equations IX"r; I = £'J'Z, 

(i.) = 1.2.3). 
(2) IfX. Yare vectors and Z is a scalar. then I X.Y I = Z stands for IX,.r; I = 6'J Z (i.) = 1.2.3). 
(3) If X. Z are vectors and Y is a scalar. then IX. Y I = Z stands for I X"Y I = Z, (i = 1.2.3). 
The polynomials B,C, - C.B, - MA, (i = 1.2.3). (CXB - M L), (i = 1.2.3). (CXA + C.L), (i = 1.2.3). (AXB - B.L), (i = 1.2.3). - L, Ci • L,B" 

- L, A, represent. as it may be seen from the Table, the components of a vector in so(4.2). i.e .• denoting these polynomials by Pj(X\ .... ,x,,)(} = 1, .... 15). they 
satisfy the relation IX,.p, 1= l:, C';' P,. where X, (i = 1 ..... 15)andc,;, are the generators and structure constants of the s0(4.2)algebr a. Vectors of this type 
can be constructed for any so(n.2) algebra. Their expression for n = 4 has been given in Ref. 23. These vectors represent the pseudo-orthogonal analog of the 
vector defined in Ref. 30. relation (7. 15). for orthogonal algebras. 

L A B C B~ C~ 
B.C- C.B-MA B.C- C,B -MA CXB-ML CXA+ C.L AXB-B.L 0 0 

CXB-ML CXB-ML B.C- C.B-MA LoC -L·B CXA- C4L AXB-B.L 

CXA + C.L CXA+ C.L -L'C - (B.C - C.B - M A) - L·A CXB-ML 0 

AXB-B,L AXB-B,L L·B L'A - (B,C - C.B - M A) 0 CXB-ML 

-LoC 0 - (CXA + C.L) -(CXB-ML) 0 0 -L·A 

L·B 0 -(AXB -B.L) 0 -(CXB -ML) L·A 0 

-L·A 0 0 - (AXB - B.L) CXA+ C.L -L·B -LoC 

M 
0 
0 
AXB-B.L 
- (CXA + C.L) 

L·B 
LoC 
0 

TABLE III. Adjoint action of the s0(4.2) algebra on the set of polynomials (2.20}-(2.31). The mUltiplication law is the same as in Table II. We have denotd by t. V. Vthe tensors (2.29). (2.30), and 
(2.31). respectively. In order to avoid too large dimensions of this Lie multiplication table. the fOllowing notations have been used in addition to those used in Table II: 

(4) IfX(X\,x,,x,). Y(Y\.Y,. Y,) are vectors and i (Z\ \'Z\, ..... Z,,) is a tensor with respect to 0(3). then I X.Y I = i stands forthe set of equations IX" r; I = Z'J (i.) = 1.2.3). 
(5) If X is a vector and Y. i are tensors. then the equality IX. Yj = i stands for the set of equations IX"r;, I = £.;rnZ'rn + £"rnZ;rn (i,j.k = 1.2.3). 
(6) If X, Z are vectors and fis a tensor. then: 
(i) IX. Y I = Z stands for 

IX,.>';, I =6'JZ, +6"Z; +26"Z, (i.}.k= 1.2.3). 

(ii) IX. Y I = Z (*) stands for 

IX,.>,;, 1= 6.JZ, + 6"ZJ (i.}.k = 1.2.3). 

(7) If X. Z are scalars and Y is a tensor. then IX. Y I = Z stands for I X,Y, J I = 6, J Z (i.) = 1.2.3) 

L A B 

BC+B,C, 0 0 CXL+C,A-MB 

CA-B,M 0 CXL+ C,A + MB 0 

AB+C,M 0 BXL+ B,A -MC - (AXL + B,B + C,C) 

B'+B; -C'-C; a 0 -2(BXL + B,A - Me) 

C' +A' -B; -M' a 2(AxL + B,B + C,C) 0 

A' + B' - C; _ M' 0 2(AXL + B,B + C,e) - 2(BXL + B,A - MC) 

AXL + B,B + C,C AXL + B,B + C,C t -(AB+C,M) 

BXL+B,A+MC BXL+B,A-MC -(AB+ C,M) {; 

CXL+C,A+MB CXL+C,A+MB - (CA-B,M) -(BC+B,C,) 
t t - (AXL + D,B + C,C) - (BXL + B,A - MC) 

{; (; AXL + B,B + C,C BXL + D,A- MC 
(0) (0) 

v V AXL + B,B + C,C BXL+B,A-MC 
(0) (0) 

C B, C, M 

BXL+B,A-MC CA-B,M AB+C,M B'+B;-C-C; 

- (AXL + B,B + C,C) BC + B,C, C2+A2_B~_M2 -(AB+C,M) 

a A'+B'-C; -M' BC+B,C, CA-B,M 

2(CxL + C,A + MB) 2(AB+C,M) -2(CA-B,M) 4(BC+B,C,) 

-2(CXL+ C,A +MB)2(AB + C,M) 4(CA+B,M) - 2(BC + B,C,) 

0 4(AB+ C,M) 2(CA+ B.M) 2(BC+B,C.) 

-(CA-B,M) BXL + B, - A - MC CXL+C,A+MB 0 
-(BC+B,C,) AXL + B,B + C,C 0 CXL+C,A+MB 
V a AxL + B,B + C,C - (BXL + B,A - Me) 
- (CXL + C,A - MB) -2(AB + C,M) -2(CA-D,M) 0 

(0) (0) 

CXL+C,A+MB -2(AB+ C,M) a - 2(BC + B,C,) 
(0) 

CXL+C,A+MB 0 -2(CA-B,M) 2(BC + B,C.) 



                                                                                                                                    

Similarly, introducing instead of one factor in each square 
B ~,C~, A~, L ~ the above values of B;. Cj , A j , Li' we obtain 
that the diagonal components of Eqs. (2.29), (2.30), (2.31) 
are verified. Finally, relations (2.21) and (2.22) result from 
the scalar multiplication of (2.27) and (2.28) with Band C 
respectively and use of (2.20). 

The following proposition states the existence of a co
ordinate-free realization of the so(4,2) algebra, induced by a 
realization of its so( 4) subalgebra. 

Proposition 4 (cf. Refs. 24, 25): Let ~ be a symplectic 
manifold and let us assume that there exists on ~ a canonical 
realization of the so(4) algebra (with respect to the Poisson 
bracket associated with the symplectic 2-form on ~), the 
generators L;. Aj (i = 1,2,3) of which satisfy the Poisson 
bracket relations (2.4) and the polynomial relation (2.6). 

There exists then on ~ a canonical realization of an 
so( 4,2) algebra with the following properties 

(i) It contains the so(4) algebra generated by L j, Aj 
(i = 1,2,3) as a subalgebra. 

(ii) Its generators satisfy the so(4,2) Lie bracket rela
tions from Table I and the polynomial relations (2.20) and 
(2.32). 

The generators of this realization of the so(4,2) algebra 
are 

B = 17[ (L 2 + A 2)1/2 cost/J ~ + sint/J Lx ~ ], (3.3) 

B4 = 17A sint/J, (3.4) 

C = - €17[ - (L 2 +A 2)1/2 sint/J~ + cost/JLX ~] , 

C4 = - €17A cost/J, 

M= €(L 2 +A 2)1/2, 

(3.5) 

(3.6) 

(3.7) 

where€ = ± 1,17= ± I,L = (LjLy/2,A = (Aj AJIJ2 , and 
t/J is a scalar function 

{L,t/Jl =0, 

satisfying the equations 

(3.8) 

M 
{t/J,A J = A2 A. (3.9) 

Proof We shall prove the existence of a coordinate-free 
realization of so( 4,2) by showing that conditions (i) and (ii) 
lead to the explicit expressions (3.3)-(3.7) of the generators 
Ba , Ca , and M as functions ofL and A which are submitted 
only to (2.6) and of the function t/J which can always be deter
mined as a solution of (3.8), (3.9). 

Let us first remark that (Proposition 1) conditions (2.6) 
and (2.20) lead to (2.14)-(2.31). On the other side (Proposi
tion 3) the conditions (2.6), (2.14)-(2.32) are algebraically 
dependent and can be deduced from the subset of conditions 
(2.18)-(2.20), (2.23), and (2.32). Multiplication of (2.26) 
withB4 and of(2.19) with C4 and addition of the results leads 
to 

(3.10) 

Multiplication of (2.26) and (2.19) with C4 and - B4 , re
spectively, and addition of the results gives 
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(3.11 ) 

Taking (3.1) and (3.2) into account and introducing the 
notations 

i.e., 

C4 / A = cos[(€ - 17}TT/2 + €t/J], 

c4/ A = cost/J, B4/ A = sint/J, 

- C4/A = cos(t/J + 1T) = - cost/J, 

B4/A = sin(t/J + 1T) = - sint/J, 

(3.12) 

(3.13a) 

(3.13b) 

if M = + (L 2 + A 2)1/2 

- C~A = COS(1T - t/J) = - cost/J, 

B4/A = sin(1T - t/J) = sint/J, 

- C~A = cos( - t/J) = cost/J, 

B4/ A = sin( - t/J) = - sint/J, 

(3. 13a') 

(3. 13b') 

if M = - (L 2 + A 2)1/2, 

we obtain from (3.10) relation (3.3) and from (3.11) relation 
(3.5). Relations (3.4), (3.6), and (3.7) are equivalent to the 
notation (3.12). 

The verification of the so( 4,2) Poisson bracket relations 
(Table I) by the generators Lj,Aj and the generatorsBa , Ca " 

M (3.3)-(3.7) is equivalent to the validity of relations (3.8) 
and (3.9). Relations (3.8) and (3.9) may indeed be obtained 
from the Poisson bracket relations {L,B 41 = 0 and 
{ B 4,A 1 = B, respectively. Conversely, if the expressions 
(3.3)-(3.7) of the nine generators Ba , Ca , (a = 1,2,3,4), M 
are used and if the function t/J satisfies relations (3.8) and 
(3.9), then for any L and A satisfying (2.4) and (2.6) all 
so(4,2) Poisson bracket relations of Table I are verified. The 
proof of the validity of these Poisson bracket relations is a 
matter of straightforward calculation requiring only the 
properties (2.4) and (2.6) of the generators L and A and (3.8), 
(3.9) of the function t/J. 0 

Propositions 1 and 3 lead to 
Corollary 1: One any symplectic manifold ~ on which a 

canonical realization ofthe so( 4) algebra exists, with the gen
erators L, A satisfying L·A = 0, there exists a canonical real
ization of the so( 4,2) algebra, containing this so( 4) algebra as 
a subalgebra, and such that its generators satisfy all the con
ditions (2.14)-(2.32) satisfied by the generators of the real
ization (2.2), (2.3), (2.8)-(2.12) associated with the Kepler 
problem. 

The restrictive condition of the existence on ~ of a ca
nonical realization of the so(4) algebra, satisfying (2.4), (2.6) 
is in fact always satisfied if~ is six-dimensional. Indeed, let 
w be the symplectic form on ~; we have 

Proposition 5: Given a six-dimensional symplectic 
manifold (~,{U) and a point mE~, there exists a neighbor
hood U of m and a set of functions L j' A j (i = 1,2,3) defined 
on UwhichsatisfytherelationL j Aj = Oand which generate 
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a canonical realization of the soC 4) algebra. The functions L;. 
A; are defined by the following relations: 

L; = (qxp); (i = 1.2.3). 

A(qj ~!- (LXq);.!-) 
A; = - co~ + stn~ (i = 1.2.3). 

q Lq 
(3.14) 

in which the scalar functions A (q.L.u). S (q.L.u) satisfy the 
equation 

(
a A z as _ aA 2 as )q = 2L + aA z . 
aq au au aq aL 

(3.15) 

Proof From the Darboux theoreml,z there exists a 
chart (U.ip) .mEU. such that ip(m) = O. 

ip(u) = (ql(U),q2(U),q3(U); PI(U), pz{u), plu» 

and (3.16) 

WIU = dq; t\dp;. 
The Poisson bracket associated with the 2-form (3.16) is 

(2.5); with respect to it the functions L j (i = 1,2,3) given by 
(2.2) generate an so(3) algebra, i.e., satisfy I L,L J = L. The 
general expression of a set off unctions A I' Az• A 3, which are 
the components of a vector with respect to 0(3) ({ L,A I 
= A), which is orthogonal to L (LA = 0). is given by rela

tion (3.14), wheresis a scalar function <I L,S } = 0); the con
dition for the validity of I A,A J = L with A given by (3.14) is 
(3.15). which is always solvable. Hence all the Lie bracket 
relations (2.4) which define the soC 4) algebra are satisfied. 0 

The solvability ofEqs. (3.15) and ofEq. (3.9) for any A 
leads to 

Corollary 2: On any six-dimensional manifold (m.w) a 
canonical realization of the soC 4,2) algebra can be deter
mined. the generators of which satisfy the Poisson bracket 
relations of Table I and the polynomial relations (2.18)
(2.20). (2.23), (2.32) [or, what amounts to the same, relations 
(2.6). (2.14)-(2.32)]. 0 

Equations (3.6) and (3.7) satisfied by the function t/J 
lead to the following properties of this function. 

Proposition 6: The function t/J is determined only modu
lo the addition of a function of the so( 4) Casimir operator 
V+~. 0 

Proposition 7: The function t/J is functionally indepen
dent on the functions L; and A;. 

Proof Let us suppose the contrary. i.e .• that 

t/J = t/J(L I .Lz.L3, A I. A z, A3)' (3.17) 

Relations (3.8) become 

0= at/J {LL} + a¢ (ALI 
aLi ") a A; ') 

= E;ik(a¢ Lk + a¢ Ak) (j = 1,2,3). 
aLi aA; 

(3.18) 

Multiplication with L i and summation with respect to} give 

a¢ 
(LXA) - = O. (3.19) 

, aA; 

Relations (3.9) become 

(L Z + A 2)1/2 A . = a¢ I L. A.j + at/J I A. A. j 
A z J aLi ") aA; ") 
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= €. 'k(a¢ Ak + a¢ Lk) 
') aLi aA; 

(j = 1,2,3). (3.20) 

Multiplication with A i and summation with respect to} give 

(LXA)j::' = _(L2+A2)1/2 (3.21) 
I 

in contradiction with (3.19). This proves the proposition. 0 
Dejinition:Z6

,27 A k-tuple off unctions (fl .... ,Jd on the 
symplectic manifold (m,w) is called complete if: 

(1) dfl .... ,dfk are linearly independent. 
(2) There exists a set offunctions U;i: R k-+R such that 

(J: • ./j j = UijUI .... ,Jk)' 1 <,i,}<,k. (3.22) 

The matrix of functions (U; i) is called the structural matrix 
ofUI.· .. ,Jk). 

A set off unctions which may be expressed as functions 
only of the elements of a complete k-tuple are said to form a 
group offunctions of order k on (9Jl,W).27.28 

The expressions (3.3)-(3.7) and Proposition 4 tells us 
the following: 

Proposition 8: The generators of the realization ofthe 
so(4.2) algebra defined in Proposition 3 form a group of 
functions of order 6. 

Proof From (2.6). (3.7)-(3.9), and Proposition 7 it re
suits that. for instance, (L 1,L2.L3• A I, Az.¢) form a complete 
sextuple. The 15 so(4.2) generators form [relations (3.3)
(3.7)] a group of functions of order 6. This results also by 
writing 

L = E{lN BaBa )CXB. 

A = f{IN BaBa )(B4C - C4B), 

M=€Y BaBa . 

(3.23) 

(3.24) 

(3.25) 

The eight functions Ba, Ca (a = 1,2,3.4) are submitted to 
the two independent constraints Ba Ca = O. BaBa = Ca Ca 
and contain thus a complete sextuple of functions, in terms 
of which all the soC 4.2) generators may be expressed. 

The following theorem. due to Lie, on complete K-tu
pIes of functions will be applicable to the realizations of the 
so(4.2) algebra. We present this theorem in the formulation 
of Roels and Weinstein: 

Lie's Theorem28 ,29: Let U; .... ,jk) and U; .... ,J;,) be 
complete k-tuples of functions defined on the symplectic 
manifolds (9JC,w) and (9JC'.w'). respectively. Suppose that 
J;(x) = f:(x) (i = 1 .... ,k) for some points XEm and x'E9JC'. 
Then there exists a diffeomorphism ip from a neighborhood 
of x onto a neighborhood of x' such that ip*w' = wand 
ip*f: = J: if and only if UI, ... ,Jk) and U; , ... ,JD have the 
same structural matrix and dimm = dim9Jl'. 0 

As established by Corollary 2, on any six-dimensional 
manifold a realization of the so(4.2) algebra can be defined 
the generators of which form a group off unctions of order 
six. Let us now assume that, for instance, the sextuple of 
functions (L 1,L2 .L3, A I' A2,¢) has been given two different 
specifications (L : .L ~,L ~. A : • A i .t/JI). 
(L 2 .L ~.L ~. Ai. A ~ ,¢2) on two six-dimensional symplectic 
manifolds (9Jl 1,W I) and (9JC2.W2), respectively, both sextuples 
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having thus the same structural matrix as the sextuple 
(L I,L2,L3 , A \, Az,t/J); i.e., let us assume that two different re
alizations of the so(4,2) algebra have been defined, the gener
ators of which satisfy the same set of polynomial identities 
(2.18)-(2.20), (2.23), (2.32). Lie's theorem tells us that these 
two realizations are canonically equivalent. 

We shall use this result in the following section, in 
which different realizations of the soC 4,2) algebra on six
dimensional manifolds will be obtained, by giving to the sex
tuple offunctions (L I,Lz,L3 , A I' Az,t/J) different specific 
expressions. 

4. DIFFERENT PARTICULAR CASES OF THE 
CANONICAL REALIZATION OF THE sO(4,2) ALGEBRA 
GIVEN IN SEC. 3 

In this section we shall show that several canonical real
izations of the so(4,2) algebra on a six-dimensional symplec
tic manifold quoted in the literature6, 10-13 can be obtained 
from the canonical realization (3.3)-(3.7) by using appropri
ate expressions of the sextuple of functions (L,A,t/J); all these 
realizations satisfy all the polynomial identities (2.14)
(2.32) and are thus, as a consequence of Lie's theorem, can
onically equivalent. These realizations are: 

(1) The realization (2.2), (2.3), (2.8)-(2.12) obtained by 
Gyorgyi6 is obtained from the general so(4,2) realization of 
Sec. 3 ifL and A are given by (2.2) and (2.3) respectively and 
if 

t/J = w -- E sinw - 1T12 = (21TIT)t - 1T12, (4.1) 

where 

w = eccentric anomaly of the elliptic motion, 
E = numerical eccentricity of the ellipse, 
T = period of the elliptic motion, 
t = time. 

This expression of the function t/J may be obtained by observ
ing that if A is the Laplace Runge-Lenz vector (2.3) and if 
u = qp and A = (Ai Ai)I/Z, then 

qp2 -1 =A V -2H cosw (4.2) 

u =A sinw. (4.3) 

Introducing (4.2) and (4.3) in the expression (2.10) of B4 , we 
obtain 

B4 = A sinew - V -2H u - 1T12), (4.4) 

which, if compared to (3.2) and if we observe that for the 
Kepler problem we have 

V -2 H u = E sinw, (4.5) 

leads to relation (4.1). 
The generators of this canonical realization satisfy the 

Gyorgyi relations (2.14)-(2.31) (which have been estab
lished precisely for this realization) and relation (2.32). 

We shall denote, in the rest of this section, by L, A, Ba , 

C a' M the generators of the realizations of soC 4,2), (2.2), 
(2.3), (2.8)-(2.12) and shall express in terms of them the 
generators of some of the realizations of the soC 4,2) algebra 
considered in this section. 

(2) The canonical realization obtained by Dothan [Ref. 
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10, formulae (66)-(70)] reduces to the above realization if: 
(i) The constants m, Z, e in the Kepler Hamiltonian 

H = p2/2m - Ze2 I q are all put equal to 1 (convention 
adopted in the present paper); 

(ii) The following identifications are made, 

J==L, A=A, U=B, U4 = B4 , 

V = C, V4 = C4 , MS6 = M; (4.6) 

(iii) The argument v' - 2Hu of the trigonometric func-
tions in Ba, Ca, (2.8)-(2.11) is replaced by 

(jJ = V -2H(u +2Ht). (4.7) 
We have seen (Proposition 2) that the function t/J in 

(3.3)-(3.7) is determined modulo the addition of a function 
of the so(4) Casimir invariant. Due to relation (3.7) between 
this invariant and the Kepler Hamiltonian, the function t/J is 
determined up to the addition of a function of the Kepler 
Hamiltonian. 

The complete sextuple off unctions which determine 
the canonical realization [Ref. 10, (66)-(70)] is formed by 
the functions L and A [(2.2), (2.3)] and by 

t/J = w - V -2H (u +2Ht) -1T12. (4.8) 

It may be also verified by direct calculation that if we 
denote by B a' C a the generators (2.8)-(2.11) and by B ~, C~ 
the corresponding functions in which the argument 
vi -2Hu is replaced by vi -2Hu + f(H), then for any fwe 
have! B ~,C ~ J = ! Ba ,Ca J. Similar equalities are obtained 
ifin the so(4,2) Poisson bracket relations the functions Ba , 

Ca are replaced by B ~, C ~, respectively. The functions of 
the new argument form thus also a set of generators of the 
soC 4,2) algebra. This new set of generators, which differ only 
in the expression of the argument of the trigonometric func
tions, from the generators of the realization (2.2), (2,3), 
(2.8)-(2.12) satisfy, therefore, the Gyorgyi identities (2.18)
(2.20), (2.23), (2.32) too. 

(3) Similar remarks are valid for the first of the two 
canonical realizations of the soC 4,2) algebra constructed by 
Tripathy, Gupta, and Anand [Ref. 11, formulae (2.11), 
(2.25a), (2.27), (2.29), (2.30)]. This realization reduces also 
to (2.2), (2.3), (2.8)-(2,12) (Sec. 2) if 

(i) The following identifications are made: 

L=L, f=A, M=B, r= - c, 
(4.9) 

r 4==B4 , T== - C4 , ro== - M. 

(ii) The argument v' -2Hu of the trigonometric func
tions in (2.8)-(2.12) is replaced by p = v' -2H (u - 2Ht). 

The complete sextuple is given by L, A [(2.2)-(2.3)] and 
by 

t/J=w-V -2H(u-2Ht)-1T12. (4.10) 
The polynomial identities (2.13);(2.32) are verified. 
(4) The generators of the second canonical realization 

given in Ref. 11 [formulae (2,11), (2.25b), (2.27), (2.30), 
(2.31)] can be expressed in terms of the generators (2.2), 
(2.3), (2.8)-(2.12) by the formulae: 

L 
L=L, f= - -;;XA, 
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·L 
M= - -XB 

L ' 
L r= -xc 
L ' 

r 4 =B4 , T= -C4, rO= -M, 

in which a substitution of the argument V - 2Hu by 
(J = V - 2H (u - 2Ht) has to be performed. 

(4.11) 

It is easy to verify that if the set of generators L, A, B, 
B4 , C, C4 , M satisfy the polynomial identities (2.14)-(2.32) 
then the new set of generators (4.11) satisfy the same 
identities. 

The complete sextuple is given by L, - (L/ L ) X A and 
the same .,p as above (4.10). 

(5) Another canonical realization of the soC 4,2) algebra 
on a six-dimensional space is the realization obtained by 
Barut and Bomzin [Ref. 12, Formulae (AI4), (AI)]. 

The generators of this realization, which will be denot
ed by L/, A', B ~, C ~ , M I in order to suggest the correspon
dence with the notations of Sec. 2, are 

L' = qXp, A' = ~(p2 - l)q - up, 

B' = ~(p2 + l)q - up, C = qp, (4.12) 

B4 = U, C4 = !(p2 - l)q, M = - !(pZ + l)q. 

They satisfy the polynomial identities (2.1S)-(2.20) (2.23), 
(2.32). The realization (4.12) admits the complete sextuple 
offunctions L', A' and 

Ifr = arctan(B4/C4) = arctan[2u/q(p2 - 1)]. (4.13) 

(6) The canonical realization of the so(4,2) algebra 
obained by Serebrennikov and Shabad 13 in their study of the 
central problems in mechanics is obtained from the general 
expression (3.3)-(3.7) if the following expressions are as
cribed to L. A. and .,p: 

L = rXp, (4.14) 

A =A (~coss + rxL sins), 
r rL 

(4.15) 

211' 
.,p = T t(rmin,r), (4.16) 

where 

S= f L-Fr [2(H- V(r»r_L2]- 1/2 dr 
r",:;J) r 

and 

H = !Pi Pi + VCr) 

is the Hamiltonian of a central motion submitted to the Pois
son bracket condition, 

{ A 2 + L 2,H 1 = o. 
r min is the perigee distance of the central motion, and 

F = a(L 2 + A 2) [a(L 2 + A 2)] - 1 
aL aH • 

T = 211'V2 a(L 2 + A 2) 
(L2+A2)lf2 aH 

i' ( L 2) -112 
t(rmin,r) = 'min 2H - 2V - 7 dr. (4.17) 

For these expressions ofL, A, and .,p, Serebrennikov and 
Shabad obtained the dependence (3.3)-(3.7) on L, A, and .,p 
of the so(4,2) generatorsB", Ca (a = 1.2.3,4). andM. 
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5. COORDINATE-FREE EXPRESSION OF THE 
SYMPLECTIC 2-FORM OF A SIX-DIMENSIONAL 
SYMPLECTIC MANIFOLD 

In this section we shall obtain a coordinate-free expres
sion of the symplectic 2-form (J on the six-dimensional sym
plectic manifold m in terms of the canonical realization of 
the so(4,2) algebra that can be determined on m (Corollary 
2). 

This expression will result as a corollary of the 
following: 

Proposition 9: Let the functions L i , Ai' and t/! be defined 
on a six-dimensional symplectic manifold and let them satis
fy the relations (2.4), (2.6), and (3.7)-(3.9). Let q" Pi 

(i = 1,2,3) be the local coordinates on this manifold and let 
Li have the expression Li = (qXP)i with respect to this sys
tem of coordinates. Then, taking in (3.3)-(3.7) E = 1] = +1. 

I 
8-

M
B"dC" =Pidqi +dF, (5.1) 

where Ba, Ca (a = 1, ... ,4), and M are given by (3.3)-(3.7) 
and dF is the differential of a function F (q, p). 

Proof Using relations (3.3)-(3.7) and (2.20), we obtain 

-B dC =Mdt/!-L-d - X -. I A (L A) 
M a a A L A 

(5.2) 

A vector function A orthogonal (2.6) to the vector L = qXp 
has the form 

A = ~ CoSS + LXq sinS' 
A q Lq 

(5.3) 

Using (5.3), we obtain 

~ d (!. X A) = - dS - ~ pdq + ~ dq 
A L A L qL 

(5.4) 

and hence 

I u 
- B"dC,,- = Pidqi + Mdt/! + LdS + - dq. (5.5) 
M q 

We have to prove the existence of a function F [which has to 
be a scalar with respect to 0(3), i.e., F = F (q,L.u)] such that 

u 
dF= Mdt/! + Lds - -dq. 

q 
(5.6) 

Introducing in (5.6) the differentials of the scalar functions 
.,p(q,L,u) and 5 (q,L,u). we obtain 

dF= (M at/! + L as _ !!..-)dq + (M a.,p + L as)dL 
aq aq q aL JL 

+ (M a.,p + L as )dU. (5.7) 
au au 

The rhs of(5.7) is a total differential if and only if the follow
ing conditions are satisfied: 

aM at/! _ aM at/! as --=-, 
aq aL aL aq aq 

(5.8) 

aM at/! _ aM at/! as 
au aL aL au = au' (5.9) 

_ aM at/! + aM at/! = _ 
auaq aqau q 

(5.10) 

Using the relation I q,u 1 = q, we obtain from (5.10) the fol-
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lowing relation equivalent to (3.9): 

(M,,p) = D(M,,p) (q,u) = -1. 
D(q,u) 

(5.11) 

Let us now observe that from relations (3.1) and (3.15) we 
get 

aM as _ aM as = J.- aM 
aq au au aq q aL 

(5.12) 

On the other side, from relation {,p,AI A ) = 0, which is a 
consequence of (3.9), we obtain, using (5.3), 

(5.13) 

Let us now prove that relations (5.8) and (5.9) are verified. In 
order to do that we first multiply them with as I au and 
- as laq, respectively. The relation obtained by adding the 

results is verified as a consequence of relations (5.12)--(5. 13). 
A second relation is obtained from (5.8) and (5.9) by multi
plying them with aM lau and - aM laq, respectively, and 
adding the results; we obtain, up to a factor, relation (5.11) 
which has already been proved. Relations (5.8) and (5.9) are 
thus verified and the proof is complete. 0 

By exterior differentiation of expression (5.1), we get 
the following: 

Corollary: The symplectic form (J of the six-dimension
al symplectic manifold (m,(jj) admits the foHowing expres
sion in terms of the generators of the soC 4,2) realization on 
m: 

(5.14) 

This expression of the symplectic form (Jis independent 
of the local chart (U,rp ). 

6. ACTION-ANGLE VARIABLES ON THE SUBMANIFOLD 
m 

In this section we point out a system of coordinates in 
which the symplectic 2-form (J [(5.14)] takes the canonical 
form given by the Darboux theorem. I 

Let us assume that A # 0 and define the angular variable 

,p = { - arctan(B4IC4) if C4 #0, 
arctan(C4/B4) + 1T/2 if B

4
#0. (6.1) 

We have 

B41A = sin,p, C41A = - cost/J, (6.2) 

and Proposition 4 tells us that from relations (2.18)--(2.20), 
(2.23), (2.32), among the so(4,2) generators we get the ex
pressions (3.3)-(3.7) with € = 1/ = 1 of the generatorsBa , 

Ca (a = 1,2,3,4), andMin terms of the variables t/J, L, and A 
with L·A = O. 

By straightforward calculations we obtain that, with 
respect to the variables t/J, L, and A, the I-form B [(5.1)1 
becomes 

(6.3) 

Let us now define the new angular variables nand rby 
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~I = [1- (irr /2 

sinn, 

~2 = - ( 1 - ( i rr2 

cosfl, 

Al sIJ sF L3 '_of") 'or - = co co - - SIJLU SI , 
A L 

.6. = sinn COsF + !:J... cosfl sinF, 
A L 

~3 = [ 1 - ( ~3 rr/\inF, 
(~ X A) = _ cosfl sinF - .!:..L sinn cosT: 

L AIL ' 

(~ X A) = _ sinn sinF + .!:..L cosfl cosr, 
L A 2 L 

(L A) [ (L )2]112 L X A 3 = 1 - -t cosF. 

We can now prove 

(6.6) 

Proposition 10: The pairs of variables (M,t/J), (L,n ), and 
(L3,r) are canonicaI1y conjugated pairs, i.e., the following 
relations are valid: 

{M,L31 = {M,L I = {L3,L I = 0, 

{t/J,fl } = {t/J,r} = {n,r } = 0, 

{M,t/J) = {L3,n J = {L,r J = -1. 

(6.7) 

In terms of these variables the differential I-form B defined 
by Eq. (5.1) takes the following canonical expression: 

B = M dt/J + L3dn + L dr. (6.8) 

Proof: The proof of the first assertion is obtained by 
straightforward calculations, using the fact that the func
tions L, A, B, B4 , C, C4 , M satisfy the soC 4,2) Lie bracket 
relations and the polynomial relations (2.18)-(2.20), (2.23), 
(2.32). The proof of the second assertion results from the 
equality 

(~X A).d(A) = l2. dn + dF (6.9) 
L A A L ' 

which is a consequence of relations (6.6). 0 
From relations (3.3)-(3.7) with € = 1/ = 1 and (6.6) we 

obtain the expressions of the soC 4,2) generators in terms of 
the canonically conjugated variables M, t/J, L3, n, L, r. 

The variables M, t/J, L3, n, L, r are a generalization of 
the Delaunay elements defined in classical dynamics, IS 

which are shown in this way to possess a Lie algebraic 
signification. 
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7. CANONICAL REALIZATIONS OF A LIE ALGEBRA ON 
SUBMANIFOLDS OF ITS DUAL 

Let G be a Lie algebra and let G * be its dual. The action 
of G and G, defined by 

(x,y)eG XG~[X,Y]EG (7.1) 

([ , ] = Lie bracket in G) and denoted by 

adx(y) = [x,y), (7.2) 

is called the adjoint representation of G on G. For any xEG let 
us consider the differentiable functionfx on G * defined by 

fx :ueG *~fx (u)==u(x)eR. (7.3) 

Let !x\, ... ,xn 1 be a basis of G; we have 

[xi,xj] = i Cijk x k , (7.4) 
j=\ 

where the Cijk are the structure constants with respect to this 
basis; the dual basis! U\""'U n lin G * is defined by 

ui(x j) = 8ij . (7.5) 

An element ueG * has the expression 

u = i. S;(u)U;, 
;=1 

where the coordinate functions s;(u) are given by 

S;(u) = u(x;) =fx.(u). 

(7.6) 

(7.7) 

Let us now associate with each element x of G a vector 
field on G * defined (in a point UEG * of coordinates S;) by 

n a 
XAu)= L u([x,x j ])-. 

j= \ aSj 

(7.8) 

In particular, we associate with each element x; of the basis 
in G the field 

n a 
Xx. (u) = L C;jkSk - . (7.9) 

j.k = \ aS j 

The system of vectors XXi (i = l, ... ,n) forms a realization of 
the Lie algebra G with the commutator as Lie bracket 

(7.10) 

Another realization of the Lie algebra G may be ob
tained by introducing the following bracket defined for any 
J, geC "(G *) by 

Let us now point out a submanifold of G * on which the 
Kirillov-Kostant-Souriau symplectic form can be defined; 
on this submanifold the realizations (7.10) and (7.12) are 
canonical with respect to the KKS 2-form. 

Let WC m be an m-dimensional submanifold ofG * de
fined by a set of n - m functionally independent relations 

J;(SW .. ,Sn) = 0 (i = 1, ... ,n - m) 

satisfying the following conditions: 

(7.14) 

(1) Xx,fj = 0 (i = 1, ... ,n, j = l, ... ,n - m), (7.15) 

(2) ifueWCm , then rankll.f.c;jkSk(u)ll>m. 

(7.16) 

Then a symplectic form w can be defined on WC m by the KKS 
condition 

(7.17) 

The Poisson bracket associated with the KKS symplectic 
form w on WC m has the expression (7. 11) in terms of the co
ordinates S;. 

Let us observe that condition (7.15) expresses the fact 
that the vector fields Xx, are tangent to WC m ; it is the local 
expression of the property ofWCm to be an orbit of the group 
generated by Xx,, Condition (7.16) tells us that among the n 
vector fields, tangent to WC m in u, at least m are linearly 
independent. 

The existence in each point UEWC m of a system of m 
linearly independent tangent vectors XXi is sufficient to de
fine on WC m the KKS 2-form w. Let us show that w is nonde
generate and closed. The kernel of Wu 

kerwu = !XETuWCm ; wu(X,Y) = 0, YETuWC m 1 (7.18) 

has dimension zero. Indeed, let Xx. (u), ... ,xx"'{u) be m linear
ly independent vectors in Tu WC m ; we have 

kerwu = { i~l AiXXi ; 

i.~ \ A; J-L jWU(XXi,xx) = O,V J-Ll , ... ,J-Lm} 

= {;~IA;Xx,; 
(7.19) 

(7.11) The dimension ofkerwu is thus the number of linearly inde
pendent solutions !Ai 1 of the system 

This bracket is antisymmetric inf and g and satisfies the 
Jacobi identity: It is thus a Lie bracket. With respect to it the 
coordinate functions Si of a point in G * generate a realiza
tion of the Lie algebra G 

(7.12) 

The action ofthe field Xx, on a functionfeC 00 (G *) is given by 

X"if=!Sj,fj. (7.13) 

The realization (7.10) and (7.l2) ofthe Lie algebra G are 
defined in every point of G *. They are not, however, canoni
cal realizations on G *, i.e., they are not associated with (and 
related to) a nondegenerate symplectic form. 
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i Ai f C;jdk(U) = 0, j = l, ... ,m 
i= \ k = I 

and from (7.16) it results that on WC m 

dim kerw = O. 

The 2-form w is thus nondegenerate on ~m • 

(7.20) 

(7.21) 

The property of w to be closed, i.e., to satisfy dw = 0 
results from the formula of exterior differentiation 

dW(XO,xl,x2) 

= XoW(X\,x2) - X\W(XO,x2) + X2w(XOX\) 

- w([XO,x\],x2) - W([X.,x2],xO) + W([XO,x2],x.) 
(7.22) 
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and from the expression (7.9) of XXi' the definition (7.17) of 
liJu , and the identity of Jacobi. 

liJ is thus a symplectic form on Wl m • This allows to asso
ciate with any functionfEC OO(Wlm ) a vector field XI on Wl m 

defined by 

Xiu).J liJu = - df(u). (7.23) 

The Poisson bracket of any two functions/, gEC OO(Wlm ) is 
now defined by 

{/,gj(u) = -liJu(XI(u),Xg(u». (7.24) 

Let us show that the Poisson bracket admits the expression 
(7.11) in terms of the coordinates 5. We have, using (7.9), 

af 
liJ(Xf'Xx) = -Xx,f= - LCjjk5k -. (7.25) 

j,k a5j 

The expression 

af 
Xf = ~-X t a5j x, 

(7.26) 

is a solution for Xf which is, in general, not unique. On Wlm , 

however, due to nondegeneracy of liJ the solution is unique. 
This expression of Xf leads to the expression (7.11) for the 
Poisson bracket on Wl m • 

Let us observe that 

XI. =Xy. (7.27) 

Indeed 

liJu (Xf,' Xx (u» 

= - d.!;,(Xx)(u) = - (Xx .!;,)(u) = liJ(Xy, Xx). (7.28) 

Using this remark, we get 

{fx,.!;, ](u) = - liJu(Xx, Xy) = u([x,y]) =fix,y](u), (7.29) 

i.e., the correspondence x-Ix gives a canonical realization 
of the Lie algebra G. Taking in (7.29) x = x;,y = yp and 
using (7.4), (7.7), we obtain (7.12). 

Let us look for an explicit expression of the KKS sym
plectic form liJ on Wlm 

liJu =! i liJst(u) d5s Ads" liJst = - liJts (7.30) 
s,t= 1 

in terms of the coordinate functions 5; (i = 1, ... ,n). From the 
definition of the KKS form we obtain the following equa
tions for the coefficients liJst : 

liJu (X",,xx) 

i liJst(u)c;SpCjtq5 p(u)5q(u) 
s,t,p.q= I 

= - i C;jk5k(u) (i,j = 1, ... ,n). (7.31) 
k=1 

Ifwe know an expression for the coefficients liJst in terms of 
the coordinates 5;. then the set of equations (7.31) gives the 
equations of the manifold ~m on which the symplectic form 
liJ is defined. 

As an example let us write down Eqs. (7.31) when the 
algebra is so(3). The vector space so(3)* is three-dimension
al, the so(3) orbits are spheres, and the expression of liJ on a 
sphere is 

liJ = - Estr5r d5s Ads,· (7.32) 
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Hence liJst = - Estr5r and, taking into account that for so(3) 
the structure constants have the form C;jk = E;jk' Eqs. (7.31) 
become 

(7.33) 

whence 5 p 5q = 1, which is the equation of a sphere. 
In the next section, the correspondence between the 

equations of an orbit, and the symplectic form on that orbit 
will be deduced in the particular case of the six-dimensional 
orbit of the SO(4,2) group. 

8. A SIX-DIMENSIONAL SYMPLECTIC SUBMANIFOLD 
OF so(4,2)* 

Let us specify the Lie algebra G of the previous section, 
taking G = so(4,2), and let us introduce for the n = 15 co
ordinate functions 5; in so(4,2)* the following notations: 

5; =L;, 53+i =Ai (i= 1,2,3) 
(8.1) 

56+)=Bj , 51O+j=Cj (j=1,2,3,4), 515=M 

assuming that these coordinate functions, which generate a 
realization (7.11)-(7.12) of the so(4,2) algebra, verify the Lie 
multiplication table (Table I) of this algebra. 

Let us consider in soC 4,2)* the subset Wl6 defined by the 
following nine relations: the two vector relations (2.18), 
(2.19) and the three scalar relations (2.20), (2.23), and (2.32); 
this subset is a six-dimensional submanifold of soC 4.2)* as it 
results from the proof of Proposition 8. 

The set of polynomials which define ~6 satisfy condi
tion (7.15). Indeed, according to Proposition 1. the adjoint 
action of the soC 4,2) algebra transforms any of the polynomi
als on the lhs of the relations (2.6), (2.14)-(2.19) into a poly
nomial of the same set; similarly. the set of polynomials 
(2.20)-(2.31) is closed with respect to the adjoint action. But, 
according to Proposition 3, any of these polynomials vanish
es on ~6; hence, by using Eqs. (7.13), it results that condition 
(7.15) is satisfied. 

Let us now prove that on ~6 condition (7.16) is 
satisfied. 

Proposition 11: If the coordinate functions of soC 4,2)* 
satisfy the system (2.18)-(2.20), (2.23), (2.32), then [with 
notations (8.1)J 

rank!! k~1 Cjjk5k II >6. (8.2) 

Proof Let us suppose that the inequality (8.2) is false, 
i.e., that a1l6X6 minors of the matrixlll:!5= 1 C;jk5k II 
(i,j = 1, .... 15) vanish and that the coordinate functions 5k 
(8.1) are a non vanishing solution of the equations (2.18)
(2.20), (2.23), (2.32). We shall consider the following 6 X 6 
minors of the matrix 1Il:!5= 1 Cijk5k II (i,j = 1, ... ,15): 

M, = II k~1 C;jk5k II (i,j = 4,5,6,7,8,9) (8.3) 

M2 = I ! k~1 C;jk5k II (i,j = 4,5,6,11,12,13) (8.4) 

MIa = II k~1 C;jk5k II (i,j = 1,2,3,a,5,6) (8.5) 
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M za = II k~l C;jkSk II (i,j = 1,2,3,4,a,6), a = 7,8,9 

(8.6) 

M3a = II k~l C;jdk II (i,j = 1,2,3,4,5,a) (8.7) 

we have 

detM1 =B~(B~ +L~ +L~ +LDz, (8.8) 

detMz = C~(C~ + L ~ + L ~ + L D2. (8.9) 

Hence detM 1 = 0 if and only if B 4 = 0 and detM 2 = 0 if and 
only if C4 = O. 

The equations B4 = C4 = 0 and (2.18)-(2.20), (2.23), 
(2.32) lead to the following relations: 

A=O, L2=B2=C z =M2, BoC=O. (8.10) 

If A = 0, then 

detM;a = L ~(LoB)a -6 (i = 1,2,3, a = 7,8,9), (8.11) 

and from (8.10) and detM;a = 0 (i = 1,2,3, a = 7,8,9), we 
obtain that either L 2 = 0, i.e., L 2 = B2 = C 2 = M2 = 0, or 
LX B = O. The last alternative together with relations (2.14) 
and (8.10) leads again to the vanishing of all the coordinate 
functions. This contradicts the assumption and proves the 
proposition. 0 

I 

Conditions (7.15) and (7.16) are thus satisfied; a sym
plectic form defined by the KKS condition exists therefore 
on9R6 • 

Let us now write down an explicit expression for the 
symplectic form on 9R6 • It has been proved in Sec. 3 that on 
any six-dimensional symplectic manifold a realization of the 
so(4,2) algera can be constructed, the generators of which 
satisfy the relations (2.18)-(2.20), (2.23), (2.32). The sym
plectic form on this manifold can be expressed in terms of the 
generators of this algebra by the relation (5.14). The coordi
nate functions (8.1) generate a canonical realization of the 
so(4,2) algebra on 9R6 and satisfy the polynomial relations 
quoted above which define 9R6 ; thus on 9R6 a symplectic 
form (5.14) can be defined. 

The problem which remains to be solved is whether on 
9R6 the 2-form (5.14) coincides with the KKS 2-form, i.e., 
whether on 9R6 we have 

where the vector fields Xx, (7.9) have to be expressed in terms 
of the coordinates (8.1). In order to prove relation (8.12), let 
us first specify the vector fields (7.9) which correspond to the 
so(4,2) algebra: 

(8.13) 

Proposition 12: Relations (8.12) are satisfied if and only if uE9R6 • 

Proof Let us calculate the difference between 

and iJu (Xx, ,xx) [(5.14), (8.13)]: 

2044 

(w - W)(XL,,xL) = (l/M)E;jk(CXB - ML)k, 

(w - W)(XL,,xA) = - (l/M)E;jk(M A + C4B - B4C)k' 

C 
(w - W)(XL,xB) = - (l/M)o;JLoC - --....l...-2 (CXB - ML);, 

, J M 

(w - W)(XL,xB) = - (l/M)(AXC - C4L); - (C4IM 2)(CXB - ML);, 
, I 

(w - W)(XLi,xC) = (l/M)o;jLoB + (B/M2)(CXB - ML);. 

(w - W)(XL,,xc) = - (l/M)(AXB - B4L); + (B4IM2)(CXB - ML)i' 

(w - W)(XLi,xM) = 0, 
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(w -@)(XA,,xA) = Eijk(l/M)(CXB - MLh, 

(w -@)(XA,,xB) = - Eijk(l/M)(AXC - C4L)k + (C/M2)(M A + C4B - B4C)o 

(w -@)(XA,xB) = (C4/M2)(M A + C4B - B4C)o , . 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

(w - @)(XA,,xc) = Eijk(l/M)(AXB - B4L)k - (B/M2)(M A + C4B - B4C)o 

(w -@)(XA,xc) = - (B~M2)(M A + C4B - B4CL , . 
(w - @)(XB,,xB) = Eijk(l/M)(CXB - ML)k' (8.28) 

(w -@)(XB,xB ) = - (l/M)(M A + C4B - B4C)o (8.29) , . 
(w-@)(XB,,xc)=(l/M)(LiLj-AiAj+BiBj +CiC)-Oij(l/M)LkLk _(CJM2)(BXL+B4A-MC)j' (8.30) 

(w -@)(XBi,xC) = (I/M)(AxL + B4B + C4C)i - (CJM2)(AB + C4M), (8.31) 

(w -@)(XB,,xM) = - (l/M)(BXL + B4A - MC)i + (CJM2)(BaBa - M2), (8.32) 

{w -@)(XB ,xc) = (l/M)(AXL + B4B + C4C)i + {C4/M2)(BXL + B4A - MCL (8.33) · , 
(w - @)(XB ,xc) = (l/M)(B ~ + C~ - A2) - (C4/M

2)(A'B + C4M), (8.34) · . 
(w -@)(XB ,xM) = (l/M)(A·B + C4M) + (C4/M2)(BaBa - M2), (8.35) 

• 
(w -@)(Xc ,xd=(B/M2)(BXL+B4A-MC)i - (BJM2)(BXL +B4A -MC)j + (l/M)Eijk(CXB -ML)k' 

, J (8.36) 

(w - @)(Xc,,xc) = (B4/M2)(BXL + B4A - MC)i + (BJM 2)(A·B + C4M) - (l/M)(M A + C4B - B4C)i> (8.37) 

(w - @)(XC,,xM) = - (l/M)(CXL + C4A + MB)i - (BJM2)(BaBa - M2), (8.38) 

(w -@)(XC.,xM) = (l/M)(A'C - B4M) - (B~M2)(BaBa - M2). (8.39) 

Equations (2.6), (2.14), (2.32), which result (Proposition 3) from the equations defining the manifold Wl6 , lead to the 
equality of the two symplectic forms iJ and w on Wl6 • 

To prove the converse assertion, we have to show that from iJ = w it follows that the relations defining the submanifold 
Wl6 are verified; it is even sufficient to show that one relation among each set of relations (2.6), (2.14)-(2.19) and (2.20)-(2.31) 
is verified and that (2.32) is true. Relations (2.18) and (2.19) result, if iJ = w, directly from relations (8.15) and (8.16), 
respectively. Using the equalities (2.19), (8.31), (8.33), (8.37) and discarding the trivial solution, we obtain (2.22). Finally, 
relation (2.32) is a consequence of (2. 18)-(2.20), (2.22), and (8.35). 0 
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Symmetries of differential equations. II 
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The importance of the non-pointlike transformations of symmetry is vindicated in relation with 
the first integrals. A new first integral of a broad class of systems of second order differential 
equations is o?tained out of a symmetry of them without having to impose the restriction that the 
syste~ be ~qu~valent to a Lagrangian system. The existence of a reciprocal relationship among the 
10callOfiOlteslmal symmetries (1.i.s.) of a Newtonian system of differential equations and the 
pseudosymmetries of the associated dynamical system is proved. Several applications are 
developed, and some open problems concerning the dynamical systems of constant divergence are 
proposed. 

I. INTRODUCTION 

In a recent paper, I hereafter referred to as I, we studied 
(from a local point of view) the important role played by the 
local families of monoparametric transformations of sym
metry (U.s.) of systems of differential equations in classical 
mechanics. In this paper we stress further the importance of 
this kind of symmetry transformations in connection with 
the important practical task of finding first integrals of the 
differential equations (Sec. II). We connect the 1.i.s. with 
either the pseudosymmetries of the dynamical system associ
ated with the differential equations (Sec. III) or, and more 
importantly, with the symmetries of it (Sec. IV). A recipro
cal relationship is established among the U.s. of a Newtonian 
set of differential equations and the pseudosymmetries ofthe 
associated dynamical system (Sees. III and IV). Finally, and 
as the more important application, we obtain, when the dyn
amical system is of constant divergence, a first integral out of 
an U.s. of the original set of differential equations. An U.s. 
out of a first integral of Lagrangian set of differential equa
tions is obtained as well (Sec. IV). 

II. THE NECESSITY OF THE LOCAL NON-POINTLIKE 
SYMMETRIES IN RELATION WITH THE LOCAL FIRST 
INTEGRALS 

Throughout this paper, and exclusively by reasons of 
symplicity in the notation, we shall deal with Newtonian 
systems of differential equations, i.e., with sets of differential 
equations of the kind 

(1) 

We discussed in I that, in general, Eqs. (1) do not admit 
infinitesimal pointlike symmetries of the kind 

if; = q; + Eg;(t,ql,···,qn)' 
(2) 

t = t + €gO(t,ql,.··,qn)' 

On the other hand, it was shown that Eqs. (1) do always 
admit local infinitesimal symmetries (U.s.) of the more gen

eral kind: 

if; = q; + €h;(t,ql,···,qn; ql,.··,qn)' 

1= t + €ho(t,ql,···,qn,ql , ... ,qn)' 
(3) 

transforming any solution of Eqs. (1) into another solution of 
them. 

It is well known that the local first integrals of (1), de
fined as the solutions of the linear partial differential 
equation, 

(4) 

do always exist, the number of the independent ones being 
just equal to 2n. 

Therefore, if we desire to establish connections among 
the first integrals and the symmetries of Eqs. (1) [i.e., discov
er rules permitting us to obtain a first integral of (1) out of a 
symmetry of them, or obtain a symmetry of (1) out of a first 
integral of Eqs. (1)], it is clear that we cannot restrict the set 
of infinitesimal symmetries to those of the kind (2), since if 
this were the case for most of the Eqs. (1), the connection 
would be impossible, as the set of symmetries of the kind (2) 
is, for most of the equations, the void set. 

Accordingly the possible discovery of new connections 
among the symmetries and first integrals ofEqs. (1) oblige us 
to consider the symmetries of the more general kind (3), 
studied in I for other reasons, that always exist for any sys
tem of the kind (1). Therefore, the theoretical importance of 
the local non-pointlike symmetries (3) is, once more, vindi
cated here. 

From the practical point of view we shall see, in Sec. IV, 
that, under certain conditions restricting the form ofEqs. (1) 
it is possible to get a direct relationship between the 1.i.s. and 
the first integrals, thus permitting us to obtain a first integral 
of Eqs. (1) from an l.i.s. of them. 

III. THE I.i.s. OF A SET OF DIFFERENTIAL EQUATIONS 
AND THE PSEUDOSYMMETRIES OF THE ASSOCIATED 
DYNAMICAL SYSTEM 

I t is well known that the system (1) can be written in the 
equivalent form 

(5) 
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or in the equivalent form (the parameter s does not appear 
now in the right-hand side of the equations) 

aq. 
-' -A' ds - qo 

dq; , I" ( •. ) - =/l-Ji t,q., ... ,q",q., ... ,q" , 
ds 

dt =,,1, 
ds ' 

A being any function of t,q., ... ,q", q., ... ,q". 

(6) 

In relation with Eqs. (6) it is clear that a variation of the 
function A. only amounts to a different parametrization ofthe 
variables (t,q;,il;) in terms of s, but the functionals relations 
expressing q; ,qi in terms of t [and given by Eqs. (5)] remain 
unaltered. Therefore, it is natural to expect that the impor
tant concept corresponding to the symmetries of Eqs. (1), 
when they are written in the form (6) or in the form 

aq; . 
--;;; =qi' 

ai;; . . 
- = J:(t,q., ... ,q,,; q), ... ,q,,), 
ds 

dt = 1 
ds ' 

is the concept of pseudosymmetry of Eqs. (7). 

(7) 

We recall here that, given an autonomous set X offirst 
order differential equations, 

dx 
-' =Xi(X., ... ,x,), i= 1, ... ,r, 
ds 

(8) 

we call S a pseudosymmetry set of first order differential 
equations, 

dx 
-' = Si(X., ... ,x,), i = I, ... ,r, 
ds 

(9) 

of(8), when the local pseudogroup of transformations asso
ciated with S 2 transforms any trajectory (not necessarily the 
solutions) of(8) into another trajectory of(8). Necessary and 
sufficient conditions for this are 

[S,X] = p(xl, ... ,x,)X 

[, ] being the Lie-Jacobi bracket of vector fields. 2 

Now, assume that 

if; = qi + Eh;(t,q), ... ,q,,; q), ... ,q,,), 

i = t + Eho(t,q), ... ,q,,; ql'''.,q,,) 

(10) 

(11) 

is a symmetry of Eqs. (I). Then, and following the tech
niques of I, we can induce the following transformation of 
the q, variables: 

. (dh dh )def . . 
if; = q, + f d; - q, dtO = qj + f(h; - q;ho), (12) 

where it is implicitly assumed that in Eqs. (12) we have sub
stituted the terms ii; appearing there by their values 

obtained from Eqs. (I). 
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Therefore, Eqs. (11) and (12) define an infinitesimal 
transformations S in the (t,qjtq;)-space, which is usually re
presented by the vector field 

a nan. a 
S =ho'-+ L h;.-. + L (h; -qihO)-. . (13) 

at ;~I aqi ;~I aq; 

Let us now show that this vector field S is, indeed, a pseudo
symmetry of the vector field X, 

def a nan a 
X= 1·-+ L q;.-+ I 1;'-. , (14) 

at ;~. aqi ;~I aqi 

associated with EQs. (7). 
In fact, substituting (13) and (14) into (10), we get 

- aho _ I qi aho - IJ: a~o =p, 
at ; aq; ; aq; 

. . (ah ah ah) 
(hi -qihO)- -' + Iqj'-' + Ifj-.' =pq;. 

at j aqj j aqj 
(I 5) 

aJ; a/; . . aJ: 
ho-' + Ihj.-' + I (hj -i;jho)-.' 

at j aqj j aqj 

a·· a·· - -a (h; - q;ho) - I q} -;-:-- (h; - q;ho) 
t j a~ 

a . .' 
- Ifj -;-:- (h; - qihO) = pI" 

j uqj 

or, equivalently, 

- ho =p, - q/zo =pqo (16) 

JJ; aJ; . . aJ; 
ho -' + I hj -' + I (hj - i;jho) -.' 

at j aqj j aqj 

- .!!.- (hi - q,ho) = ( - ho)!'. 
dt 

(7) 

But Eqs. (17) are just the equations that one obtains if (11) is 
considered as a symmetry of Eqs. (1). Indeed, the transfor
mations induced by (11) and (12) on the ii, are given by 

q, = iii + E[~ (hi - q,ho) - ii;.ho] 

[
d. . . ] 

= iji + E dt (hi - i/iho) - J;.ho , (18) 

and, therefore, the conditions to be satisfied in order that 
(11), (12), and (18) be a symmetry of equations (1) are I 

that is, 

d· . . 
dt (hi - qi·hO) - J;.ho 

aJ: aJ; aJ;. . 
= -' ho + I -' hj + I -.-' (hj - qj.ho), 

at } aqj j qj 

which are simply Eqs. (17). 
The importance of this result is, for the moment, purely 

geometrical, since the result permits passage from the non-
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pointlike symmetries (11) of (1) to the pointlike pseudosym
metries S of (14), given by (13). In the next sections we shall 
get a slight modification of this result and make full use of it. 

IV. THE l.i.s. OF A SET OF DIFFERENTIAL EQUATIONS 
AND THE SYMMETRIES OF THE ASSOCIATED 
DYNAMICAL SYSTEM. APPLICATIONS 

We have seen in Sec. III that if (11) is to be a symmetry 
of Eqs. (1), Eqs. (17) must be satisfied. Moreover, the pseu
dosymmetry factor p of the corresponding pseudosymmetry 
(13) of the dynamical system (14) is given by Eq. (16): 

dho p= -
dt 

(19) 

Therefore, if we begin with an l.i.s. of (1) such that 
ho(t,qj}J is a constant function then, according to (19), the 
pseudosymmetry factor p would be equal to zero. But in this 
case (10) can be written 

[S,X] = 0, (20) 

that is, the associated S is, in this case, a symmetry vector 
field of X, transforming not only the trajectories of(14) into 
themselves but also the solutions of (7) into themselves. 2 

Now, we are now going to show that out of any symme
try (11) of Eqs. (1) we can get the following one: 

(21) 

in which t is not transformed at all. 

Accordingly the associated vector field S, corresponding to 
(21) in the (t,qj};) space and given [see Eq. (13)] by 

- a a 
S=o at + + (hi -qi,ho) aqi 

. . a 
+ 2: (hi - J:ho - qihO) -;-:- , (22) 

, uqi 

is a symmetry vector of the dynamical system (7). 
We recall again here that in (22) Iii and lio are to be 

considered as functions of (t,qA;)obtained by substituting, 
where necessary, for qi,J:(t,qi,q,). 

We show now that (21) is indeed a symmetry of Eqs. (1) 
where (11) is a symmetry of them. In fact, from (21) and by 
the standard prolongation procedure, we get 

q, = q, + €(lii - iiihO - qilio) 

= qi + €(li i - J,ho - qilio), (23) 

.. (d. . d ) if, = iii + € dt (hi - qihO) - dt (fi,ho) , 

and, therefore, the conditions in order that (21) and (23) be a 
symmetry of ( 1) are 

d· . d 
dt (hi - qihO) - dt (J,'ho) 

(
aJ,) aJ, . = - ,0 + I-(hj - qj,ho) 
at j aqj 

aJ, . . 
+ 2: -a.' (hj - 1; ho - qj,ho) 

j qj 

or, equivalently, 
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d· . . dJ: 
dt (hi - qihO) - J:ho - ho dt 

aJ: af·· I-' hj + I-.' (hj -qjho) 
j aqj j aqj 

( 
aJ:. aJ:) 

- ho 2: -a qj + 2: -a.' 1; , 
J qj J qj 

which after simplification become 

d· . . 
dt (hi - qihO) - fh o 

af aJ: aJ... 
= ho -' + 2: -' hj + 2: -.' (h j - qjho), (24) 

at j aqj j Bqf 

which Eqs. (24) are exactly equal to Eqs. (17). 

Some applications 

The importance of the above results is not purely aca
demic. In fact, it has been shown elsewhere3 that if a certain 
dynamical system X possesses a constant divergence [i.e., for 
the case of(8) when~; ax/axi is a constant function] and if 
we are able to find a symmetry vector S of X, then the diver
gence of S is a first integral of X. 

Assume, therefore, that the vector field X (14) associat
ed with Eqs. (I) has a constant divergence, that is, 

n af 
divX = 2: -.' =K 

i~ 1 aqi 
(25) 

[note that a quite broad class of nonlinear differential sys
tems (1) does satisfy this condition]. In that case, if (11) is an 
l.i.s. of (1), then S is a symmetry of X and, accordingly, the 
function 

(26) 

would be a first integral of X associated with the U.s. (11). 
We obtain, therefore, without any need of knowing that Eqs. 
(1) are equivalent to a Lagrangian system,4 a direct connec
tion among the !.i.s. and the first integrals of (14) [or what is 
the same, of the first integrals of Eqs. (1)]. 

On the other hand, if we are able tofind a Lagrangian 
function L such that Eqs. (1) are equivalent to the Euler
Lagrange associated with such a function L, then it is well 
known that one can introduce the new local coordinates 
(t,ql, .. .,q,,'PI , ... , Pn)' the Pi being defined by 

aL 
Pi= -a' , 

qi 
(27) 

which permit us to obtain locally qi in terms ofpl, .. ·,Pn' 
whenL is nondegenerate (i.e., det(a2L /aqiaqj)i=O on a cer
tain open domain). In these local coordinates the dynamical 
system X' whose solutions provide the solutions ofEqs. (1), 
adopts the form 

n aH a n aH a a 
X'= 2: --- r --+1·-, 

i~ 1 Bpi aqi i~ I aqi api at 
(28) 

H being the standard Hamiltonian function, defined by 
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H(t,q"pJ 

= i p,.q,(t,ql, .. ·,qn;PI, .. ·,Pn) - L (t,q" q,(t,q,p». 
i= 1 

(29) 

In these coordinates it is clear that the divergence of X' 
is equal to zero since 

a (aH) a ( aH) a ~ aq, api + ~ api - aqi + at (1) = O. (30) 

On the other hand, if S is the symmetry of (1) corresponding 
to a given symmetry (11) of Eqs. (1) and since the symmetry 
condition 

eX,S] = 6, (31) 

is maintained under any change of the coordinates, calling S' 
the vector field S when it is expressed in the coordinates 
(t,q, p) and writing 

- nan a a 
s= IS, -+ I T, -+So at' (32) 

'~I aq, i~1 api 

the divergence o/S' will be afirst integral o/X'. That is, 

is a first integral of X'. Now since the first integrals ofa 
dynamical system X are the solutions of 

XCI) =0, 

(33) 

(34) 

which equation is independent of any coordinate change, 
then writing (33) in terms of the old variables (t,q,jJ), we 
would obtain a first integral of the original dynamical system 
X and of the original set of Eqs. (1) as well. Note that the 
symmetry used in obtaining the first integral (33), written in 
the q,q coordinates, was a symmetry of the differential equa
tions and, accordingly, has nothing to do (in general) with 
the symmetries of the action 

L' L dt. (35) 

For this reason, the connection established here has little to 
do with the standard Noether theorem5 in which the connec
tion among symmetries and first integrals is based on the 
symmetries of the action and not of the differential equations 
associated with L. 

The explicit obtention of the functions Siand Ti of(33) 
from S as given in (22) offers no difficulty. Recalling that the 
general expression giving the new components of a vector 
field [i.e., the vector field X of equations (8)] in the new 
coordinates x; is 

X,~ = (36) 

we get 

Si = hi - qi - ho, 

n . . ap 
T, = I (hj - J;ho - qjho) -a.' , 

j~1 ~ 
(37) 

So=O, 
and therefore the first integral (33) can be written as 
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(38) 

We recall again that in (38) the previous substitution of qi by 
its values in function of (t,q, p) has to be made before the 
calculation of the partial derivatives a laqi and a lapi in the 
terms hi - qihO and (hj - J;ho - qjho)a2L laqiaqj" This is 
indicated by the subindexes (q,p) appearing in (38). Ifwe 
desire to omit these subindexes, we should write (38) in the 
more involved form 

nan a ah I -(hi -qihO) + I -(hi -qihO)-
i~ I aqi i.k~ I ah aqi 

n a (. .' a
2
L aqk ) + ~- (h-I"h -q -h)---,L.::\. j Jj 0 j 0::\.::\. a 

I.j.k uqk uqiuqj 'Pi 
n a I - (hi - qiho) 

i~1 aqi 

n a aq/ a2La 
+ I-. (hi-qihO)--.-

i,k,/aqp ah qkaqi 

x ~- (h-I"·h -qh)-- .-n a ( . .' a2L) aqk 
,~ a' 1 Jj 0 ] 0 a' a' a' 
1.1.k qk qi qj 'Pi 

(39) 

where the derivatives aq/lah and aqklapi are given by 

(40) 

these last expressions have been obtained from the equalities 

(41) 

which can be written in the matrix form 

I=J¥'.Q, (42) 

I being the identity matrix and JY and Q the matrices de
fined by: 

J¥'i j = (a:i;qj ) , (43) 

Finally, and although less interesting from the practical 
point of view, it is also of theoretical interest to note the 
reciprocal relationship that can be established among the 
first integrals ofa Lagrangian system of Eqs. (1) when L is 
known and the symmetries of it. Concretely: With any given 
first integral of Eqs. (1), one can associate a symmetry of 
them of type (11). Before proceeding to show this, we first 
show that for any pseudosymmetry S of Eqs. (7), 

defa nan a 
s=s·_+ I s-+ I T- (44) 

at i~I' aq, i~I' aqi' 

the monoparametric family of !.i.s. given by 
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t = t + ESO(t,ql,···,qn; ql, .. An) 

is a symmetry of Eqs. (1). 
Indeed, writing in explicit form the conditions ex

pressed by 

[S,X] =pX, 

(45) 

for the vector field X given by (7) and for the S given by (44), 
we get the equations 

dSo - dt =p, (46) 

dSi • 

T, - dt =P·qi (47) 

~ aJ; aSi 

L~ -a' + T, - -d =pJ:. 
j qj t 

(48) 

From (46) and (47) we obtain 

Ti = dSi + . dSo 
dt qi dt (49) 

which is exactly condition (12), indicating that the functions 
T, of (44) are obtained by the standard procedure (see I) of 
extending the transformations (45) to the (t,q,q)-space. 

On the other hand, conditions (48) are exactly condi
tions (17), as we discussed in Sec. III, showing that (45) is a 
symmetry of Eqs. (1), as we desired to prove. 

We proceed now to prove that with any first integral of 
a Lagrangian system of differential equations (1) we can as
sociate an l.i.s. of type (11). 

Indeed, assume that we write the associated dynamical 
system X given by Eqs. (7) in the form (28). Letj(t,q,q) be the 
first integral in the original (t,q,q) variables and F(t,g, p) its 
functional form in the (t,g, p) variables. Then it is quite easy 
to check out that the vector field: 

SF =o~+ i aF ~- i aF ~ (50) 
at i~ I api aqi i~ 1 agi api 

is a symmetry of (28). Therefore, as we have just discussed 
the 1.i.s. induced by SF on the (t,g) space will be an 1.i.s. of the 
original set of Lagrangian equations (1). Note that SF is still 
a symmetry of (28) when F is no longer a first integral of (28) 
but satisfies the weaker condition 

aF IH,FI+ - =K, 
at 

(51) 

I , I being the standard Poisson bracket and K a constant. 
Note, as well, that we could think of obtaining an additional 
first integral of equations (1), out of the l.i.s. 

_ aF 
qj =qi +E-, t=I+E'O 

ap, 
(52) 

associated with SF' when Fsatisfies Eq. (51). But for this 
particular kind of l.i.s. we have 

div(SF) = 0, 

and, therefore, one only obtains, from a function F satisfying 
Eq. (51), a banal first integral, i.e., a constant function. For 
reasons of completeness we write now the form adopted by 
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the l.i.s. (52) in terms of the original formj(t,g,q) ofthe first 
integral given. This form is given by: 

_ '" aj aqj 
qj =gj +E L-. -

j agj api 

t = t + E'O 

or, equivalently, using Eqs. (40), 

- ~ aj ='-1 gj=qi+ E L~C7lji 
j~ I ugj 

-
t = t + E·O. 

(53) 

Note that when L is a polynomial in the q of degree 2 andjis 
a polynomial of degree 1 in the q, then (53) is a pointlike or 
geometrical transformation of type (2). Apart from this case 
the symmetry (53) associated with a first integral will be, in 
general, an U.s. of the general kind (11), that is, a dynamical 
symmetry instead of a geometrical symmetry. 

V. CONCLUSIONS, FINAL REMARKS, AND OPEN 
QUESTIONS 

We have obtained, for a quite broad class of systems of 
Newton-like differential equations (1), a first integral out of 
an !.i.s. of these systems. It is important to stress here that the 
method followed is not based on existence theorems, but it is 
of computational value. It may happen that in particular cir
cumstances the first integral obtained be a constant (see the 
example of the symmetry SF at the end of Sec. IV). It is of 
interest to remark here that our procedure is general enough 
to permit the extension of it to more general kinds of systems 
of differential equations than those of kind (1), but such that 
the divergence of the associated dynamical system is a con
stant function. The crucial step was the construction of a 
symmetry S of the associated dynamical system X out of a 
symmetry vector of the differential equations (1). 

Additional first integrals of Eqs. (1), for instance those 
of the kind 

S(divS), S(S (divS», ... (54) 

(see Ref. 3), can be also obtained by our procedure. We have 
not written in the text the explicit coordinate expression of 
them since this expression is quite complicated. 

It should be stressed as well that, although it has been 
asserted (see the paper by Havas, 1973, in Ref. 4) that any 
system of equations like (1) is always equivalent to a Lagran
gian system, this conclusion is of theoretical value. There
fore, even if this is an important conclusion, its practical 
value cannot be fully exploited if one is not able to develop a 
constructive procedure in order to find a concrete Lagrangian 
function L from which Eqs. (1) could be obtained. Only 
when this L (at least one of the possible L 's that exist accord
ing to Havas4

) has been obtained, is it possible to compute the 
first integrals by the procedures delineated in this paper. 

On the other hand the results obtained in Secs. III and 
IV are important since what they say amounts to the fact 
that in relation to the symmetries no new advantages can be 
obtained in the passage from (1) to (7), i.e., by increasing the 
number ofthe independent variables of the problem. What is 
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gained, in any case, is a more geometrical picture of the sym
metries since the dynamical symmetries (11) of (1) are con
verted into geometrical symmetries of the trajectories of (7). 

As open problems connected with the paper we quote 
the following: 

(1) To find conditions less restrictive than the condition 
(25). 

(2) If (25) is not satisfied in the coordiantes (t,q,q), it is 
necessary to find computational rules in order to pass from 
the coordinates (t,q,ij) to new local coordinates (T,Q,P) 
(such that in the new local coordinates the dynamical system 
X' obtained is now of constant divergence). 

Note that when (I) is equivalent to a known Lagrangian 
system L, the computational rules, in order to achieve this 
goal, are given by the equations 

T=t, (55) 

Note, as well, that from a theoretical point of view the ca
nonical form theorem6 assures the existence oflocal coordi
nated (T,Q,P) in which the vector field X associated with (7) 
adopts the form 

- a a a 
X'= 220'-+ 220.-+1. -, (56) 

i aQi i api aT 

which has, obviously, zero divergence. The difficulty is that 
no computational rule [other than solving (7) completely] is 
known (in general) in order to achieve the reduction of (7) 
either to the above canonical form or to a form in which the 
vector field has constant divergence. Accordingly, the prac
tical problem of finding computationally the appropriate co
ordinates in which a given vector field has constant diver
gence arises. /fthis problem were solved, then, and following 
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the procedure indicated in this paper, one could construct 
for every set of differential equations (1), and out of any l.i.s. 
of them, a first integral of the original set of differential equa
tions. The restriction (25) would be eliminated. 

(3) A third, and more difficult problem, is the classifica
tion of the l.i.s. such that the associated first integral con
structed above is a constant function. We have, so far, no 
idea how this problem could be attacked. 

Additional applications of the results obtained here in 
order to solve the "inverse" problem concerning the symme
tries of the set of differential equations, i.e., the problem of 
finding Eqs. (1), if any, admitting a certain given set ofl.i.s. 
more or less physically motivated, are in progress. 
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A stationary variational principle for calculation of the complex poles of Green functions is given. 

1. INTRODUCTION 

Consider the problem 

( - V2 
- k 2)U = ° in fl, ul r = 0, (1) 

where fl is an exterior domain, ris its closed smooth bound
ary, D = R3'\fl is bounded. Problem (1) has nontrivial solu
tion iff(= if and only it) k is a complex pole kq of the Green 
function of the exterior Dirichlet problem. The nontrivial 
solution has the following asymptotic near infinity 

u = ,-1 exp(ikr) ! J;(n,k)r -j, 
j ~ 0 

n = x/lxl, r = lxl.fo¢O. 

(2) 

If u and v are of the form (2) with k = k I and k = k2' respec
tively, Re(kl + k 2)¥-0, 1T < argkj < 21T,j = 1,2, then the fol
lowing limit exists 

(u,v) = <~~~o f exp( - Er Inr)u(x)v(x) dx, f = L· (3) 

This will be proved in Sec. 2. From (1) and (3) it follows that 

stK(u) = st! (Vu,Vu)/(u,u») = k Z
, (4) 

where st means the stationary value and the admissible func
tions vanish on r and are of the form (2) near infinity. The 
stationary principle (4) looks like Rayleigh-Ritz quotient 
but is actually different in the following respects: (i) the func
tional (4) is complex-valued, the variational principle is a 
stationary one and not an extremal as for the usual Ray
leigh-Ritz functionals; (ii) the functions which give station
ary values to K are growing exponentially at infinity. 

The variational principle (4) can be used for calcula
tions as follows: 

(1) Take a test function of the form 
N 

UN =,-1 exp(ikr) L L r-jl}m(n)cjm(k)-g(x), (5) 
j~O',mhj 

where l}m(n) are the spherical harmonics, l}m(n) 
= Pj,m (cos8 )·exp(im(,6 ), n = (8,(,6 ); Pj,m (cos8) are the asso

ciated Legendre polynomials; ejm (k ) do not depend on r,n; N 
is a fixed number; g(x»O is a fixed smooth function which is 
equal to 1 outside of a ball which contains D and which is 
equal to zero on r. 

(2) Put (5) in (4) and use the necessary conditions for K 
to be stationary: aK lacjm = 0, 

Because the numerator and denominator in (4) are qua
dratic forms in cjm we can write the above condition as 

f. [asq(k)-k 2b,q] cq(k) =0, O.;;;;s.;;;;Q, (6) 
q=O 

")Supported by AFOSR F4962079C0128. 

where for brevity we denote by one index q the double index 
jm and by Q the maximal value of q which is defined by N. 
We took into account also that the Lagrange multiplier is 
equal to k 2 according to (4). The elements asq (k ) and b,q (k ) 
can be explicitly expressed in the form 

a,q(k) = (V I b (x,k )F,(r,n») , V I b (x,k )Fq(r,n) J), (7) 

b,q(k) = (b(x,k)F,(r,n), b(x,k)Fq(r,n», (8) 

where 

b (x,k) = g(x)r- I exp(ikr), Fq(r,n) = r~ jl}m (n). (9) 

The elements (7), (8) are entire functions of k of expo
nential type, i.e., the inequalities la,q (k ) I.;;;;c exp[A I k I] hold, 
where C = const> ° and A = const which depends on D but 
does not depend on N. The system (6) has a nontrivial solu
tion iff 

(10) 

This equation has infinitely many roots k iQl, 1= 1,2, .. ·, gen
erally speaking, since its left-hand side is an entire function 
ofk. 

(3) The mathematical question related to this numerical 
scheme can be formulated as follows: is it true that k iQ)_k, 
as Q-oo, where k, are the complex poles of the Green 
function? 

2. EXISTENCE OF THE LIMIT (3) 

First let us note that it is enough to prove that for suffi
ciently large R > ° the following limit exists 

E l~~o II /R exp( - Er Inr)u(x)v(x) dx. 

For Ixl >R we can use series (2) representing u and v. These 
series converge absolutely and uniformly in nand r, r>R. 
Therefore it is enough to prove existence of the limit 

lim r~ exp( - Er Inr)rj exp(br + iar) dr, 
E .. -+ 0 JR 

where 

I;;. -2, 

b = - Im(kl + kz»O, a = Re(k l + k2)#0. 

Suppose that a > 0. Let 

CN = Iz:lz - R I = N, O.;;;;arg(z - R ).;;;;8 J, 
Crw = Iz:arg(z - R) = e, O.;;;;lz - R I.;;;;N j, 

CR = Iz:R.;;;;z.;;;;R + N), Co = Co en , C = CNUCONUCR • 

It is clear that 
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L, exp( - €r lnr)r - j exp(br + iar) dr-o 

asN-.oc;" \;(10)0. Thus 

1"" exp( - €r lnr)r - j exp(br + iar) dr 

= r exp( - lOr Inr)r - j exp(br + iar) dr. 
Jcu 

Let us take 0 < 0<, 1T /2 such that a sinO> n cosO. Then the 
integral over Co converges absolute for € > 0 and its limit as 
€-. +0 exists. 

The case a < 0 can be considered similarly, with - () 
instead of O. This completes the proof. 

Remark 1: The limit (3) was used by B. Vainberg' in 
connection with the orthogonality of the generalized eigen 
and root functions, corresponding to different complex poles 
of the Green function, but our argument differs from the 
argument in Ref. 1. In Ref. 2 the Green function of the 
Schrodinger operator with a compactly supported potential 
was considered and the limit with the weight function 
exp( - lOr) instead of exp( - €r Inr) was considered. There 
is a mistake in calculation in Ref. 1: the authors claim that 
the limit limH +0 S fl exp( - €r) uv dx exists for any k" k2' 
but this limit does not exist for 51T/4 < arg(k\ + k 2 ) < 71T/4. 
In Refs. 3 and 6 a method for calculation of the complex 
poles of the Green functions in diffraction problems and in 
the potential scattering problem was given and justified. 
This method used Galerkin-type procedure. In Refs. 4, 5, 
and 7 some facts about the location and properties of the 
complex poles are given. 
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Remark 2: Justification of the numerical approach sug
gested in Sec. 1 is an open mathematical problem. For some 
other variation principles in nonse1fadjoint problems the im
portance of the mathematical analysis of the situation was 
mentioned in Ref. 9. In Refs. 3 and 6 the mathematicaljusti
fication of the numerical approach described in Refs. 3 and 6 
was based on the compactness of the integral operators in the 
equations to which the problem of calculation of the com
plex poles was reduced in Refs. 3 and 6. In the situation 
described in this paper the operator is essentially - V2 

- k 2 

with Dirichlet boundary condition and it is noncompact. 
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WKB method for systems of integral equations a) 

H. L. Berk and D. Pfirsch b) 
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(Received 25 January 1980; accepted for publication 8 March 1980) 

The WKB theory for vector systems of integral equations is developed herein. A variational 
technique is used to derive the equations for the WKB amplitudes in x-space or its dual k-space. 
Compact, explicit solutions are obtained in one dimension. When a solution breaks down at a 
turning point, the dual-space representation can be used to derive the connection formulas 
between WKB solutions. These connection formulas are equivalent to the rules of the Furry 
method. The Furry method is used to show how general golbal-dispersion relations can be 
constructed. 

I. INTRODUCTION t/r) = tj exp(ik·r), 

where k is usually real, and w satisfies the relation 

IA (k,w) 1 = 0, 

where IA (k,w) 1 is the determinant of 

Aij(k,w) = foo oc dr exp( - ik.r)Gij(r,w). 

(2) 

(3) 

(4) 

The Wentzel-Kramers-Brillouin (WKB) method to 
approximate solutions of differential equations is well 
known in quantum mechanics I and geometrical optics? It 
has usually been applied to solve differential equations and it 
has occasionally been used to solve integral equations.3

-
5 

The purpose of this paper is to present a systematic deriva
tion of the WKB method for determining normal modes of 
vector systems of integral equations. These equations arise 
from the linear perturbations of physical systems obeying 
integral equations where one dimension is spatially varying. 
The technique described here is a general asymptotic meth
od which includes as a subset differential equations of arbi
trary order. An important application of this technique is in 
the field of plasma physics, where the linearized Vlasov
Maxwell equations lead to a three-component field equation 
satisfying integral equations for which there is a spectrum of 
complex eigenvalues. 

Further, the polarization amplitudes t i satisfy the relation 

The geometrical optics theory for a vector system vary
ing in three dimensions has been described by Bernstein.6 

However, Bernstein's paper is limited to wave propagation 
and does not treat the eigenvalue problem which is readily 
formulated when there is only one dimension of inhomoge
neity. We shall also see that for an inhomogeneity in one 
dimension compact expressions for the wave amplitudes can 
be derived. WKB treatments for one component of polariza
tion have been described in Refs. 3-5. Here we extend the 
technique to an arbitrary number of components, and pre
sent a careful analysis of the theory. 

II. SUMMARY OF RESULTS 

In infinite-medium theory, waves with an amplitude (; j 
will satisfy a set of equations given by 

L f dr'G,j(r - r',w){;j(r') = O. 
J 

(I) 

The solution for this system is 

")Work performed under the auspices of the U.S. Department of Energy by 
the Lawrence Livermore Laboratory under Contract No. W-7405-ENG-
48. 

h)Permanent address: Max Planck Institute, Garching, German Federal 
RepUblic. 

A "(k,w) 
A j'(k,w) 

for arbitrary r where A ij is the cofactor of A ij • i.e., 

(5) 

(6) 

To generalize these results to a system which varies in 
one dimension, we consider an integral equation of the form 

L foc dr' Gij(r - r',E x + x' ,w)tj(rl) = O. (7) 
J - '" 2 

We define 

Ai/k,EX,W) = J dz exp( - ik.z)Gij(Z,EX,W). (8) 

The WKB solution is then of the form 

(; j(X) = ~ t !(EX) exp[i f k ~Pl(EX') dx' + iky Y + ik z z]. 
(9) 

where Xo is an arbitrary reference point 

L Ai) [k( Pl(EX),EX,W]t !(EX) = 0, 
j 

k P(EX) = kx(EX)X + kyY + k/i satisfies 

IA [k(Pl(EX),EX,W] 1 = 0, 

where kx(EX) is a complex function, and 

t/(EX) A j'[k( Pl(EX),eX,W J 
t {(EX) = A ir[k(pl(EX),EX,w] , 

(10) 

(11) 

(12) 

for arbitrary r. We now suppress the dependence on ky and 
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kz' and k (EX) refers to kA€x). Further, the p index will be 
dropped to simplify notation. 

At this stage the solutions are similar to the infinite
medium-theory problem, but the overall variation of t/€x) 
from point to point needs to be given. We find that it is given 
by 

G,(A [k(EX),EX]j> 

tv<€X) = __ C_s _ <:.:.....:' I_A_[_k_(€._x)_,€._x_]j_>~ 
!(i~/ak)IA [k(EX),EX,CU)] 1 r/2 

xA VS[k (EXo),EXo] , (13) 

where Cs is a space-independent constant and the polariza
tion component given in the numerator is 

= A VS[k (EX),EX] (A rs[k (EXo),€Xo] )1i2.exp[ _ LX E dx' 
A VS[k(EXo),EXo] A rs[k(EX),EX] x, 

[(a/ay)A riCk, y)Ai;(k, y)(a/ak)A jS(k, y) - (a/ak)A ri(k,y)Ai;(k, y)(a/ay)A is(k, y)] I ] (14) 

Xf1 2(a/ak)IA (k,y)IA rs(k ,y) ;::~EX') , 

and can be interpreted as a propagator of the polarization 
amplitude from the pointxo tox for arbitrary r, s, and XO' The 
most compact form of this solution is r = s = v. For sym
metric self-adjoint kernels which have the properties that 
Gij(x,x') = Gji(x',x) and Gi;(x,x') = Gij(x',x), the argu
ment of the exponential is zero when s = r, and the ampli
tude factor reduces to 

<:, (A [k(EX),EX]j> 

= A W[k (EX),EX] (A rr[k (EXo),EXo] )112 
A W[k (EXo),EXo] A rr[k (€X),EX] 

= ( A VV[k(EX),€X] )112, 
A l'V[k (EXo),EXo] 

(15) 

(Self-adjointness is not equivalent to Hermitian systems; 
e.g., in plasma physics, a suitable basis can be found where 
the kernel is symmetric-self-adjoint and dissipation is pre
sent from Landau damping.) 

The WKB solution is consistent with a concept of ac
tion. We define the action of mode p as 

~ a ~ 
AP= I;/P(EX)-Aij[k(EX),EX,CU];;'(EX), (16) 

i,J acu 

where 

; / P(EX) = t / P(EX) exp [ - i JX k (EX') dX'] 

is the WKB solution of the adjoint equation 

I foc dx' GJ i (x' - x, E x' + x ,cu); t (x') = 0, 
J - 00 2 

We find that the action flow, A PUg = const, where 

U = _ (a/ak)IA [k(EX),EX,CU] I (17) 
Ii (alacu)IA [k(EX),EX,CU] I 

is the group velocity, which, in general, is complex. 

The group velocity vanishes where I A I k = 0, which is 
also the condition for roots of k (EX) to merge and the point 
where the WKB solution fails. In the vicinity of the turning 
point the problem is solved an alternate way. The alternate 
method is to develop the WKB solution in the Fourier trans
formed space (k-space). We find that the equations in k
space are the "dual" to the x-space equations as identical 
equations arise but with the variables x,k (x}::::::;,k,x(k ). Such 
duality has previously been observed by Percival. 7 Thus, the 
solution in k-space is exactly the same as the x-space solu-
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tions with the x and k parameters interchanged. By Fourier
transforming back to x-space, an accurate solution near the 
x-space turning point is obtained. One can then find rules of 
how to connect the wave amplitUdes of interacting waves 
(i.e., waves whose roots merge at the turning point). These 
rules can also be derived by generalizing the Furry method 
as described by Heading,8 

From the connection rules of merging waves one can 
derive global dispersion relations for the eigenvalue cu. The 
most common dispersion relation arises from the two-turn
ing-point problem of two waves, which reduces to the Bohr
Sommerfeld quantum rule l if the two k roots are of opposite 
sign. When wave tunnelling can be neglected, the more gen
eral turning point problem reduces to the form 

£ [k (z,cu) + ok (z,cu)] dz = (2n + 1)17, (18) 

where n is an integer and the contour C encloses all the turn
ing points in the complex z-plane which are branch points of 
the function k (z,cu), and ok (z,cu) is a correction to the usual 
answer that can arise for systems that are not symmetric self
adjoint [see Eq. (78) of the text]. 

More generally, the integral equation has mUltiple roots 
and turning points, and we shall demonstrate how global 
dispersion relations, more general than the Bohr-Sommer
feld relation, can be constructed. Besides satisfying the dis
persion relation, the WKB waves have to be well behaved at 
infinity. 

We also briefly discuss wave propagation in a n-dimen
sional system and derive equations for the wave trajectories. 
For more than one dimension, the usefulness of this tech
nique is limited to nearly Hermitian systems where trajector
ies can be defined along real space coordiantes. 

III. SOLUTION FOR WAVE AMPLITUDE 

Let us consider an integral equation of the form 

f. f dr'GiJ(r - r',E r ~ r' ,cu );/r') = 0, (19) 

where for the moment we consider the space of n-dimen
sions. Associated with the integral is the adjoint equation, 

f. f dr'G} i (r' - r,E r ~ r' ,cu); / (r') = O. (20) 

H. L Berk and D. ptirsch 2055 



                                                                                                                                    

These systems of equations are equivalent to the vari
ation of the quadratic form, 

1= f; J dr dr'; / (r')Gij(r - r',E r: r' ,w);j(r')' 

(21) 

The variation with respect to; + reproduces Eq. (19), 
and the variation with respect to; reproduces Eq. (20). We 
now derive, in a compact way, an approximate set of equa
tions by first approximating the quadratic form and then 
taking the variation, a procedure used in Ref. 9. 

Ifwe substitute the Fourier representations 

;i(r) = f d k exp( - ik.r)(,bi(k) 

and 

; / (r) = f d k exp( - ik.r)(,b / (k), 

and introduce the variables R = (r + r')/2, z = r - r', we 
find 

1= f~f~(,b+(-k)(,b(k') 
(21T)" (21T)n I ) 

X f dr' dr exp[i(k - k')-R - i(k + k} ~) 
.Gi/Z,ER,w) 

= f d R ~ exp( - ik.R)(,b / ( - k) 
(21T)" 

f dk' (k+ k' ) . -- exp(ik'.R)(,bj(k')Aij -- ,ER,w , 
(21T)" 2 

(22) 

where repeated indices imply summation unless otherwise 
stated, and 

Aiik,ER,w) = f dz exp( - ik.z)Gij(Z,ER,w). (23) 

If we now expand k and k' in Ai j about k(R), we find 

1= f d R! t / (ER)t)(ER)Aij [k(ER),€R,w] ) 

+ ~ [{a:R t/(ER)t(ER) - t/(€R) a:R t(€R)} 

. ~Aij(k,€R,W») I 
dk k=k(ER) 

_ C [a2t / (€R) {(€R) _ 2 at i+ at} + t i+ 
8 &R a€R } a€R aER 

a
2

{ ] J2 I x } : --Ai}(k,€R,w) 
a€R a€R ak ak k = k(ER) 

+ &(~), (24) 

where 

t(ff) = ;i(r) exp[ - is (r)], 
(25) 

t ,+ (ff) =; i~ (r) exp[iS(r»), 

and 

as 
- =k(ff). 
ar 
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We see that Eq. (24) is an explicit expansion in WKB 
amplitudes ti(€R) with a natural clustering of orders €n 
~1/(kR y. 

We now keep terms correct to order n = 1. We then 
find the WKB approximation of the integral equations for ti 
and t / by taking the variation of Eq. (24) with respect to 
t i+ and {i respectively. We obtain 

{ 
~ tiff) d a 

Aij [k(ff),r,w ];/ff) - i ---. - Aij [k(ff),ff,w] 
2 dr ak 

(26) 

~ {/ (ff) d a 
\Aji[k(ff,r,w)J;/(ff)+i 2 dr' ak Aji[k(ff),ff,W] 

+ i.!!...; / (ff)' ~ Aji [k(ff),ff,W]} = 0, (27) 
dr ak 

where 

.!!...F[k(ff),ff] = [~+ (dk)'~]F[k(ff),r). 
dr ar dr ak 
To find the solution to Eq. (26), we shall assume and 

ultimately verify that it takes the following form: 

t/ff) = A jS[k(ff),ff ]¢s(ff), 
where s is arbitrary and fixed, and A i'[k(ff),ff] is the cofac
tor of the matrix 

i.e., 

Aij [k(ff),ffjA )S[k(ff),ff] = det IAij 18;s= IA 18;" 

and we choose k(ff) so that IA [k(ff),ff]I = o. 
Then, using y = ff, Eq. (26) becomes, 

{
ad. . 

ak'Aj} [k(y),y]. dy A Jr[k(y),y] + A Jr[k(y),y] 

X ~A[k(Y),y]·~+ ~~} 
dk I} dy 2 dy 

a .} . ak Ai) [k(y),y]A Jr(k,y) ¢r(y) = o. 

(28) 

(29) 

Now multiplying by A VI [k(y ),y] and summing over i yields 

[A vi~A .. ~A)r +A "i(~A)AJr.~ 
ak I J dy ak I J dy 

+ ~A Vi(~. aAjJ)Ajr]¢ =0. (30) 
2 dy ak r 

We now use the following identities for arbitrary r: 

AVi~A.~Ajr 
ak IJ dy 

= ~IA I·~A "'- aA "'A.~AJr, (31) 
ak dy ak I) dy 

A vi(~A)Ajr 
ak IJ 

= a I A I A vr _ aA vi A A jr 
ak ak I) 

= alA I A W _ ~ A vrlA I = alA I A"', 
ak ak ak 

(32) 
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and 

A vi(~'~A)Ajr 
dy ak I} 

= -A vi~A..~Ajr +A vi~.(~A.Ajr) 
ak I} dy dy ak I} 

= _ alA I .~A vr+ ~A viA.~Ajr 
ale dy ale I} dy 

+ _. A V'_'_} Al' _ -A vI • __ A}r d 
( 

,aA ') (d ') aA i}, , 
dy ale dy ale 

= _ il:!l. aA vr + ~A viAi.~Ajr 
ak dy ak } dy 

+ (~A v;)A'~Ajr 
dy I) ale 

+ (.!£.. . il:!l)A yr. (33) 
dy ak 

Now using Eqs. (31)-(33) in Eq. (30) gives, 

(+ ~ . ! IA [k(y),y] I + "v"IA [k(y),y] 1'}Pr 

+ ~ IA [k(y),y] I· ~ tPr = 0, (34) 
ak dy 

where 

(35) 

In obtaining Eq. (34) we assumed tPr is independent of 
any other index. Hence for consistency we need vI A J r to be 
independent of v. To prove this, we note that 

A ri[k(y),y] = A Si[k(y),y] 

A r j[k(y),y] A Sj[k(y),y] 
(36) 

a result oflinear algebra that follows from IA [k(y),y] I = O. 
Then we can write 

"""IA [k(y),y] l' 

= ~~ IA 1·~lnA vr_ ~(~A viA,.~Ajr 
2 ak dy 2 ale I) dy 

_ dA vi .A. ~ A jr)_l_ 
dy I} ale A vr 

[
ad dA aAjr 

= A vi ak A ij · TyA jr -A vi d;}' ale 

+ ~.~A w) 1A Yr. (37) 
dy ak /~' 

Since (d Idy)IA [k(y),y]I = 0, we have 

"v"l A [k(y),y] l' 

= ~ v:r (! Aij' ~ A jr _ d:;j . a::) (38) 

Now as A viA W is independent of v, we have proven our 
contention, and hereafter suppress the symbol "v". Similar
ly, one can show 

vIA [k(y),y] J"r" 

= - ~ ~ IA I· ~ InA vr 
2 ak dy 

__ 1_(~A viA.~Ajr 
2A vr ale I} dy 

_ ~A vrA.~A vr) 
dy I} ak 

= - ~~ IA 1'~lnA vr 

2 ak dy 

__ 1_(~A viA'~Ajr) 
2A l'r ak I} ay 

- ~A "iA"'~Ajr) ay I} ak ' (39) 

is independent of r, and we can suppress .or". Subtracting Eq. 
(39) and (35), we have 

IA [k(y),y]jr = vIA [k(y),y] J + ~ IA I. ~ InA yr. 

ak dy 
(40) 

Hence, Eq. (34) can be written 

(
1 d a ) '2 dy . ak IA [k(y),y] I + IA [k(y),y] r tP, 

a d + -IA [k(y),y] 1·-tPr =0. 
ak dy 

(41) 

At this stage we limit our discussion to spatial variations in one dimension. Further discussion for the multidimensional 
case will be given in Appendix I. The symbol k (x) refers to k, (x); ky and k z are fixed parameters, and y now refers to EX. 

For one dimension, the equation of tPr can be integrated straightforwardly to yield 

tPr = C, exp( - l~ dY'I;I~~:J:']Jr){ ~ IA [k(y),y] I tl12 , (42) 

where Cr is a space-independent constant dependent on the reference basis r. Then tv = A vrtP, becomes 

~ ( r dy' ) { a } - 1/2 
;,.(y) = CrA vr[k (y), y] exp - jyo alA I/ak IA [k (y'),y'] r ak IA [k (y),y] I 

= CrA vr[k(yo),yo] exp( - f aIAd~~ak IA [k(y'),y']jr - dA ~'~~Y')(:k IA [k(y),y] I rl/2 
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CrA vr[k(yo),Yo] (r dy' vIA [k(y'),y']J ) 

= {(alak)IA [k(y),y] I J1I2 exp - Jy , (alak)IA [k(y'),y'] I ' (43) 

where we have used Eq. (40). We see that the spatial variation of; v (y) is independent of r to within a global constant, and the r 
dependence is only necessary to establish the correct polarization vectors at one point. We shall define as the polarization 
propagator, 

(
V (A [k() ]})=ex (_ fY dy'{A [k(y'),y']J ) 
y, y , y - p Jy , (alak) IA [k (y'),y'] I ' 

as it propagates the amplitude of polarization v from Yo to y. 
The polarization propagator simplifies considerably 

when the kernal is symmetric-self-adjoint, i.e., 

G·· X-X,E-- =G .. X -X,E--

A = const A riCk (Yo), Yo](alaOJ)Aij [k (y), y,OJ) 

XAJr[k(y),y]({A [k(y),y]J;) 

(44) 

X«{A [k(y),y]J~)(alak)IA [k(y),y] 1)-1. 

(
,x + x' ) ( , x + x' ) 

IJ 2 JI 2 
Substituting Eq. (48) for the denominator then yields 

and 

G·· X-X,E-- =G .. X -X,E--. (
,x + x' ) ( , x + x' ) 

'J 2 'J 2 

It then readily follows that Aij [k (y), y] = Aj i [k (y), y], 
from which we infer A ji[k (y),y] = A ij[k (y),y]. Then, in 
Eq. (39), the last two terms cancel when r = v, and we find 

(V {A [k(y),yJ) = {A VV[k(y),y] lll2. 
y, AV"[k(yo),yo] 

Then, from Eq. (43), 

; = CrAvr[k(yo),Yo] {AVV[k(Y),Y] }1/2 45 
!>v(Y) [(alak)IA I ]112 A VV[k(yo),yo] . ( ) 

The general solution for the adjoint equation can be 
constructed in a manner similar to the methods above. We 
find, 

;"+(y) 

where 

C + A 'V[k ( ) ] 
r Yo,Yo (V{A[k() ]J+) 

{(aIBk)IA (k(y),y] I J 1/2 y" y,y 

xexp(~ fY k(Y)dy ), 
E Jy " 

1 
(;..I A [k(y),y]J+) = ({A [k(y),y]J~" ' 

and from Eq. (40) we have, for arbitrary sand t, 

([ A [k (y), y n~) 

( r dy'{ A [k (y'), y'] r ) 
=exp - Jy , (alak)IA [k(y'),y'] I 

(46) 

(47) 

= CO (A [k (y),y] l> A"[k(Yo),yoJ/A sr[k(y),y] 

= (lA [k( ) y]J' ) A sr[k(Yo),yo]A S'[k(y),y] . 
y, y" A "[k(y),y]A"[k(yo),yo] 

(48) 

We now define action as 

~ B A 

A ==; i+ (y) aOJ Aij [k (y), y,U) ];j(y). 

Using Eqs. (46), (47), (42), and (43) gives, for arbitrary r, 
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A = const (BlaOJ)IA [k(y),y] I 
(alak)IA [k(y),y] I 

A "[k ( ) ] const' X Yo ,Yo = --, 
Vg 

where 

(alak)IA [k(y),y,OJ) I 
Vg = - , 

(alaOJ)IA [k(y),y,OJ] I 

(49) 

is the complex group velocity. Hence the WKB solution sat
isfies an action flow conservation, i.e., AVg = const. 

Our solutions [Eqs. (43) and (46)] diverge where the 
group velocity, 0:: IA I k' vanishes. We shall define as the 
turning point x = XT' where 
IA [k (x),x] I = IA [k (X),X]lk = O. It is also the condition for 
the coalescence of two k roots, as in the vicinity of x = x 1" 

k = k (x T ) = k n we have 

ok 3 

IA I = !Dk 21A 1m' + -- IA I WT 
6 

+ EDX I A I xl' + EDXDk I A I hT + "', (50) 

where the T refers to evaluation at x = x T and k = k", and 
15k = k (x) - kr and DX = x - Xr' Solving Eq. (50) yields 

15k = + (-2EDX IA Ixr)l12 
- IAlm 
X - EDxlA Ixl 

IA IHT 

(
IA IXkT 1 IA Iwr) 

X - ---- +"', 
IA 1,,1' 3 IA Ikkr 

(51) 

which demonstrates the two solutions for ko that coalesce at 

X r · 

IV. k-SPACE DUAL AND SOLUTION NEAR TURNING 
POINT 

To solve the equation near a turning point it is first 
convenient to consider the integral equation in the dual k
space. A WKB solution in the dual space can be found and 
the Fourier transform ofthis solution gives an x-space repre-
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sentation that is an accurate approximation in the vicinity of 
the x-space turning point. This x-space representation can 
then be used to obtain connection rules ofWKB modes in x
space. 

By using the variational method we readily obtain the 
equations for the dual representation in k-space. From Eq. 
(22) we have 

1= f ~ ~ dR dz'rfJ + (- k)rfJ·(k') 
(217)" (217-)" I J 

.exp[ i(k - k')·R - i(k + k') ~ ]Gij(Z,ER,w) 

= f dk'dkQij(k~k', k'~k ,w)rfJi+(-k)rpj(k'), 

(52) 

where 

f dR3d3Z 
QiJ(S,t,w) = exp( - is·z - it'ER)Gij(X,ER,w). 

(21Tf" 

Equation (52) is of the same structure as the r-space 
quadratic form given by Eq. (21). Now proceeding along 
exactly analogous lines as in the previous section, the vari
ational method leads us to consider 

rfJik)=J'j(k)exp[ ~i l~ Er(k).dk], 

and we find J'j(k) satisfies the equation 

~ {rfJj(k) d a 
Au [k,Er(k),w ]rfJ/k) + iE -2- dk . Ear Au [k,Er(k),w] 

(53) 

If we choose r(k) such that IA [k,Er(k),w] I = 0, then in 
one dimension the solution to Eq. (53) is essentially the same 
as the solution to Eq. (26) but with rand k interchanged. 
Hence the solution in one dimension is given by 

A. (k) = C A l'r[ko,y(ko)] 
'1',' r IA [k,y(k)] 1;12 

xexp( _lk dk' vIA [y(k '),k'] j) 
k" 21A Iy 

( lk dk' ) 
Xexp - i k" -E-y(k') . 

Note that 

VIA [y(k),k)]J 

IA Iy 
= - ~~A vr - [(a/ay)A viA (a/ak)Ajr 

2 dk IJ 

-(a/ak)A ViA,j(a/ay)Ajr1!2A "'IA Iyj-I 

(54) 

dy [ 1 dA "r. . = - - - -- - [(aA VI/ak )A(a/ay)A Jr 
dk 2 dy(k) IJ 

-(aA vi/ay)A,j(a/ak)AjrHIA IkJ- I ] !A vrj-I 

= dy VIA [k,y(k)]J 

dk IA Ik (55) 

Hence, Eq. (54) becomes 
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C A vr[k (k)] 
A.(k)- r o,Yo (v IA[k (k)]J) 
'I'v - IA [k,y(k)] 1;/2 y(k,) 1 ,y 

xexp( - ; l~ dkY(k»). (56) 

To obtain the solution in the vicinity ofYT we transform 
Eq. (56) back to x-space (for convenience we choose 
ko=kT): 

~v(x) = _1_ f dkrfJ,,{k) exp(ikx) 
21T 

= CrA vr(kT'YT) 

X f: 00 dk exp{i : fdk'[ y - y(k)] + ikTX} 

(;!A [k,y(k)]j) 
X 1 • (57) 

IA [k,y(k)] 1;12 
For y - YT sufficiently large, Eq. (57) can be evaluated 

by the method of stationary phase. The phase function, 
sZ,[ y(k) - y] dk can be expressed as 

l
k(X) 

dk ' [x - x(k ')] 
k, 

Ix dk' 
= dx- [x -x(k')] 

x, dx 

= kT(XT -x) + rdx'k(EX'). 
Jx./ 

We then find 

CrA vr(kT'YT) exp(ikTxT) 

~v(x)~ (21Ti[dk(y)/dy] IA (k,y)ly)l!2 

X exp[i i~ k (EX')dX'] ( ;,! A [k (x),x]J) 

C;A vr(kT,YT) 

!(a/ak)IA [k(y),y)] I J 1/2 

(58) 

xexp [ +i f k(EX')dx'](;,IA [k(y),y]j). 

(59) 

This is just the WKB solution in x-space. In the vicinity 
of x = x T the stationary phase aproximation cannot be ap
plied but the integral representation given by Eq. (57) is still 
accurate. Note that the k-space solution breaks down where 
IA [kT,YT(k)] I = IA [kT,YT(k)]ly =O,andtheFourier 
transform of the x-space solution is an accurate representa
tion of the dual solution in the vicinity of kn yT(k). 

We now discuss the important point that there are two 
solutions to the stationary phase problem corresponding to 
thetwok (x) solutions thatmergeatk (x) = kT whenx = x T. 
To relate the two amplitudes somewhat away from x - x T , 

it suffices to calculate x(k ) as 

~x=x(k) -XT = - IA IkkT~k2 + tl(Dk
3
). (60) 

2EIA IXT E 

The phase Sdkx(k) = -IA IkkDk3/6EIA Ix is greater 
than unity for ok > EI/3, while the correction to the phase 
liE S ~k3 d~k~tl(ok4/E) is less than unity for ok < El!4. 
Hence, in the regime EI/3 < ok < E 1/4

, the stationary phase 
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and the simple expression for the phase is accurate, then 
Sv(x) can be written, to within a global constant, as 

j- ( ) YT ('k r5 ) dk A vr( ) J 
~v x = (217-) exp I T x IA (kT'YT 1;/2 

xexp[ikOX + i(k - kT)3 ~] 
6E IA Iy 

= A vr( YT) exp(ik DX)(2E I A I y )1/3 
21TIA 1;12 T IA I kk 

X Jdzexp [iz(2EIA ly)1/3DX + iZ
3
]. (61) 

IA Ikk d 

The integral in Eq. (61) is an Airy function. In the sub
sequent section we will be interested in the case of connect
ing the solution in the region x - x T =r exp(iO), where 
;v(x) exp( - ikTDX) is exponentially small, to the solution in 
the region - r exp(iO). Let 

. (2EIA I )1/3 se'~' = y 

IA Ikk 

The solution that is exponentially small for 

_I (2EIA ly)11/3 sr= Dx ~l, 
IA I kk 

is 

provided -21T/3 < 0 + t/! < 21T/3 (the solution is exponen
tially small where 10 + t/!I < 1T/3). 

In the region 21T/3 < 10 + t/!I < 41T/3 we use the asymp
totic solution to the Airy function to find that; ,:t' (x) ( ± 
refers to the sign chosen for 0 + t/!) is given by, 

+ EI/2A n(YT) exp(ikTDx) 
; . (x) --> -------:-=-:-:--:,---=------

, ,r>1 (21TIA Ikk)1/2s3 /4rI/4exp(iO/4+3it/!/4) 

-( exp{ - ~(sr)3/2 exp[ ~ (0 + t/!)]} 

± i exp{ ~(sr)J/2 exp[ ~. (0 + t/!)]}). (63) 

Examination ofEq. (63) shows that; ,; (x) =; v- (x). How
ever, there appears to be a formal difference in the two waves 
depending on whether one follows the wave in the counter
clockwise (+ solution) or clockwise (- solution) direc
tion. One wave is the analytic continuation ofEq. (34) and 
the other wave is induced with a relative phase shift 
± 1T/2 exp(i1T/2) = ± i. In the next section we describe a 
more heuristic approach due to Furry, that allows one to 
readily find the relation of two WKB waves in a manner 
consistent with Eq. (63). 

2060 J. Math. Phys., Vol. 21, No.8, August 1980 

V. THE FURRY METHOD 

An equivalent and convenient way to treat the turning 
point problem is to determine the Stokes multipliers of the 
sub-dominant solutions along a Stokes line. This terminol
ogy will now be explained and the Furry method will be used 
to obtain the Stokes multipliers. We have established that an 
approximate WKB solution for mode k (z) (z is the complex 
variable and we now supress the E-dependence), is of the 
form 

A V (;,!A [k (z),z] j) [r ] 
5v = (IA [k(z),z] Ik)1/2 exp i Jz, k(z')dz' . (64) 

Near the turning point we can set ( ~, ! A [k (z),z] l ) 
= ( ~, ! A [k (ZT ),zT ] l) = I, and the phase function is ap

proximated as, 

f k(z') dz' 

= kr(z - ZT) ± i(z - ZT)3/2( -2 IA Iz/IA I kk)1/2, 
(65) 

where the A's are evaluated at z = ZT' 
Let us denote kl(z) as the solution with the plus sign and 

kz{z) as the solution with the minus sign. We define a 
function 

G(Z,ZT) = i r [kl(z') - kiz')] dz' 1z, 

Z +Z I 

Using the following definitions, 

seN· = (21A Iz/IA Ikk)l/\ iii 
Z - zr = re , 

we rewrite G (z,z T) in the neighborhood of z = z T as, 

G (z,z r) = _ ~(sr)3/2ei3(1i + ~')/2. 

Then Sv is of the form 

A 

r l/4 exp[i(O + t/!)/4] 
Xexp[ _1(sr)3/2ei3(O-+ ,Ml2 + ikAz - zr)] 

and 

The k I mode corresponds to the function 51(r,0) with 
0.;;;0 + t/! < 21T and the k2 mode corresponds to 
52(r,0) = 51(r,0 + 21T) and we have 

(66) 

(67) 

51(r,0 +41T) = - 51(r,0). We define the Stokes lines (anti
Stokes lines) of the turning point Zl' as those curves in the 
complex z-plane for which G (z,zr) is real (imaginary). Near 
z = z T the Stokes lines form equally oriented stars with three 
rays in each of the two Riemannian planes as G is real for 

~(O + t/!) = n1T, or 0 = 0" = - t/! + n21T/3, 

n = 0,1'00.,5, n=n mod 6. 

If we replace n by n + !, then G is purely imaginary on the 
rays of the new stars forming the anti-Stokes lines emerging 
from z T' The topology of these stars is shown on Fig. 1. 

G is negative for n = 0,2,4 and positive for n = 1,3,5. 
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Complex z - plane 

- Stokes Line 
---- Anti-Stokes Line 

FIG. 1. Stokes and anti-stokes lines emanating from a turning point zr in 
the complex z-plane. 

Thus 5 (r,e ) is exponentially small compared with 
5 (r,e +211") for the first set of en's for r sufficiently large and 
is therefore called subdominant with respect to 5 (r,e + 211"). 
For the second set of en's, 5 (r,e) is large compared with 
5 (r,e + 211") and is therefore called dominant with respect to 
5 (r,e + 211"). 

Suppose now we propagate 5 (r,e) from the Stokes line 
n = 0 on a half circle in the clockwise direction. The result 
will then be different from the one obtained when propagat
ing on a half circle in the counterclockwise direction. How
ever close to a turning point, the governing integral equation 
can only lead to a single-valued solution. The failure to ob
tain single-valuedness is due to the fact that the analytical 
continuation ofthe asymptotic solution over a finite distance 
can deviate appreciably from the analytical continuation of 
the exact solution. We can resolve the discrepany if we ob
seve that, when we arrive at the n = 1 line [where 5 (r,e) is 
dominant over 5 (r,e + 211")], only a slight change of 5 (r,e) is 
obtained if we add to the solution 
5 (r,e + 211") = - 5 (r,e - 211") multiplied by a factor of order 
1. Thus we can assume that the asymptotic function in the 
region e I < e < O2 that is the continuation from the solution 
5 (r,e) is the region 00 < e < e l is 

5 + = 5 (r,O) - 04 (r,e + 211") 

= 5 (r,e) + 0+5 (r,e - 211"). (68) 

Going the other way around and arriving at n = - 1 
(which is equivalent to n = 5), we can also add 5 (r,e + 211") 
multiplied by a factor 0_. Then we obtain 

5 -= 5 (r,e) + 0-5 (r,e + 211"), 0_2 < 0 < e_ l • (69) 

Uniqueness of 5 requires that 

5+(0 = 00 + 11" + 00) = 5-(0 = eo -11" + 00). 

From this we obtain 

5 (r,Oo + 11" + 00) + 0+5 (r,Oo - 11" + 00) 

= 5 (r,Oo - 11" + 00) + 0-5 (r,Oo + 11" + 00), 

and therefore 
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(70) 

Equation (70) can be interpreted as follows. If we fol
lows the propagation of a WKB wave,S (r,O), from region A 
to region B, where A and B are separated by a Stokes line 
emanating from a turning pointzT' and if 5 (r,O) is dominant 
on that Stokes line, then in region B we need to add to 5 (r,O) 
the subdominant contribution which is the analytic continu
ation of 5 (r,O) obtained by encirclingz T in the counter direc
tion to the original sense of propagation. 

Ifwe write 

51 (r,O )=5 ir,e ), 

5ir,e) = i5ir,e+211") = -i5k,O-211"), (71) 

we obtain the relations in the more usual form, 

5+=51+ i52' 5-=51-i52' 01<lol<e2 • (72) 
Note that this form is convenient since in the 5 + form we have 
limr--<l 52 = 51 and similarly in 5 -, limr--<l 52 = 51' 

VI. CONSTRUCTION OF GLOBAL DISPERSION 
RELATIONS 

We will now consider how global dispersion relations 
can be constructed in a somewhat intuitive manner. We as
sume that our boundary conditions are that the waves have 
to vanish for IRezl = Ixl- - 00. Hence, the allowable 
WKB waves are the ones with Imk > 0 for x- + 00 and 
Imk < 0 for x- - 00. If there exists a solution at all, then 
there exists at leat one k (z) having Imk < 0 for x_ - 00 and 
a path from there is the complex x-plane to x_ + 00 such 
that Imk > 0 at this boundary. Propagation of the mode from 
x = - 00 along this path leads to additional waves being 
picked up whenever it crosses a Stokes line on which either 
one of the original or new waves are dominant. The require
ment that waves with Imk < 0 cancel when going to 
x = + 00 forms the global dispersion relation. 

A. Two-turning-point problem 

To be more quantitative let us consider the two-turn
ing-point eigenvalue problem. This is the most common 
WKB problem. Suppose we have wavenumbers k I and k2 
where Imkl <0 as Ixl-oo and Imk2>0 as Ixl-oo, and 

Complex z - plane 

----k1 --k1 

--k2 

FIG. 2. Schematic diagram of Stokes lines that induce additional waves in a 
two wave, two-turning point problem. 
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there are two turning points ZTl and ZTl where k, and k2 
merge, say in the configuration shown in Fig. 2. To the left of 
point A the wave is of the form, 

¢ = C exp(i f q,(z') dZ')=C (q,IO,z), 

where 

(73) 

_ kId I IA I '. VIA [k(z),z]J 
q, - ,- 2: dz n k + I (alak)IA [k(z),zll 

as only this mode is allowable as x_ - 00. Note the relation 
(q,lzTl,z) = (q,lzTl,zTl) (q,IZTl'z). If the mode corre
sponding to q, is dominant with respect to q2 along the 
Stokes line (z T' ,A ), then to the right of point A the wave has 
the form, 

¢= (q,I0,z) -iC(q,I0,zTl) (q2IZTl,z), 

= C (q,I0,z) - iC (q,I0,zTl) (q2IzTl,o) (q210,z). 
(74) 

If as we pass point B, we assume that the mode with 
wavenumber q2 is dominant with respect to q, along the 
Stokes line (z Tl ,B), the eigenfunction then has the form, 

¢ = C (q,I0,z) - iC (q,IO,zTl) (q2IZTl ,0) (q210,z) 

+ C (q,I0,zTl) (q2IzTPO) (q210,zTl) (q,lzTl,z) 

= C (q,I0,z) [1 + (q,I0,zTl ) (q2IzTl,o) (q2Io,zTl) 

X (q,lzTl,o) - iC (q,I0,zTl) (q2IZTl,z)]. 
(75) 

As only the q2 mode is allowed as x_ 00, we then de
mand that the two waves constituting q, cancel each other. 
This leads to the dispersion relation, 

-1 = exp {i f:' [q2(Z',W) - q,(z',w)l dZ'}, (76) 

If we use Eq. (35) for VIA l we find, 

r" (q2 - q,) dz' 
)Z11 

= f',' dZ'( k2(z') - k,(z') + ok t(z') - ok t(z') 

_ ~ ~ In{A VI'[k2(z'),z'1IA [kz(z'),z'll }), (77) 
2 dz' A VI'[k,(z'),z'lIA [k,(z'),z'll 

where 

ok VII = i[(alaz)A V;A;j(alak)A jl' - (alak)A vi 

XAij(alaz)A jJI1I 2A I'V(alak) IA Il-'. 
(78) 

The totallogarithmic derivative term vanishes in Eq. (77) as 
the endpoint value is zero. Further, it can be shown that 

1= r" dz' [(ok ~I' - ok t) - (ok;' - ok n], 
JZ /1 

Lx" , d G is A ¥r) 
= dz -In =0. 

Z/I dz' ~s A;-r 

Thus the ok VI' contribution to Eq. (77) is independent of v 
and J-l and the superscripts can therefore be neglected. 

In general we have found a correction to the general 
WKB dispersion relation which is now of the form 
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(79) 

or 

Lx" (k2 + Ok2 - k, - ok,) dz' = (2n + 1)1T, n = 0,1, .. · . 
z" 

(80) 

In Appendix B the reason for the ok correction is dis
cussed. It arises because given two equivalent systems whose 
governing kernals, G [x - x' ,(x + x')/2] and 
{; [x - x' ,(x + x')/2], which are related by a similarity trans
formation G = U (x)GU-'(x'), then the lowest order solution 
for k (x) will differ for the two systems. The WKB correction 
derived here is the compensation for the discrepancy. We 
note that ok vv = ° for a symmetric self-adjoint system, and 
hence there is no additional WKB correction for this case. 
From Appendix B it readily follows that the corrections van
ish for all kernals that can be obtained from a spatially con
stant similarity transformation of a symmetric self-adjoint 
matrix. 

If we delete from k all logarithmic derivatives terms 
that ultimately vanish, it is then convenient to write 

r" dz'(k2, + Ok2 - k, - ok,) = ~ dz'(k + ok), 
)ZII 'J;Zn,zlz) 

where the right-hand side is a loop integral (or action inte
gral) that encloses the turning points z T' and z T2' The re
duction in the final algorithm from ~ qdz to ~(k + ok) dz is 
quite general. For simplicity in subsequent examples we 
shall not differentiate between these forms, but simply write 
exp(i S x k dz'), with the implication that the final form is 
exp[i ~ (k + ok) dz']. 

Equation (80) leads to the most common form of the 
WKB dispersion relation when k2 = ~ k, and ok = ° (as is 
the case for a second order differential equation). 

In general, any number of modes can be involved in the 
global dispersion relation. For definiteness we shall consider 
some possible examples where three or four modes are in
volved in determining a global dispersion relation. 

B. Three-mode problem 

Suppose we have three modes with wave numbers k" 
k2' and k3 with Imk, < 0, Imk2 > 0, and Imk3 > ° as Ixl- 00. 

Supposez'3 andzT3 are turning points of the k, and k3 modes 
and Z'2 and ZT2 the turning points of the k, and k2 modes. 
Further we suppose that the configuration of these turning 
points and the relevant Stokes lines are as in Fig. 3. We shall 
assume mode 1 is dominant with respect to mode 3 along 
(ZI3' A ), mode 1 is dominant with respect to mode 2 along 
(z'2,B), mode 2 is dominant with respect to mode 1 along 
(ZT2,B *), and mode 3 is dominant with respect to mode 1 
along (ZT3,A *). Then to the left of A only mode 1 is allowa
ble, and the wave has the form: 

¢ = (k,I0,z). (81) 

Between A and B mode 3 is present, and the waveform is 

(82) 
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Complex z - plane 

FIG. 3. Schematic diagram of Stokes lines that induce additional waves in a 
three-wave, four-tuming-point problem. Double arrow indicates superposi
tion of wavelets. 

Between Band B • mode 2 is present and the waveform 
is 

tP = (k,l0,z) + i(k , I0,zI3) (k3 Izl3,z) 

+ i(k , I0,zI2) (kzlz ,2,z)· (83) 

Between B • and A·· the k I mode obtains an additional 
component induced from the kz wave. The k, component 
has the form 

(k,l0,z) [1 + (k ,I0,z,2) (k2Izwztz) (k , lztz ,0) ]. (84) 

Finally to the right of A • the k I wave obtains an additional 
component induced from the k3 wave. The total k2 compo
nent is then 

(k 1 /0,z)[1 + (krl0,z12) (k1Iz12,zfz) (kr/zfz,O) 

+ (k 110,zJ3) (k3/z J3 ,zf3) (k , lzf3'0)]. (85) 

However, the k I components has to vanish to the right of A •. 
Hence the overall dispersion relation is 

1 + exp{i r~2 [k2(z',w) - k,(z',w)] dZ'} 

+ exp[i r~3 [k 3(z',w) - k,(z',w)] dZ'] 

=1 + exp[i j • k (z') dZ'] 
YcZll.ZIl) 

+ exp[i J: * k (z') dZ'] = 0. 
J:.ZI J'ZU) 

(86) 

Dispersion relations of this form have been derived in several 
previous works.4

.
lo 

Frequently one of the exponentials is exponentially 
small, and the three-mode problem reduces to the two-mode 
problem. However, as some external parameter in a problem 
varies, it is possible that the exponentially small component 
gets larger and is eventually significant. 

C. Four-wave problem 

We now consider a four-wave problem for the case 
where symmetry exists about Z = 0. For such a case it can be 
shown that eigenfunctions are either even or odd about the 
midplane. This allows some simplification in solving the glo
bal dispersion relation. From symmetry it follows that if k (z) 
is a solution of the local dispersion relation, then - k (z) is 
also a solution. We shall consider waves k,(z), - k,(z),kz{z), 
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and - kz{z), where Imk,(z) > ° and Imkz(z) < 0. Let 
z = ± zTI be the turning point for ± k,(z) and ± ZTI2 be 
the turning points for k" k2 modes (by symmetry ± ZTI2 is 
also the turning point for - k" - kz modes). The configu
ration of turning points is shown in Fig. 4 for z < O. 

The wave to the left of pont A is of the form 

tP = (- k,/O,z) + a(kz/O,z), (87) 

where a is a constant to be determined. We assume that k2 is 
dominant with respect to k I along the Stokes line 
( - ZTI2' A )then ( - k, is dominant with respect to - k2 as 
well) and - k, is dominant with respect to k, along the ray 
(ZTI ,B). Then, between (A,B) the wave has the form 

tP = ( - k,l0,z) + ia(k210, - ZTI2) (k , / - ZTI2,z) 

+ a(k1/0,z) + i( - kIlO, - ZTI2) 

X ( - kz/ - ZTI2,z). (88) 

Between (B,O) the wave has the form 

tP = ( - kr/0,z) + i(k,/O,z) 

X(a(kzIO, - ZTI2) (k,l - ZTI2'O) - (- kIlO, - ZTI) 

X (k,l - ZT"O» + a(kz/O,z) + i( - k,/O, - ZTIz) 
X( -k21-zTI2,o) (-kz/O,z). 

(89) 

The evenness or oddness of the eigenfunction then de
mands that the coefficient of ( - k II O,z) be within a sign the 
same as the coefficient of (k,l0,z) and the same restriction 
applies to ( - k2 /O,z) and (k210,z). Hence we have 

1 = ± {a exp{i lZTlZ [k,(z') - k2(z')] dZ'} 

- exp[ 2i l z( I k1(z',w) dZ']} (90) 

a = ± i exp{i [Z( 12 [kl(z',w) - kz(z',w)] dZ'}. 

Eliminating a then yields 

1 = - exp{i {'~:t2 [kl(z',cu) - kiz',cu)] dZ'} 

+ i exp[i f~'~" k.(z',w) dZ'], (91) 

or its equivalent, 

(1 + exp{i f~'~:12 [kl(z',cu) - kz(z',w)] dZ'}Y 

Complex z - plane 

--k1 

-Zn 
------kl --k1 

-k2 -k2 

- ........... - -k2 
- ......... _- kl 

FIG. 4. Schematic diagram of Stokes lines that induce additional waves in 
four· wave problem. 
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= - exp [2i f:" k1(z',liJ) dZ'], 
Z/,l 

(92) 

There are three terms in the dispersion relation above. 
A quantization rule, similar to that of Bohr-Sommerfeld, 
can only arise in the approximation that two of the terms are 
dominant. For example if the exponential in the large par
an theses is small, the dispersion relation is equivalent to 

f kdz = (2n + I)1T, (93) 

where the countour integral encloses only the turning points 
± ZTl . If the exponential on the right hand side is small, the 

dispersion relation also becomes Eq. (93) with only the turn
ing points ZT12 and - ZTl2 enclosed. The integral can be 
interpreted as k taking on the value kl which converts to k2 
on going around ZTl2 which converts to kl again on going 
around - ZTI2' Because of the degeneracy of our problem 
we can also interpret Eq. (93) as to loop integral for 
- k2~ - kl atzTl2~ - k2 at - ZTl2' 

Now if 1 is the small term in Eq. (92) and is neglected, 
Eq. (93) applies with the following interpretation. The read
er is referred to the diagram in Fig. 5 to help himself follow 
this discussion. Starting from the - k2 wave on the lower 
loop of the figure we have: 

- k2 propagates to ZTl2' then converts to 

- k 1 propagates to Z Tl , then converts to 

k 1 propagates to Z T 12' then converts to 

k2 propagates to - ZT 12' then converts to 

kl propagates to - ZTl' then converts to 

- kl propagates to - ZTl2' then converts to 

- k 2 • 

In Fig. 5 we see that the wave can go directly from - Z T 1 to 

k 

FIG. 5. Schematic closed curve in z-k plane. 
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ZTl by tunnelling. If the 1 in Eq. (92) is included, the tunnel
ling term is roughly taken into account. A more precise eval
uation is discussed in Ref. 3 where a specific example of this 
four-wave problem is evaluated. 

The general WKB method we have outlined here is de
ficient for an integral equation in that, in principle, an infi
nite number of modes need to be followed. However, the 
eigenmode may be dominated by the interaction of just two 
modes, while the interaction with other modes is exponen
tially small. If a global dispersion relation is obtained with 
two modes, one can then ascertain whether the interaction 
with other modes is large or small. If it is large, a more com
plicated global dispersion relation can be obtained by using 
the methods indicated above. 
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APPENDIX A: SOLUTION IN n-DIMENSIONS 

Equation (41) is of the form, 

a d 
ak IA [k(y),y,liJ]I· dy ¢r(y)+G[k(y),y]¢,(y)=O, 

(AI) 

where k(y) is constrained to satisfy, 

IA [k(y),y]1 =0. (A2) 

If k(yo)=ko and ¢(Yo) are given at y = Yo, Eq. (A 1) can be 
integrated by using the method of characteristics, which al
lows ¢(y) to be evaluated along some curve ofa complex 
parameter 7. The method of characteristics demands that 
y(7) satisfy the differential equation, 

dy a 
- = a [k(y),y,liJ] -IA [k(y),y,liJ] I· 
d7 ak 

As Eq. (A2) must be satisfied, we must simultaneously 
satisfy 

(A3) 

dk a = - a [k(y),y,U)] --;:- 1 A [k(y),y,liJ] I. (A4) 
d7 U3 

Equation (A3) and (A4) justify the usual assumption of the 
equation of motion of geometrical optics. To obtain an even 
closer correspondence we choose 

a[k(y),y,liJ] = -I/~IA [k(y),y,liJ] I, aU) 
and the parameter 7 is time (which can take on complex 
values). 

Equation (AI) can then be written as 

:7 {¢,[y(7)] exp[ - f d7' (a/a~~~(~~~;;:~~7')11]} 
=~ ~~ 

where Y(7o) = Yo, k[y,(7o)] = ko· The solution is 
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[iT dT'G [k(T'),y(T')] ] 
¢,[y(T)] =exp 0 (a/aliJ)IA [k(T'),y(T')]I ¢,(Yo)' 

(A6) 

The problem with this solution is that the coordinates 
y(T) are not real. We can choose a complex 'I path so that one 
component OfY(T) is real, but in general the other compo
nents are complex. Hence this method of integration fails to 
determine ¢, [y ,k(y)] at physical coordinates. An exception 
to this rule occurs when Aij(k,y,liJ) is Hermitian for realliJ. 
For this case the equations of motion ofy and k are Hamil
tonian equations for a real Hamiltonian liJ when y and k are 
real. The trajectories are also real and the method of charac
teristics then determines the field at real-space coordinates. 

If the anti-Hermitian part of Ai/k,y,liJ) A Ri/k,y,liJ) 
+ if"AAij(k,y,liJ) is small, i.e., EAAij<ARij (as assumed in 

Ref. 6) then the anti-Hermitian part ofA ij can be considered 
as first order in 10, and the WKB procedure can be straight
forwardly modified to yield for arbitrary r, 

a d ak IAR [k(y),y,liJ] I· dy ¢,(y) + ¢,(y)tGR [k(y),y]j 

A ~ [k(y),y ]AAij [k(y),y,liJ]A ~ [k(y),y] 
+ A;[k(y),y] =0,(A7) 

where k(y) satisfies IAR [k(y),y,liJ] 1 = ° and 

GR [k(y),y] 

= .!. ~. ~ IAR [k(y),y] 1 + tAR [k(y),y] J'. 
2 dy ak 

The method of characteristics now leads to real trajec
tories for realliJ, as IA R I is Hermitian. The solution is then 

¢, [Y(T)] = ¢,(Yo) exp( - r dT'{liJ1(T') 

with 

liJ I ('I') 

GR [k(T'),y(T')] }) 

- (a/aliJ) IAR [k(T'),y(T')] 1 ' 

- A ~ [k(T),Y(T) ]AAij [k(T),Y(T)]A ~ [k(T),y(T)] 

A; [k(T),y(T)](a/aliJ) IAR [k(T),Y(T)] 1 

The term exp( - S T liJ I dT') is the attenuation factor along 
the path of the trajectory. 

APPENDIX B: INTERPRETATION OF WKB 
CORRECTION FACTOR 

Consider two systems that are given by the integral 
equations 

J ( 
x+x') dx' G x - x' ,10 -2- (; (x') = 0, 

(BI) 

J dX'G(x - X',E x ~ x' )t(X') = 0, 

where G and G are square matrices, {; (x) and; (x') are col
umn matrices, and 

G = U(EX)G (x - X',E(X + x')/2)U-1(EX'). (B2) 
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Clearly, as G is a similarity transformation of G, the two 
systems are equivalent with identical eigenvalues liJ, with 
their solutions related by 

t(x) = U{;(x). (B3) 

However, the WKB solutions for k (x) of these two sys
tems differ as, 

A (k, y) = J dz exp( - ikz)G (z, y), (B4) 

A (k,y) = J dzexp(-ikz)U(Y+EZ/2)G(z,x) 

X U(y - Ez/2) 

= JdzeXP(-ikZ){U(y)G(Z,y)U-1(y) 

+ E~[Uy(y)G(Z,y)U-I(y)] 
2 

- U(y)G(Z,Y)Uy-l(y)} + o (c), (B5) 

wherey = EX. 
The two k values for each system are denoted as k (y) 

and k (y) which are respectively the solutions of 

IA (k,y)1 = 0, IA (k,y)1 = O. (B6) 

To find k (y) in terms of k (y) (in the remaining text we sup
press the argument "y") we multiply Eq. (B5) on the left and 
right by the matrix corA (k, y) whose matrix elements are 
A rs. The left-hand side of Eq. (B5) then vanishes as 
IA (k,y)1 = 0, and from the remaining terms we obtain 

corA (k,y)U(y)A (k,y)U-1(y) corA (k,y) 

-~ - -I -1-= -- corA (Uy Ak U - UA k U y ) corA. (B7) 
2 

Now corA (k, y) = corA (k, y) + E[corA (k, y)L, and since 
IA (k,y)1 = 0, we find 

2il1k IA Ik corA (k,y) 

= corA (k,y)[ Uy Ak(k,y)U- 1 
- UAk(k,y)U-1] 

X corA (k, y) + 0 (E), (B8) 

where El1k = k - k. Additional algebraic manipulation of 
Eq. (B8) yields [See Eq. (78) for notation] 

11k = -8k''/' + [UM(8k)U-IL~,/A VI' 

i (Uy corAU- 1 
- UcorAUy I)VII + - , (B9) 

2 A VI' 

where M (8k ) is a matrix whose matrix elements are 8k "A " 
(no summation implied). 

Equation (B9) determines the lowest order WKB shift 
of the local k value of systems related by a similarity trans
formation. We now wish to indicate how the correction of 
the WKB phase integral given in Eq. (79) 
allows for the compensation of this shift, so that the predict
ed WKB eigenvalues of these two systems agree to (102). More 
precisely we need to show that 

§ dz(k + 8k)-§ dz(k + 11k + 8k) 

= § dz(k + 8k), (let 10 = 1), or 
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f dz(.J.k + 8k - 8k) = O. (BlO) 

From Eq. (B3) we expect that the WKB solutions of the 
equivalent solutions are related by, 

; exp(i [ .J.k dy ') = U;' (Bll) 

From Eq. (43) of the text it follows that 

d [AV (alA 1)112] _ VIA l;V(y) 
dy ; (y) --a;;- - - (alA l/ak)lt2 ' 

(BI2) 

d [~v (alA 1)112] _ VIA l;V(y) 
dy ; (y) --a;;- - - (alA l/ak)1/2 . 

(BI3) 

IfEq. (Bll) is substituted into the left hand side ofEq. 
(B 13), one establishes, after some algebra, that the two sides 
ofEq. (B 13) will be equal as a consequence ofEq. (B9). Thus, 
the conjecture of Eq. (B 11) is verified). We now use, 

:: :: (IA(k,Y)lk)l12 
5" V(y, Yo) ;V(y) IA(ko,Yo)lk 

= ; V( Yo) exp _ -,y,---,-l --'-A [f:Y d ' vi A l] 
:Yo IA Ik 

= 'V( Yo)( 1
v
:
V
(k, y) )112 exp[i f:Y 8k vv dZ']. 

A (ko, Yo) y, 

(BI4) 

tr(y, Yo) =;r(yo) exp [ - [dY"!A VIA Ik] 
= ; r( )( A rr(k ,y)A ,...·(k ,y)A vr(ko, Yo) )112 

Yo A rr(ko, Yo)A rv(ko' Yo)A vr(k, y) 

xexp[i [ 8k vv dZ]. (BI5) 

Further, referring to the two WKB solutions merging at 
Z = ZTl as "I" and "2", we have 
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;~(yo) 
lim _ 

y"~y" ; ~(yo) 

Then if we construct 
A 

1
. [t~(y,yo) exp(i S~, .J.k2 dy') ] 
1m 'A~--------~--------

Y~Yf2 5" V(y, Yo) exp(i S~, .J.kl dy') 
Yo "*"Y.,. 

l:s Uvs(y)t;(y,yo) 

l:s Uvs(y)tl(y,yo) 

we find that the amplitude factors cancel and the phase de
pendence demands, 

[:2 [(8k2 + .J.k2 - 8kl) - (8k l + .J.kl - 8kl)] dz' 

=f (8k + .J.k - 8k) dz' = 0, 

which is the relation we desired to prove. 

'L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, New 
Yrok, 1958), p. 157. 

2L. D. Landau and E. M. Lifshitz, Electrodynamics o/Continuous Media 
(Pergamon, New York 1960), p. 284. 

JH. L. Berk and D. L. Book, Phys. Fluids 12, 649 (1969). 
4D. Watson, Alfven Ion-Cyclotron Instability in Mirror Machines, Law
rence Livermore Laboratory, UCRL-82068 (to be published in Phys. 
Fluids). 

sT. Watanabe, H. Sanuki, and M. Watanabe, "Treatment of Eigenmode 
Analysis of Vlasov Equation," (to be published J. Phys. Soc. Jpn.). 

"I. B. Bernstein, Phys. Fluid, 19, 320 (1975). 
71. C. Percival, Adv. Chern. Phys. 36, 1(1977). 
xJ. Heading, An Introduction to Phase Integral Methods (Wiley, New York, 
1962). 

"H. L Berk and R. R. Dominguez, J. Plasma Phys. 18, 31 (1977). 
1<1J. Knoll and R. Schaeffer, Ann. Phys. (N.Y.) 97,307 (1976). 

H. L. 8erk and D. Pfirsch 2066 



                                                                                                                                    

Partial inner product spaces. IV. Topological considerations 
J.-P. Antoine 
Institut de Physique Theorique. Universite Catholique de Louvain. Belgium 

(Received 30 January 1980; accepted for publication 20 March 1980) 

Whereas the third paper in this series dealt with the algebraic structure of partial inner product 
(PIP) spaces, the present one explores systematically their topological properties. A slightly more 
restricted object is introduced, that we call an indexed PIP-space: it consists of a PIP-space 
together with a distinguished family of assaying subspaces. The upshot of the analysis is the 
characterization of two types ofindexed PIP-spaces, called type (B) and type (H), respectively, as 
th~ most likely candidates for. practical applications; they are simply lattices of Banach, resp. 
Hdbert spaces. Operators on tndexed PIP-spaces are discussed and conditions are given that 
guarantee that the domain of any such operator is a vector subspace. Finally, we examine the 
question of the existence of a central Hilbert space, in the case of a positive definite partial inner 
product. 

1. INTRODUCTION 

This paper is the fourth in a series devoted to the sys
tematic study of partial inner product (PIP) spaces (see Refs. 
1-3; these will be called I, II, and III, respectively, in the 
sequel). Parts I and II presented the basic definitions about 
the spaces and operators between them. Paper III in a sense 
reversed the perspective: Whereas the general definition of! 
used as only input a linear compatibility on a vector space V, 
it was shown in III that the same object may be obtained 
from a suitable lattice of subspaces of V. This made contact 
with earlier approaches like Gel'fand's4 and Grossmann's. 5 

In the present paper we shall continue the analysis of III. 
Whereas the latter was concerned with the algebraic struc
ture only (i.e., the compatibility relation), we will discuss 
here primarily the topological stucture given by the partial 
inner product (pip) itself. The aim is to tighten the defini
tions so as to eliminate as many pathologies as possible. The 
picture that emerges is reassuringly simple: Only two types 
of PIP-spaces seem sufficiently regular to have any practical 
use. Roughly speaking they consist of lattices of Hilbert or 
Banach spaces. 

Let us now sketch the contents of the paper in more 
detail. We will keep throughout the notations and terminol
ogy of I-III, and our standard reference on topological vec
tor spaces will be the textbook of Kothe. 6 In addition, for the 
convenience of the reader, we have collected in an Appendix 
most of the necessary, but not so familiar, notions needed in 
the text. 

The first step is to analyze a single dual pair (Vr , Vi') of 
assaying subspaces (Sec. 2). It turns out, the useful situation 
is that of a reflexive dual pair.6 Next we investigate the lattice 
generated, by intersection and vector sum, from two such 
reflexive pairs. First, in Sec. 3, we restrict our attention to 
pairs of Banach spaces. This is the typical framework of (ab
stract) interpolation theory,? which has in fact a great role to 
play in the development of PIP-space theory. But, when we 

'Postal Address: Institut de Physique Theorique VCL, Chemin du Cyclo
tron, 2, B-1 348-Louvain-La-Neuve (Belgium). 

try, in Sec. 4, to generalize the results to arbitrary reflexive 
pairs, no general conclusion can be reached, for too many 
pathologies are possible in the general setup. There is a way 
out, however. As the examples indeed show, the complete 
lattice Y of all assaying subsets is in general extremely large. 
Fortunately, as shown in III, the whole structure can be 
reconstructed from a fairly small sublattice f of Y, and on 
such a family of subsets it makes sense to impose additional 
restrictions, typically to contain only topological vector of 
the same type. In this way, we are led to a slightly more 
restricted structure, called an indexed PIP-space. Technical
ly it consists of a PIP-space with a distinguished rich sublat
ticefCY. Various conditions, mostly topological, can be 
imposed on that family f, which we explore systematically 
in Sec. 5. Two useful structures emerge: Indexed PIP-spaces 
of type (B), resp. type (H), where every Vrd is a reflexive 
Banach space, resp. a Hilbert space. Several examples, most
ly taken from III, illustrate the new concepts. At this point, 
of course, we have essentially returned to the philosophy of 
Grossmann's nested Hilbert spaces5 except for the condition 
of positivity ofthe pip. Before looking into that matter, we 
discuss briefly (Sec. 6) the notion of operator on an indexed 
PIP-space. In fact, it differs only in a simple and obvious way 
from the object defined in II: Its domain of definition is a 
union of elements of f, instead of general assaying subsets 
from Y. A useful result is a sufficient condition for that 
domain to be a vector subspace of V. Interestingly enough 
this condition is automatically satisfied for spaces of type (B) 
or (H). 

The last section is devoted to the so-called central Hil
bert space. If the pip is positive definite, whenever defined, a 
unique central subspace £" may be obtained as the Hilbert 
space completion of V #, in the norm defined by the pip, 
provided a simple condition of completeness is satisfied. 
Moreover, in most cases, either the reSUlting subspace is as
saying and self-dual, or the same result can be obtained by 
slightly refining (in the technical sense of III) the 
compatibility. 

Here also, this is automatic for spaces of type Band H, 
which shows once again that these are the most useful struc-
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tures for practical applications. Those results had actually 
been obtained previously in a particular case, in ajoint work 
with W. Karwowski. 8 

One may say, at this stage the groundwork is finished 
and the time has come for a deeper study of operators on 
indexed PIP-spaces, especially those operators that arise in 
quantum contexts, such as scattering theory or quantum 
field theory . Work in that direction is in progress and will be 
reported on later. Also interpolation theory finds here, in 
our opinion, a natural framework, which deserves further 
study. 

2. TOPOLOGIES ON DUAL PAIRS OF ASSAYING 
SUBSETS 

Let (V, #, (·1·») be a nondegenerate PIP-space. In this 
section we will focus our attention to a single dual pair 
( V" V,,) of assaying subsets. (In fact, we should speak of an 
antidual pair, but it makes no difference; see Schwartz9 for a 
full discussion). What are the possible topologies on V" V,,? 
In answering this question, we will follow mostly the termin
ology of Kothe6

; however, for a given dual pair (E, F), (J (E, 
F) will denote the weak topology on E, 7(E,F) its Mackey 
topology, and{3 (E,F) its strong topology (see the Appendix). 

From the compatibility (or lattice) point of view, there 
is perfect symmetry between V, and V". In any natural 
scheme, this feature should be preserved at the topological 
level as well. 

As stated in I, every assaying subset V, is endowed with 
its canonical Mackey topology 7 (V" V,,) and this will always 
be understood in the sequel, unless stated otherwise. We will 
write V, I T or even V, [ 7 (V" V,,)] if a danger of confusion 
arises. From this choice (perfectly symmetric with respect to 
V"V,,) it follows already that (see I): 

(i) the dual of V, is V,,; 
(ii) whenever Vp C Vq, the injection Eqp: Vp --+ Vq is con

tinuous and has dense range; 
(iii) V# is dense in every V" and every V, is dense in V. 
However, that is not sufficient for eliminating all patho

logies. For practical purposes, indeed, the Mackey topology 
7 (V" V,,) is rather awkward, or at least unfamiliar, unless it 
coincides with a norm or a metric topology. If a locally con
vex space E [T] with topology Tis metrizable, then Tcoin
cides with the canonical Mackey topology on E, i.e., 
T = 7 (E,E ') (but not necessarily with the strong topology 
fJ (E,E ')ifE [T] is not complete). Let us give two examples to 
emphasize the point. 

(i) Take the dual pair (rp,/ 2), with respect to the /2 inner 
product (rp is the space of all finite sequences); then 7 (rp,l2) is 
the 12-norm topology on rp, but it is coarser thanfJ (rp,/2) (see 
Ref. 6, Sec. 21.5), whereas 7 (/ 2 ,rp), although metrizable, is 
not a norm topology. 

(ii) Take (/1,1 00). Then7 (/ 1,1 OO)coincideswithfJ (11,1 00) 
and the /I-norm topology, but 7 (I 00 ,II) is weaker than the 
I oc-norm topology, and, indeed, is not metrizable. 

The origin of the difficulty is clear: rp [7 (rp,l2)] is a non
complete normed space, whereas 11[7 (11,/ 00)] is anonreflex
ive Banach space. Such pathologies are avoided if the dual 
pair (V" V,,) is reflexive, in the sense of Kothe/ i.e., if the 
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dual of V, 113 coincides with V" and vice versa. This is indeed 
equivalent with either (hence both) V, I T or V" I T being reflex
ive (a locally convex space E is called reflexive if it coincides 
with the strong dual of its strong dual; see the Appendix for 
further details, as well as for other, equivalent, characteriza
tions of reflexive dual pairs). In addition, each space of a 
reflexive dual pair is quasicomplete (i.e., closed bounded sets 
are complete) for the weak, the Mackey and the strong topol
ogy (the two last ones in fact coincide). We shall make use of 
this fact in Sec. 7. Typical instances of reflexive dual pairs are 
the following: 

(i) V, is a Hilbert space; so is then V,,: 
(ii) V, is a reflexive Banach space; so is then V,,; 
(iii) V, is a reflexive Frechet space; V" is then a reflexive 

complete (DF)-space6
; 

(iv) V, is a Montel space6
; so is then V". 

As we shall see in the sequel, these cases cover already most 
spaces of practical interest, in particular all spaces of 
distributions. 

Actually cases (i) and (ii) playa special role in the the
ory, for they have specially nice properties; we will study 
them systematically in Sec. 3 below. What distinguishes 
them from the others is metrizability. Indeed: 

Proposition 2.1: Let (V" V,,) be a reflexive dual pair. 
Then V, I T and V" I T are reflexive Banach spaces if and only if 
they are both metrizable. 

Proof The "only if' part if obvious. Let V, I T and V" I T 

be metrizable. By reflexivity, they are strong duals of each 
other, since 7 (V" V,,) = (3(V" V,,) and 7 (V",v,) 
= fJ (V"' V,). Hence they are both normable since the strong 

dual of a metrizable locally convex space can only be metri
zable if both are normable. Finally V, and V" are both 
normed spaces and reflexive, hence Banach spaces .• 

3. INTERPLAY BETWEEN TOPOLOGICAL AND 
LATTICE PROPERTIES: THE BANACH CASE 

Let (Vp,vp)' (Vq, Vij) be two reflexive dual pairs of 
assaying subsets, consisting of (reflexive) Banach spaces. 
What can be said about the pair ( Vp II q' Vpv ij)? By definition, 
Vpllq is the vector space VpnVq' and VpVij is (Vp + Vij)##' 
which a priori could be larger that Vp + Vij (usually they 
coincide, see Lemma 3.4 and Proposition 3.7 below). In or
der to appreciate the situation, we will introduce two auxil
iary spaces V[P.q I and V (fi,ij) (in the notation of Ref. 5), using a 
standard construction from interpolation theory 7 which we 
sketch now. 

Let Xa, Xb be two Banach spaces, which are both con
tinuously embedded in a HausdorffTVS X (two such Ban
ach spaces are called an interpolation couple; see Ref. 7), Let 
Xu Ell Xb denote their direct sum; it is also a Banach space, 
with norm II(f, g)11 = 1I!lla + Ilgllb' (lEXa' gEXb)' We con
sider the subspace X[a,b I of Xa Ell Xb which consists of all 
pairs of the form (f, -f) for somefEXanX'b' This subspace 
is obviously isomorphic to Xa nX'b and it is closed inXa EllXb , 

With the induced topology, we will denote X[a,b I by 
(XanX'b)proj' Indeed, the induced topology is precisely the 
projective limit (Appendix) of the two norm (= Mackey) 
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topologies on Xa, Xb. Thus (XanXb)proj is again a Banach 
space, with norm: 

(3.1) 

Next we define the quotient X(a.b)=(Xa ~Xb)/X[a.b J' As a 
vector space X(a,b) is isomorphic to the vector sum Xa + Xb· 
Equipped with the quotient topology, X(a,b) will be denoted 
by (Xa + Xb)ind' for it is precisely the inductive limit (Ap
pendix) of Xa, Xb with respect to the mappings 
Xa _Xa + Xb, Xb -Xa + Xb. It is again a Banach space, 
with norm (that the following expression is indeed a norm 
results from the continuous embedding of Xa, Xb into X7): 

(3.2) 

where the infimum is taken over all possible decompositions 
f = g + h, gEXa' hEXb; such decompositions are non unique 
as soon as XanXb #- [01. 

Proposition 3.1: Let Xa ,Xb be two Banach spaces, both 
continuously embedded in a Hausdorff space X. Then: 

(i) The two spaces (XanXb)proj and (Xa + Xb)ind are 
Banach spaces and the following inclusions hold, where. 
denotes a continuous injection: 

(XanXb)proj .{~:}.(Xa + Xb)ind' (3.3) 

(ii) The norms 11·lla and 11·lIb are consistent onXanXb: if 
!In IEXanXb is Cauchy in both norms andfn-O inXa' then 
fn-DinXb also. 

Proof Part (i) is clear from the discussion above. As for 
(ii) letXab la (resp. Xab [b) be the image of XanXb in Xa(resp. 
Xb) under the identity map. Denote by Eba the identity map 
Xabla-Xablb' The graph of Eba is exactly the setX[a,b J' 

which is closed in Xa ~Xb; thus Eba is a closed map, which 
means precisely that the norms 11·lla and 11·llb are consistent 
onXanXb' • 

Remarks: 
(i) If Xa and Xb are reflexive, so are (Xa nXb )proj and 

(Xa + Xb)ind' 
(ii) If Xa and Xb are Hilbert spaces, the same construc

tion goes through, using squared norms everywhere (see Ref. 
9). 

(iii) The construction above and Proposition 3.1 remain 
valid if Xa, Xb are assumed to be Frechet spaces. 

(iv) It is shown in Ref. 10 (Appendix to IX. 4) that the 
norms 1I·lIa and 1I·lIb are consistent on XanXb iff the expres
sion 1I'II(a,b) is a norm on XanXb and the idxntity ma.R on 
~ nXb extends to continuous injections of Xa, resp. Xb, into 
X(a,b» defined as the completion of XanXb under II.:Jja' resp. 
l.kllb' 1I·II(a~. When Xa nXb is dense inXa,Xb, thenXa = Xa, 
Xb =Xb,X(a,b) = (Xa +Xb)ind' 

Let now Xa' Xfj be the duals of Xa, Xb respectively. We 
assume now that XanXb is dense in Xa and in X b. It follows 
that Xa and Xfj can be embedded into (XanXb)~roj' i.e., 
[Xa,xfj I is also an interpolation couple (see Ref. 7). Then we 
have: 
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Lemma 3.2: Let Xa, Xb as above. Then: 
(i) The dual of (XanXb)proj isXa +Xfj. 
(ii) The dual of (X a +Xb)ind isXanXfj. 
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Proof The proof of both assertions results from the fol
lowing two observations: 

(i) The dual ofXa ~Xb isXa~Xfj. 
(ii) The closed subspace X[U,fj J of Xu ~ X fj is isomorphic, 

as a vector space, to the orthogonal space of X[a,b I' the iso
morphism being J = (~ ~Ol) in Xa ~Xfj .• 

We return now to the PIP-space Vand the two pairs of 
Banach assaying subsets (Vp' Vp ), (Vq, Vq) (they are neces
sarily reflexive, by Proposition 2.1. but the whole discussion 
that follows is independent of this fact). All four assaying 
subsets are continuously embedded into V, and VpnVq is 
dense in Vp and Vq. Hence [ VP ' Vq I and [ VP' Vq I are inter
polation couples and the construction above goes through. 
Thus. we get the following scheme (and the corresponding 
one for the duals, taking Lemma 3.2 into account), where all 
injections are continuous and have dense range: 

It will prove useful to introduce the following conditions for 
the couple Vp Vq: 

(PROJ) Vpllq IT=(VpnVq)proj (TVS isomorphism). 

(ADD) VpVq = Vji + Vq (as vector spaces), 

(IND) VpvqIT=(Vji + Vq)ind (TVS isomorphism). 

Lemma 3,3: Let Vp, Vq be Banach assaying subsets. 
Then (ADD) <=> (IND). 

Proof Let Vpv q = Vp + Vq. Then we have: 

(Vpllq,VjiVq)=(VpnVq,Vp + Vq)' 

Since Mackey topologies are inherited both by direct sums 
and by quotients, it follows that 'T (Vp + Vq' VpnVq) is the 
quotient topology inherited from Vp ~ Vq' that is the induc
tive topology on Vp + Vq; this means that VjiVq IT 
~(Vp + Vq)ind' The converse assertion is obvious .• 

Lemma 3.4: Let again Vp, Vq be Banach assaying sub
sets. Then (PROJ) implies (ADD). 

Proof The dual of Vpllq IT is, by definition, VpVq ' Then 
the result follows from Lemma 3.2. • 

Lemma 3.5: Let again Vp, Vq be Banach assaying sub
sets. Then (ADD) implies (PROJ). 

Proof Vp and Vq being Banach spaces, so is VpnVq un
der the projective topology. Therefore it carries its Mackey 
topology. namely, 'T (VpnVq, (VpnVq)~roj) = 'T (VpnVq, 
Vji + Vq)' which is 'T (Vpllq,VpVq) by the condition (ADD). 

• 
Summarizing Lemmas 3.3 to 3.5. we get: 

Proposition 3.6: Let Vp• Vq be Banach assaying subsets. 
Then all the conditions (PROJ), (ADD). (IND) are equiv
alent .• 

Remark: Proposition 3.5 remains true if Vp• Vq are only 
assumed to be Frechet spaces. Notice also that reflexivity 
has not been assumed although it will be satisfied in practice 
(compare Proposition 2.1). 

At this point. we must return to the general discussion 
ofIII. There we observed that, quite often, a linear compati
bility relation on a vector space V is defined in terms of an 
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involutive covering f of V, that is, an involutive lattice of 
subspaces of V(with set intersection as infimum). It is conve
nient to work with this family f only and forget the com
plete lattice Y of all assaying subsets it generates. Operators, 
in particular, are best studied in this restricted setup. This we 
will do systematically in Sec. 5 and 6 below. As in the general 
cases described in II, an operator A can be studied through 
its representatives Aqp : Vp - Vq, but this is helpful only if the 
corresponding assaying subsets Vp' Vq are sufficiently sim
ple, like Banach or Hilbert spaces. This will lead us to PIP
spaces defined by involutive coverings that consist of Banach 
or Hilbert spaces only. 

A further element of simplicity is that f be a sublattice 
of the lattice 2'( V) of all subspaces of V, i.e., that (ADD) 
hold for every couple of elements of f: 

VpVq = Vp + Vq, 'VVp' VqE.f'. (3.5) 

As we will see in Sec. 6 below, condition (3.5) implies that the 
domain !iJ (A ) of every operator A be a vector subspace of V. 
Thus it is desirable to find conditions that guarantee the va
lidity of Eq. (3.5). In view of Proposition 3.6, this is equiv
alent to requiring that (PRO]) hold for every couple of ele
ments of f. It turns out that the condition is always satisfied 
when f consists of Banach spaces only. Indeed: 

Proposition 3.7: Let Vp' Vq and VpJ\q IT be complete me
trizable (i.e., Frechet spaces). Then VpJ\q IT is isomorphic to 
(Vp n Vq )proj' that is, (PRO]) holds. 

Proof As vector spaces, VpJ\q = VpnVq. Hence VpnVq 
carries two distinct topologies for which it is metrizable and 
complete, namely, its Mackey topology (by assumption) and 
the projective topology. The latter is coarser; hence they co
incide [Ref 6, Sec. 15.12(7)] .• 

Corollary 3.8: Let V
P

' Vq be reflexive Banach spaces, 
and VpJ\q IT complete metrizable. Then (VpJ\q, VpVij ) 
= (Vpn Vq, Vp + Vij) is a reflexive dual pair of Banach 

spaces .• 

4. INTERPLAY BETWEEN TOPOLOGICAL AND 
LATTICE PROPERTIES: THE GENERAL CASE 

Let now (Vp, Vp ), (Vq, Vij) be two arbitrary dual pairs 
of assaying subsets. What about the pair (Vp J\ q' Vpv ij )? 

We proceed exactly as in the Banach case, by construct
ing first the auxiliary pair (Vp n Vq, Vp + Vij) with the pro
jective and inductive topologies, respectively. II The dual 
pair (Vp EB Vq, Vp EB Vij) is again reflexive. The subspace 
V[P,q J== VpnVq is closed in Vp EB Vq, as before. With the in
duced topology, we denote it again by (VpnVq)proj for the 
same reason. Similarly, (Vp + Vij )ind is the quotient of 
Vp EB Vij by its closed subspace VpnVij with the quotient, i.e., 
inductive, topology. Thus, we have the following continuous 
embeddings: 

VpJ\q [r(VpnVq,VpVijn~(VpnVq)[r(VpnVq,Vp + Vij)] 
~(VpnVq)proj' (4.la) 

(Vp + Vij)ind~VpVij[1"(VpVij,VpnVq)]. (4.1b) 

We can now repeat Lemmas 3.3 and 3.4, but not 3.5 in 
general. So, we get a weaker result. 

Proposition 4.1: Let (Vp' Vp ), (Vq, Vij) be two arbitrary 

2070 J. Math. Phys., Vol. 21, No.8, August 1980 

dual pairs of assaying subsets. Then, the following implica
tions are true: 

(PRO]) :::::? (ADD) ¢::> (IND) .• 

The difference with the Banach case lies in the fact that 
Mackey topologies are inherited by direct sums and by quo
tients, hence by inductive limits, but they are not inherited by 
subspaces (unless these are metrizable or dense), hence they 
are in general not inherited by projective limits. In other 
words, Lemma 3.5 holds in the general case only if 
( Vp n Vq )proj is metrizable, and then all three conditions 
(PRO]), (ADD), and (IND) are equivalent. 

Next we assume the two pairs ( VP' Vp ), (Vq, Vij) to be 
reflexive and look at the pair (VpnVq, Vp + Vij)' (VpnVq)proj 
is semireflexive, as a closed subspace of the reflexive space 
Vp EB Vq (Ref. 6, Sec. 23.3). Consequently its strong dual 
(Vp + Vij)/3 is barreled (Appendix). Hence we get the follow
ing picture (all topologies refer to the dual pair we consider 
here): 

(VpnVq)/3~(VpnVq)T ~(VpnVq)proj' 

(Vp + Vij)/3 = (VI' + Vij)ind = (Vp + Vij)T' 

(4.2a) 

(4.2b) 

In general nothing more can be said: It is quite possible 
that (VpnVq)T be semireflexive but not reflexive, and 
Vp + Vij not even semireflexive (Ref. 6, Sec. 23.6). We will 
exhibit an example below. Of course this cannot happen if 
VP' Vq are Frechet spaces. 

As for the pair (VpJ\q, VpVij ), no general conclusion can 
be drawn, since the right-hand side depends explicitly (as a 
vector space on the compatibility and cannot be character
ized a priori when condition (ADD) fails. This again sug
gests that the structure of PIP-space that we have used so far 
is too general. 

What about the pair (V #, V) itself'? Here one more 
piece of information is available, namely, a (generalized) 
condition (ADD), since we have 

V# = n Vr, V = L Vr· 
VrE, ':7 V,.-E./ 

(4.3) 

Each Vr is, as usual, assumed to carry its Mackey topology 
1" (Vr' Vi')' Then V # carries three natural topologies: the 
strong topology {3 (V #, V), the Mackey topology 1"( V #, V) 
and the projective limit of all the 1"( Vr, Vi') defined exactly as 
in the previous section. All three are in general distinct, but 
the last two give the same dual, namely, Vitself, whereas 
V # 1/3 could have a larger dual. Valso carries three natural 
topologies, namely, {3(V, V#), 1"(V, V#), and the inductive 
limit of the 1"( Vr, Vi')' but the last two always coincide since 
Mackey topologies are inherited by inductive limits. Thus 
the general picture is the following (with the same notation 
as above): 

V# 1/3~ V # IT ~ V# Iproj' 

VI/3~Vlind = VIT' 

(4.4a) 

(4.4b) 

Of course, this by no means implies that the pair ( V #, V) be 
reflexive, since V IT need not even be semireflexive. Similiar 
pathologies have been noticed by Friedrich and Lassner, in 
their study of rigged Hilbert spaces generated by algebras of 
unbounded operators. 12 
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We will now conclude this section with an example, 
taken again from Ref. 6 (Sec. 30.4), which illustrates how 
bad the situation can be in general. Let, as usual, 
0.> = Ilr= 1 C(o be the space of all complex sequences, with the 
product topology, and ip = ~r= 1 C(,) the space of all finite 
sequences, with the direct sum topology. Then (o.>,ip) is a 
reflexive dual pair, where 0.> is Frechet, ip is complete (OF), 
and both are Montel spaces. Then one considers the space of 

arbitrary double sequences (a,j)' 0.>0.> = Ilr= 10.>(0; one de
fines similarly o.>ip = Ili= lipW' ipo.> = ~i= 10.>(0 and 
ipip = ~;"'=' lip(O' Exactly as 0.>, the space 0.>0.> carries a natural 
PIP-space structure [(aij)#(b,)<=>.Ii,j laijbij 1< 00 ], for 
which (0.>0.»# = ipip, (o.>ip)# = ipo.>, (ipo.»# = o.>ip, (ipip) # 

= 0.>0.>. The intersection ipo.>r'Wip coincides with ipip as vector 
space, hence (ipo.>r'Wip)# = 0.>0.>. On the other hand, (ipo.»# 

+ (o.>ip)# = o.>ip + ipo.>#o.>o.>. Thus condition (ADD) fails. 
Condition (PROJ) fails also, as can be seen easily: on ipip the 
Mackey topology r(ipip,o.>o.» = f3 (ipip,o.>o.» is strictly finer 
than the projective topology induced by ipo.> Ell o.>ip. Finally it 
can be seen that (ipU>r'Wip)proJ is semireflexive as closed sub
space of the reflexive space ipo.> Ell o.>ip, but not reflexive and 
not barreled (hence not Montel), whereas (wip + ipo.»ind is 
barreled but not semireflexive, a fortiori not Montel (Ref. 6, 
Sec. 31.5). 

The lesson of the example is clear. The PIP-space w (or 
ww, since they are isomorphic) contains a rich lattice / of 
Hilbert spaces, the family of all weighted 12 -spaces described 
in (III). Sec. 3.A, for which all conditions (PROJ), (ADD), 
(lND) hold. But it also contains bad assaying subsets ipW and 
(Uip for which all three conditions fail and the regularity 
properties are lost. So why not exclude such pathological 
assaying subsets and concentrate instead on the nice rich 
lattice /? The important point is that nothing is lost in this 
restriction, since the compatibility is fully recovered from 
/, by the very definition of richness. In fact, concentrating 
on a fixed rich subset is exactly like describing a topology in 
terms of a fixed, convenient, basis of neighborhoods instead 
of considering explicitly arbitrary open sets. These consider
ations motivate the next section. 

5. INDEXED PIP-SPACES 

In III we have established the basic equivalence be
tween a compatibility relation # on a vector space Vand an 
involutive covering .f of V, i.e., a rich involutive sublattice 
of Y(V, #). We have also exhibited several examples of 
such involutive coverings, consisting entirely of Hilbert 
spaces. We will now systematize this idea as a way of elimi
nating pathologies such a those of the example above. First, 
we define the basic concept. 

Definition 5.1: By an indexed partial inner product space 
we mean a triple (V, 5, ('1'»' where Vis a vector space, 5 
an involutive covering of Vand (,1,) a Hermitian form de
fined on those pairs of vectors of V that are compatible for 
the associated compatibility # f . 

Equivalently, an indexed PIP-space consists of a PIP
space (V, #, (,1,» together with a rich involutive sublattice 
/ of Y (V, #). For convenience, we will denote the indexed 
PIP-space (V, /, (.,.» simply as VI' whereIis the iso-
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morphy class of /, i.e., / considered as an abstract partial
ly ordered set (this notation was already introduced in I). 
Thus 5 = [ Vr ,rEI }. 

The two concepts are closely related. Given an indexed 
PIP-space VI' it defines a unique PIP-space, namely, (V, 
#.f' ('1'»' with Y(V,#.f) the lattice completion of /. 
And a PIP-space is a particular indexed PIP-space for which 
5 happens to be a complete involutive lattice. 

Remark: (1) Although an indexed PIP-space generates 
a unique PIP-space, the converse is not true. Let # be a 
compatibility on V. Then each involutive sublattice of 
Y(V,#), ifit is rich, defines an indexed PIP-space that gen
erates the same PIP-space. Actually, the set of all involutive 
sublattices of Y is itself a complete lattice for the following 
operations: 

5 11\52 = /1r\F2' 

/1 V /2 = sublattice generated by /1 and /2' 

If / 1 and /2 are distinct and both rich, /1 1\ /2 might be 
nonrich, even empty [see Remark (2) below], but/I V /2 is 
rich a fortiori, hence corresponds to another indexed PIP
space. 

(2) In general an involutive convering of V need not 
contain the extreme elements of Y, i.e., V# and V. These, 
however, are always implicitly present, since they can be 
recovered from / = [ Vr , rEI } : . 

(5.1) 

Thus it may happen that the intersection.f 1r\F 2 of two rich 
sublattices /1 and /2 is empty, that is, they have no com
mon element, although all elements of / 1 and /2 contain 
V# and verify Eq. (5.1). 

The case of interest is when a given involutive covering 
5 consists of topological spaces of the same type. Then rela
tions (5.1) will imply better properties for V# and V, 
equipped with their Mackey or projective, resp. inductive, 
topology; similarly, we will then be able to improve the re
sults of Sec. 4 about a given couple VP ' Vq (p, qEl). 

For that purpose it is useful to introduce some addition
al terminology. 

Definitions 5.2: An indexed PIP-space VI is said to be: 
(i) additive, if condition (ADD) holds throughout I, 

VpVq = Vp + Vq, Vp,qEl [or / is a sublattice of .2"(V)]; 
(ii) projective or tight, if condition (PROJ) holds 

throughout I, 

Vpl\q IT~(VpnVq)proj' Vp, qEl; 

(iii) reflexive, if (Vp , Vi» is a reflexive dual pair, for ev
ery pEl. 

As we know already by Proposition 4.1, a projective 
indexed PIP-space is always additive. Next we draw some 
easy consequences of reflexivity. 

Proposition 5.3: Let VI be a reflexive indexed PIP-space. 
Then V #, with either its projective topology or its Mackey 
topology, is semireflexive and weakly quasicomplete, and V 
is barreled. 

Proof: Every Vr is reflexive, a fortiori semireflexive. 
V # I proj is semireflexive as projective limit of semireflexive 
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spaces (Ref. 6, Sec. 23.3), thus V#IT is also semireflexive; 
semireflexivity is equivalent to weak quasicompleteness and 
also to the (common) Mackey dual V I T being barreled: V lind 

= VIT = VI{3·. 
Notice that reflexivity of VI is not sufficient to imply 

that ( V #, V) be a reflexive dual pair, for V # I T could still be 
semireflexive and nonreflexive. What is missing is V # I T be
ing barreled, i.e., V # I T = V # 1{3. One way of avoiding the 
difficulty is to require V # to be metrizable. 

Proposition 5.4: Let VI be reflexive and V#lproj be me
trizable. Then (V#, V) is a reflexive dual pair, with V# a 
Frechet space. 

Proof The assumptions imply that V # I proj is both se
mireflexive and metrizable. That is possible only if it is com
plete, hence a Frechet space. A semireflexive Frechet space 
is necessarily reflexive, and so is its strong dual. • 

For the case described in Proposition 5.4, all three topo
logies of relations (4.4) coincide on V #, and similarly for V; 
in addition, both spaces are complete. However, from the 
fact that (V #, V) is a reflexive dual pair, we can conclude 
only that V#IT is barreled, i.e., V#IT = V#I{3; the projec
tive topology on V # could still be coarser: Such was the case 
in the reflexive pair (qxp, fJ)fJ) in the example of Sec. 4. Also 
V # I T and V I T are then quasicomplete, but not necessarily 
complete. Fortunately, quasicompleteness of V I T is suffi
cient for the two arguments where a completeness result is 
needed: The existence of a central Hilbert space, to be dis
cussed in Sec. 7, and the identification of the algebra of good 
operators with an algebra of unbounded operators in that 
Hilbert space, discussed in Ref. 13. 

Thus reflexivity of an indexed PIP-space is not suffi
cient by itself. Actually the discussion ofSecs. 2 and 3 shows 
that, among reflexive dual pairs, those consisting of reflexive 
Banach spaces (in particular, Hilbert spaces) are the only 
ones that are really compatible with the lattice structure. 
Hence it is worthwhile to give a separate name to the corre
spondingindexed PI!'-spaces. 

5.5 Definitions: A reflexive indexed PIP-space VI is said 
to be of type (B) if every Vr , rE I, is a reflexive Banach space; 
of type (H), if every V" rE I, is a Hilbert space. 

Applications show, in fact, that only these two types are 
useful in practice. They enjoy much better properties, as fol
lows from the next proposition. 

Proposition 5.6: Let VI be an indexed PIP-space of type 
(B). Then: 

(i) VI is projective, hence additive; 
(ii) If, in addition, I is countable, V # I proj is metrizable 

and (V #, V) is a reflexive dual pair. 
Proof Part (i) results from Propositions 3.6 and 3.7. As 

for (ii), it follows from the fact that the projective limit of a 
countable family of Banach spaces is a Frechet space, and 
Proposition 5.4 .• 

If VI is an indexed PIP-space of type (H), with I count
able, then V is a countab/y Hilbert space, in the terminology 
of Gel'fand-Vilenkin.4 This particular case has been dis
cussed in a joint work with W. Karwowski. 8 For VI of type 
(H), with I arbitrary, V# is a quasi-Hilbert space, in the 
sense of Hirschfeld. 14 
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We will now conclude this section with a number of 
examples of indexed PIP-spaces of type (H) or (B). 

A. Examples: Indexed PIP-spaces of type (H) 
1. Chains of Hilbert spaces 

The standard concept of a chain of Hilbert spaces, de
veloped by Krein and Petunin 15 and by Palais,16 obviously 
fits in here: A chain I Vk , kE Z or R J of Hilbert spaces, such 
that Vk C VI for k> / with continuous injection, and V _ k 

being the antidual of Vk • Typical examples of this structure 
are the Sobolev spaces, the space s/ of slowly increasing se
quences and the space Y/ of tempered distributions, for in
stance in Bargmann's realization ~/ = lim ind pE R Y P [see 
III or Ref. 17]. In the continuous case (kE R), the projective 
topology on V # may clearly be defined by a cofinal count
able subset of R, such as Z, so that V # I proj is still metrizable 
and Proposition 5.4 applies. These chains, as well as the cor
responding PIP-spaces, have been discussed in III, see Sec. 
3.e. 

2. Sequence spaces: Weighted 12-spaces 

A very simple example of indexed PIP-space oftype (H) 
is given by the lattice of weighted /2-spaces, described in III, 
Examples 3.A and 4.A. Let V = w, 
.f = !l2(r)lr = (rn)l<n< ,,In >OJ. The lattice operations 
and the involution on .f are defined by the relations 

/2(r) 1\ /2(S) = e(p), with Pn = min I rn 'Sn J, 
/2(r)V/2(s)=/2(q), with qn = max Irn,snj, 

[l2(r)]# =/2(f), with rn =rn-
I

• 

All conditions are manifestly satisfied, and VI is of type (H), 
in particular it is projective and additive. One has indeed 

/2(p) = e(r) n e(s), 

/2(q) = /2(r) + /2(S). 

Straightforward estimates show the equivalence of the rel
evant norms: 

Ilxll~ -llxll;i\S = Ilxll; + Ilxll; 

Ilxll~ -llxli;v\ = inf (llYll; + Ilzll;) 
x=y+z 

3. Spaces of locally integrable functions: Weighted L 2_ 
spaces 

A similar analysis holds in L lloe (X,,,,) for the family 
.f = I L 2(r) I r ",-measurable and a.e. positive, rand r - I 

E L lloe (X,,,,) J discussed in III, Example 4.B. 

4. Nested Hilbert spaces 

A nested Hilbert space, as defined by Grossmann,5 is an 
indexed PIP-space of type (H), which satisfies two addition
al conditions: The partial inner product is positive definite, 
and there exists a central, self-dual Hilbert space. We will 
study these conditions in detail in Sec. 7 below. 

J. -Po Antoine 2072 



                                                                                                                                    

B. Examples: Indexed PIP-spaces of type (B) 

1. Chains of Banach spaces 

As in Sec. 5.A.I above, for the case of reflexive chains of 
Banach spaces, discussed at length in III, Sec. 3.e. 

2. Normed K(jthe spaces 

A nontrivial (Le., not a chain) example of indexed PIP
space of type (B) has been studied by Luxemburg and 
Zaanen 18 under the name of normed Kothe spaces. Since it is 
highly instructive, we feel it worthwhile to discuss it exten
sively. We will begin by repeating the basic definitions. 

Let (X,J-l) be a a-finite measure space, M + the set of all 
measurable, non-negative functions on X, where two func
tions are identified if they differ at most on a J-l-null set. A 
function norm is a mappingp: M + ....... R such that: 

(i) 0< p(f)< 00, V fE M + andp(f) = 0 ifff = 0; 

(ii) P(fl + f2)< P(fl) + P(f2)' V fl,hE M +; 

(iii)p(af)=ap(f), VfEM+, Va>O; 

(iv)fl<f2-::::::?p(fI)<p(f2)' V flJ2EM +. 

A function norm p is said to have the Fatou property iff 
0<fl<f2< .. ·JnEM + andfn---+fpointwise, impliesp(fn) 
-+p(f). 

Given a function norm p, it can be extended to all com
plex measurable functions on X by defining p(f) = p( I f I). 
Denote by L p the set of all measurablefsuch thatp(f) < 00. 

With the norm II f II = p(f), L p is a normed space and a 
subspace of the vector space V of all measurable, J-l-a.e. finite, 
functions on X. Furthermore, ifp has the Fatou property, 
L p is complete, i.e., a Banach space. This is a generalisation 
of the spaces L P(X,J-l), which correspond to 
p(f) = (f If I P dJ-l)11 Pfor 1< p < 00 andp(f) = suplfl for 
p= 00. 

A function norm p is said to be saturated if, for any 
measurable set ECX of positive measure, there exists a mea
surable subsetFCEsuch thatJ-l(F) > 0 andpU'F) < 00 U'F is 
the characteristic function of F). 

Letp be a saturated function norm with the Fatou prop
erty. Define: 

p'(f) = sup { f Ifgl dJ-l;p(g)<I}. (5.2) 

Thenp' is a saturated function norm with the Fatou property 
andp"==:(p')' = p. Moreover, one has also: 

(5.3) 

In our language these results can be restated as follows. The 
vector space V of all measurable, a.e.-finite functions on X 
carries a natural PIP-space structure, with compatibility 

f#g~ f Ifgl dJ-l< 00, 

and partial inner product 

(fig) = f JgdJ-l. 

(5.4) 

(5.5) 

Vis clearly the largest space on which the pip (5.5) may be 
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defined, but it is too large: indeed, V # = {O} and the pip is 
degenerate. However, there are plenty of subspaces of V 
which are nondegenerate, such as L loc' L ~oc orthe space of 
Gould 19 to be defined below. Furthermore, for each p as 
above, L p is a Banach space and L p' = (L p)#, i.e., each L p 
is assaying. The pair (L p ,L p' ) is actually a dual pair, al
though (V#,V) is not. 

However, L p' is in general only a closed subspace of the 
Banach dual (L p)" thus the Mackey topology T(L p ,L p' ) is 
coarser than thep-normtopology, which is T(Lp,(Lp)')' 
This defect can be remedied by further restrictingp. A func
tion norm p is called absolutely continuous if pifn) '" 0 for 
every sequencefnE L p such thatfl> h>~" ",0 pointwise a.e. 
on X. For instance, the LebesgueL P-norm is absolutely con
tinuous for 1< p < 00 but the L 00 -norm is not! Also, even if p 
is absolutely continuous, p' need not be. Yet, this is the ap
propriate concept, in view of the following results: 

(i) L p' = (L p)' iff P is absolutely continuous; 

(ii) L p is reflexive iff p and p' are absolutely continuous 
and have the Fatou property. 

Let us denote by J the set of saturated, absolutely con
tinuous function norms p On X, with the Fatou property and 
such that p' is also absolutely continuous. Then, for every 
pE J, (L p ,L p' ) is a reflexive dual pair of Banach assaying 
subs paces of (V, #, (,1,», All that remains to do in order to 
get an indexed PIP-space of type (B) is to restrict the pip to a 
nondegenerate subspace and perform the lattice construc
tion of Sec. 3. Now the last point is in fact already done: 

Lemma 5.7: The set J is an involutive lattice with re-
spect to the partial order PI < P2 iff PI(f)< plf), V fE V. 

The lattice operations are the following: 

(PI V P2)(f) = max { PI(f),P2(f)} , 

(PIA P2)(f) = inf{ PI(fI) + P2(f2);/I,hE M + , 

fl+f2=lfl}, 

involution: p - p' 
Proof Let PI' P2E J; so are p; ,p;. First we show that 

PI V P2 is a saturated norm. It is obviously a norm. Suppose 
it is not saturated, i.e., there exists a measurable set E of 
positive measure, such that (PI V P2) U'F) = 00 for every 
measurable subset FC E of positive measure. Thus for every 
such FC E, PI U' F) = 00 or P2U' F) = 00. Since p I is saturat
ed, there is a set G C E such that p I U' G) < 00 and for every 
G I C G, PI U' G, ) < 00. This implies that P2U' G, ) = 00 for ev
ery such GI and this is impossible for a saturatedp2' 

Next is it always true (Ref. 18, Problem 71.2) that 
(PIA pJ' = p; V p;, although PI A P2 as defined could be 
only a function seminorm [i.e., p(f) = ()-::h f = 0]. Howev
er,since p; V p; is a saturated norm, it follows from this 
equality that PI A P2 is one also (Ref. 18, Theorem 71.4). 
Sincepi andp2 are absolutely continuous, so are all the oth
ers. Thus L( p, f( p,)' = (Lp, /\ p,)' is reflexive, and, therefore, 
L p , II p, is reflexive also, which implies that PIA P2 has the 
Fatou property. Sincepi V P2 also has the Fatou property, 
like any supremum (Ref. 18, Theorem 65.4), the proof is 
complete. • 

It is clear from the construction that we have recovered 
the general situation, for we have the relations 
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L p, v p, = (Lp, nLp, )proj' L p,/\ p, = (L p, + L p, )ind . 

It is interesting to notice that for any p" P2E J, the P I norm 
and the P2 norm are always consistent on L p, n L p,' since 
p,A P2 is a norm. 

Finally, for any sublattice I of J, define the space VI 
= ~pE IL p; thus VI # = npE IL p' Then we have: 

Proposition S.8: Let Vbe the vector space of all measur
able, a.e. finite functions on the C7-finite measure space (X,Il). 
With the compatibility (S.4) and pip (S.S), Vbecomes a de
generate PIP-space. Denote by J the involutive lattice of all 
saturated, absolutely continuous function norms P on X, 
which have the Fatou property and are such that p' is also 
absolutely continuous. Let Ibe any involutive sublattice of J 
such that: 

(i) VI - r L p is an assaying subset of V; 
pEl 

(ii)(VI#)l= (OJ. 

Then VI with the PIP-space structure induced by V is a 
nondegenerate indexed PIP-space of type (B). • 

An interesting example is the following. Take (X,Il) to 
be lRn with Lebesgue measure, as in III Example 4.B, and put 
VI = L I'oe· Then VI # = L ~mp and the two conditions above 
are verified. The corresponding set I is easily characterized: 
pE J belongs to I iff L peL I'oe with continuous injection. If 
we write X = ujKj,Kj compact, thenL loe can be represented 
as 

'" Lloe(Rn,dnx)= n L'(Kj,dnx). 
j=' 

With the projective topology, L loe becomes a Frechet space, 
with dual 

'" 
L~mp(lRn,dnx)= U L"'(Kj,dnx). 

j=l 

Then L peL loe with continuous injection, iff p satisfies the 
following set of conditions: 

i Ifldnx<,cjp(f) for eachj= 1,2,···. 
K, 

For instance, a weighted L 2-space L 2(r) satisfies this condi
tion if rE L loe' with cj = [S K/ d nx )'12. It is thus clear that 
the family {L p' pE I J is rich in L lloe' since it contains the rich 
subfamily (L 2(r), rand r - IE L lloe J. 

3. L P -spaces 

Another example of the construction given in Proposi
tion S.8 is the lattice generated by the spaces L P(X,Il), 
1 < p < 00. Indeed, each L P norm is saturated and absolute
ly continuous and has the Fatou property. 

Corollary S.9: Let (X,Il) be a C7-finite measure space. 
Then the family (L P(X,J.l), 1 < p < 00 J generates an indexed 
PIP-space of type (B) with the compatibility (S.4) and theL 2 

inner product. • 
Remember that if Il(X) = 00 and Il has no atoms, no 

twoL P spaces are contained in each other, butL PnL 'eL q 

for all q such that p<,q<,r. Hence, we get a genuine lattice in 
that case. 
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What aboutthe spacesL 'andL "'?They are not reftex
ive since the L '" -norm is not absolutely continuous; hence 
they do not belong to any VI' But if they are added by hand, 
an interesting result follows, which is due to Gould.'8.19 He 
introduces the following norm: 

Po(f) = s~p { L I f I dll ; Il(E) = I}. 
Then: 

(i) Po has the Fatou propety (since it is a supremum of 
function norms that have it), hence L po is a Banach space; 

(ii) L po = (L ' + L "')ind' (L p~ = L In L "')proj; 

(iii) U L P is properly included in L . 
I<p<~ po 

So, exactly as for the chain {L P [0,1], 1<, p<, 00 J discussed 
in III, Example 3.B, thefamily (L P(X,J.l), l<,p<,oo J gener
ates a lattice with extreme elements L p and L ., The com-

o Po 

pletion of that lattice can easily be described along the same 
line, using again the results of Davis et al. quoted in III. 

6. OPERATORS ON INDEXED PIP-SPACES 

In II we have defined operators on PIP-spaces. That 
definition can be adapted in an obvious fashion to indexed 
PIP-spaces. For the convenience of the reader, we state the 
new definition in full. 

Definition 6.1: Let VI and Y K be two nondegenerate 
indexed PIP-spaces, A a map from a subset 9 (A ) e V into 
Y. We say that A is an operator if: 

(i) 9 (A ) is a nonempty union of elements of f: 

D(A )el. 
rED(A) 

(ii) For every rE D (A ), there exists bE K such that the 
restriction of A to V, is a continuous linear map into Yb • 

(iii) A has no proper extension satisfying (i) and (ii). 

Exactly as before we denote by Op (VI' Y K ) the set of all 
such operators. For agivenAE Op (VI'YK ),J(A) is the set of 
all pairs {r,b JE I XK such that A maps V, linearly and con
tinuously into Y K' The domain of A is D (A ) = {rE I 13bE K 
such that (r,b JE J (A) J, its range isR (A ) = {bE K 13rE Isuch 
that I r,b J E J (A ) J. For each {r,b J E J (A ), the continuous 
linear map A br : V, -+ Yb is the corresponding representative 
of A. Thus the whole machinery of representatives can be 
developed, as was done in II and previously by Grossmann5 

for nested Hilbert spaces. The only difference with II is that 
here the extreme spaces V #, Yare omitted, since they usual-
ly do not belong to f, resp. %. This does not change any
thing: since the embeddings V # I T -+ Vr and Yb -+ Y I Tare 
continuous for every rE I, bE K, the extreme representative 
A: V # -+ Y always exists. 

Remark: The use of the set J (A ) is in fact much older, 
especially in the context of L P spaces; a systematic presenta
tion can be found in the monograph of Krasnoselski et al., 20 

where J (A ) is called the L-characteristic of A. 
In this section we will study the lattice properties of the 

threesetsJ (A ),D (A ),R (A ),foragivenAE Op(VI,YK ). First 
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we consider I XK. Given any two involutive lattices Land 
L /, their Cartesian product carries a natural oartial orcip.r: 

{x,x/J;;.{y,y/J iff x..;y and x/..;y/. 

With that order, L XL / is in fact an involutive lattice with 
respect to the following operations: 

{x,x/J!\ {y,y/J = {xV y,x/!\ y'J, 

{x,x/J V {y,y/J = [x!\ y,x/V y'J, 

[x,x/J = [x,x/J. 

Thus given to indexed PIP-spaces VI' YK , the product I XK 
is an involutive lattice. From the definition we conclude 
immediately: 

Lemma 6.2: LetAE Op (VI,YK). Then: 

(i) J (A) is a final subset of I XK. 

(ii) D (A ) is an initial subset of I. 

(iii) R (A ) is a final subset of K. • 
It follows that J (A ) and R (A ) are always V -stable and 

directed to the right, whereas D (A ) is always !\ -stable and 
directed to the left. This property of J (A ) is to be contrasted 
with the behavior of the set J(f)CIfor a given IE V: 
J(f) = {rE I I IE Vr J .J(f)isalwaysasublatticeof/,inpar
ticular it is always !\ -stable, whereasJ (A) is not. Indeed, let 
A map Vr into Yb and Vq into Yc continuously, that is {r,b J 
and {q,c J are in J (A ); this of course does not imply that A 
maps VrV q into Yb/\ c' which is {r,b J !\ {q,c J E J (A ). On the 
contrary, {r,b J and {q,c J in J (A) implies {r!\ q, b V c J 
= {r,b J V { q,c J E J (A ). In fact J (A ) is never a sublattice of 

I X K, even if the only assaying subsets are V # and V. Indeed 
letA map continuosuly V # into itself, and Vinto itself. Then 
alortiori, it maps V# !\ V = V# into V# V V = V but not 
the converse! Yet J (A) characterizes the behavior of A, as 
J (f) does fori: the bigger J (A ), the more regular the opera
tor A. 

For the domain D(A ) and the rangeR (A ),however, the 
situation can be improved. According to Definition 6.1, the 
operator A is defind on the set i» (A ) = urE D (A) Vr and such 
a union of vector subspaces need not be a vector subspace of 
V. A sufficient condition is that D (A ) be directed to the right, 
alortiorithatD (A) be V -stable. Indeed,letl ,gE i» (A ), with 
I E V p' gE Vq, p,qE D (A ). If D (A ) is directed to the right, p 
and q have a common successor ZE D (A ), i.e., V p ~ Vz and 
Vq ~ Vz • Hence V p + Vq ~ Vz , or A. I + IlgE Vz C i» (A ), 
'tJA.,J-lE C. 

It is of course desirable that every operator on the PIP
space have a vector subspace as domain of definition. A suffi
cient condition is found easily with the results of Sec. 5. Let 
AE Op(VI,YK)and {p,aJ, {q,b JEJ(A ).Alortiori[ p,aV b J 
and { q,a V b J belong toJ (A ), that is, A maps both V p and Vq 
continuously into Ya Vb' Thus it can be extended by linearity 
to a continuous map from their inductive limit (V p + Vq)ind 
into Ya Vb' Since (V p + Vq ) need not be assaying, we cannot 
conclude, unless of course V p + Vq = V p v q' In a similar 
fashion, [ p !\ q,a J and [ p!\ q,b J belong to J (A ). Thus A 
maps V p /\ q continuously into Ya and Yb , hence also into 
their projective limit (YanYb)proj . Again, since the Mackey 
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topology on YanYb might be strictly finer than the projective 
topology, this does not imply that A: V p /\ q - Ya /\ b is con
tin uous, unless the two topologies coincide on Ya n Yb • So we 
have proved: 

Proposition 6.3: Let VI' YK be two indexed PIP-spaces, 
A any operator from VI into YK • Then: 

(i) If VI is additive, the domain D (A ) is a sublattice of I; 
in particular, the set i» (A ) is a vector subspace of V. 

(ii) If Y K is projective, the range R (A ) is a sublattice of 
K. • 

Corollary 6.4: Let VI be of type (B) or (H), and Y K 
arbitrary. Then the domain of definition i» (A ) of any opera
tor A from VI into Y K is a vector subspace of V. • 

Remark: Let again { p,a J, {q,b J E J (A ). Then VI addi
tive implies { p V q, a V b J E J (A) and YK projective implies 
( p !\q, a!\ b JE J(A ), but this dOes not mean that J(A ) is a 
sublattice of I X K. Assume now that all four pairs { p,a J, 
{ p,b 1. {q,a J, {q,b J belongtoJ(A ). If VI is additive and YK is 
projective, itfollowsthatA maps V pVq = (Vp + Vq)ind con
tinuously into Ya/\b = (YanYb)proj, i.e., {p V q, a!\ b J 
E J (A ). Of course, this still does not imply that J (A ) be !\
stable and a sublattice. What this argument does give, in fact, 
is a three-line proof of Proposition 4.4 of Ref. 5! 

7. THE CENTRAL HILBERT SPACE 

In most examples studied so far, the (indexed) PIP
space Vhas two additional properties: 

(i) The pip (,1,) is positive definite, in the sense that 
(I I I) > 0 for every nonzero, self-compatible IE V; equiv
alently the identity operator 1 is positive. 

(ii) There exists a unique, self-dual assaying subset 
Vo = Va, which is a Hilbert space, namely the completion of 
V# in the norm 11/11 = (III) 1/2 (which we will call the 
pip-norm). 

In this section, we will assume the positivity condition 
(i) and see to what extent it implies (ii). First, it follows from 
(i) that (V#,II'II) is a pre-Hilbert space (the same is true for 
every assaying subset Vr such that Vr ~ V,). As such it ad
mits a unique completion JIl", but a priori there is no reason 
why JIl" could be identified with a subspace of V, and even 
less that it should be an assaying subset. Conditions ensuring 
these two properties will be given below, for a general (in
dexed) PIP-space. These results generalize those obtained 
previously8 for the case where Vis a countably Hilbert space, 
in the sense of Gel'fand.4 

As in the latter case, the argument is based on a result of 
L. Schwartz,9 namely, Hilbertian subspaces of V correspond 
one-to-one to the so-called positive kernels. In this terminol
ogy, a kernel is a weakly continuous (hence Mackey continu
ous) linear map from V# into V, i.e., the restriction to V# of 
an operator on V. A Hermitian kernel is the restriction of a 
symmetric operator (A = A *). A positive kernel corresponds 
to a positive operator. The first result concerns the existence 
of the central Hilbert space JIl". 

Proposition 7.1: Let Vbe an (indexed) PIP-space with 
positive definite pip. Assume there exists an assaying subset 
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Vr such that Vr k: Vi' and Vi' is quasicomplete in its Mackey 
topology. Then, the completion cW' of V # in the pip-norm is 
a dense subspace of V, and we have 

V#k: Vrk:cW'k: Vrk: v. 
Proof The spaces Vr and VI' are dual to each other and 

VI' is quasicomplete. Hence the pair (Vr' VI') satisfies the 
general conditions of Ref. 9. By assumption the identity map 
1: Vr ---+ Vi' is a positive kernel. Hence, by Proposition 10 
and Sec. 10 of Ref. 9, it corresponds to a unique Hilbertian 
subspace cW' of VI" which is the completion of the pre-Hil
bert space (Vr,II'II) and is dense in VI" Alortiori, we get 
V # k: Vr k: cW' k: VI' k: V, and the statement follows. • 

Remark: Proposition 7.1 certainly holds if Vi' is a Hil
bert space; therefore, condition (14) of Ref. 5 is always 
satisfied. 

Before going further let us mention a few cases where 
the proposition applies. 

(1) (V#, V) is a reflexive dual pair, which implies that 
V is Mackey-quasicomplete. Typical examples are PIP
spaces of distributions, such as V = y' or fJ)'. Notice that 
under the same condition of Mackey-quasicompleteness of 
V, the *-algebra of good operators on V (a good operator is an 
operator that maps both V # and V continuously into them
selves) is isomorphic to the canonical *-algebra of unbound
ed operators!f + (V#), as defined by Lassner (see Refs. 12 
and 13). 

(2) VI is reflexive, in particular of type (B) or (H): given 
any assaying subset Vp(pE I), the pair (V p/\ p' Vpv p) is re
flexive and verifies the conditions of Proposition 7.1. Plenty 
of examples have been given. 

(3) The following counterexample is instructive. Let 
(X,j.l) be a measure space such thatj.l(X) = 00 andj.l has no 
atoms, as in Example S.B.3. The spaces L p are not compara
ble to each other, but the family! L InL p,l..;; p..;; 00 J is a 
chain. With the compatibility inherited from L 2, we get 
(L InL P)# = L InL q and (L InL 2)# = L InL 2. However 
none of them is Mackey-quasicomplete, nor even sequential
ly complete. Indeed, on L InL P the topology 
1"(L InL P,L InL q) is strictly coarser than 1"(L InL P,L q); but 

this is just the L P -norm topology, for which L InL P is not 
(sequentially) complete, its completion being L p. Let (f n) 
E L InL P be a sequence that converges, in theL P norm, to an 
element/EL Pwhich does not belong toL InL p. Thus(fn) 
converges also for the coarser topology 1"(L lnL P,L lnL q). 
Now,ifL InL Pweresequentiallycompleteforthattopology, 

the limit/of (f n) would belong to L InL P, contrary to the 
assumption. Hence (L InL P) (7(L InL P,L InL q)] is not se
quentially complete, alortiori not quasicomplete or com
plete. Indeed, the completion of V # = L InL 00 in the pip
norm, i.e., the L 2-norm, is L 2, which is not contained in 
V=Ll. 

Assume now cW' exists as a dense subspace of V. When is 
it assaying? For answering that question, it is useful to con
sider, as was done in Ref. 8, the set A of all self-compatible 
vectors, introduced by Popowicz21

: 

A = {IE VI/#/l· 
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Let now lEA. This means, there exists rE I such that 
IE VrnVr = VrM· Since VrM is a pre-Hilbert space with re
spect to the pip, we have Vr M k: cW', and therefore A k: cW'. 
To go further, we need one more assumption. 

Proposition 7.2: Let VI be a positive indexed PIP-space, 
A the subset of self-compatible vectors, cW' the completion of 
V # in the pip-norm. Assume that, for every rE I, the assay
ing subset VrV i' is quasicomplete in its Mackey topology. 
Then one has 

(7.1) 

Proof From the discussion above, we have (as sets) 

and therefore 

A # = n VrVi" 
rEI 

Now, for every rE I, one has VrM k: VrV i' and VrV I' is 
Mackey-quasicomplete by assumption. Hence, by Proposi
tion 7.1, we have 

VrMk:cW'k: Vrvr · 

Thus we get 

A = U VrMk:cW'k:A # = n Vrvr ' 
f'E I rE I • 

Corollary 7.3: Under the assumptions of Proposition 
7.2, A is an assaying subset: A = A ##E Y(V,#). 

Proof Let S be any family of self-compatible vectors, 
i.e.,Sk:S#. ThenSk:S##k:S#. ThisimpliesS##k:A. 

The result follows by taking S = A. • 
The corollary implies in particular that A is a vector 

subspace of V, and soA = };/'E I VrAr . Also any self-compati
ble assaying subspace, no matter whether it belongs to f or 
not, is a pre-Hilbert space with respect to the pip (,1,), Thus 
A is also the largest pre-Hilbert subspace of V. 

Proposition 7.4: Let VI' A, cW' be as in Proposition 7.2. 
Then the following inclusions hold: 

A = cW'#k:cW'k:A # = cW'##. (7.2) 

Proof From Proposition 7.2 and the involution, we get 

A = A # # k: cW'#. Next we show: cW'# k: cW'. Indeed 
(cW'# ,cW') is a dual pair. The Mackey topology 7(cW'# ,CW') 
induces on the dense subspace V# the topology 1"(V#,cW'), 
which coincides with the one given by the pip-norm. Since 
cW' is the completion of V# in the latter topology, it follows 
that cW'# k: cW'. So cW'# is a self-compatible assaying subset 
and therefore c7t"# k:A. The statement follows. • 

Here again, the result applies if VI is reflexive, for then 
every Vrvr is reflexive, hence 7-quasicomplete. It applies in 
particular if VI is of type (B) or (H). 

If all three spaces in Eq. (7.2) coincide, we will say that 
VI has a central Hilbert space. This happens if any of the 
following equivalent conditions is satisfied: 

(i) A is self-dual: A = A #; 

(ii) I contains a self-dual element 0, i.e., Vo = V;; (for 

then Vo k:A k:A # k: V;; = Va); 
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(iii) A is complete in the pip-norm. 

There are three main cases of interest for applications: 
(I) Type (H): In this case, VI is a nested Hilbert space, in 

the sense of Grossmann.5 Several examples have been given 
in I-III, and in Sec. S.A. In each case, the central Hilbert 
space JY is the natural one, which, so to speak, generates the 
PIP-space by extension of the natural inner product to a 
larger domain, e.g., [2 for {[2(r) 1, L 2 for {L 2(r) 1, etc. 

(2) Type (B ): The structure obtained consists of a lattice 
of reflexive Banach spaces, the duality Vr ~ Vi' being tak
en with respect to the inner product of JY. Examples are 
JY = L 2[0, I] for the chain {L P[O,I]j or JY = L 2(X,Jl) for 
the lattice of Kothe normed spaces (cf. Sec. S.B). This struc
ture has been called a Dirac space in Ref. 22. 

(3) Reflexive indexed PIP-spaces: The cases of interest 
are essentially those spaces for which f is a lattice of type 
(B) or (H) together with the extreme elements V # and V, 
where < V #, V > is a reflexive dual pair. Such are, for in
stance, rigged Hilbert spaces,4 or more generally, PIP-spaces 
of distributions, like Y' or Bargmann's space 'li' discussed 
in III, Sec. 3.e. 

However, in the general case, the inclusions in Eq. (7.2) 
are strict and JY is not assaying. Examples can be given 
readily, e.g., simply by omitting the central element in any 
lattice I of the previous type, but they tend to be artificial. 

In fact, the missing central Hilbert space may often be 
reconstructed by hand. This will be done below for the case 
where VI is additive. The key is the following observation. 

JY# C JY means the given compatibility is too coarse, it does 

"" not admit sufficiently many compatible pairs. Thus adding 
JY to the assaying subsets amounts to refining the compati
bility (in the sense of III). 

Proposition 7.5: Let VI be a positive PIP-space for 
which every VrV i" rE I is quasicomplete but JY is not assay
ing. Assume VI is additive. Then V carries a finer PIP-space 
structure for which JY is assaying and thus a central Hilbert 
space. 

Proof VI additive means than f is an involutive sublat
tice of the lattice 2"( V) of all vector subspaces of V. Define 
f. as the sublattice of 2"(V) generated by f and JY. f. 
consists of elements of f, plus JY itself and additional ele
mentsoftheform VpnYt", Vp +JY,(Vp +cW')nVq,etc.An 
involution # I can be defined on f. as follows: 

• for VpEf, V #. = V # = V-
p p p' 

• JY#. =JY, 

• (VpNY)#· = Vp + JY, 

• (V p + JY)#. = Vi'nYt", and so on. 

By this construction, # I is a lattice dual isomorphism on 
f. and so f. is an involutive sublattice of 2"(V), and an 
involutive covering of V. Thus # I defines a linear compati
bilityon V, finer than #, in the technical sense oflII. Obvi
ously the new indexed PIP-space VI, has JY as central Hil
~~~ . 

It is instructive to consider a simple example of the con
structionjust described. Let [2(r) be a weighted I 2-space (see 
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Sec. S.A.2, and f be the four-element involutive lattice it 
generates. Denoting each space [2( p) simply by its weight p, 
we obtain the following picture (smaller spaces stand on the 
left): 

...--r"-..., 
rl\r ......... rVr 

.......... -./' r 

Following the general construction, thespaceJY = I 2=1 2( I) 
is obtained as the completion of I 2(r 1\ F) in the pip-norm. The 
lattice f. generated by f and I 2 has nine elements, and is 
described by the following diagram: 

/r""-. 
rl\l rVI 

rl\r~ ~I~ ~rvr 
r 1\ 1 rV 1 ,_/ 

r 

This is indeed an involutive lattice. One verifies easily, for 
instance, the following relations: r 1\ (rV I) = r 1\ 1 and 

r 1\ (rV 1) = rV (r 1\ I) = rV l. 
The crucial fact for the construction of Proposition 7.5 

is additivity: Since f and JY are then embedded in the lat
tice 2" (V), the supremum in f. is defined independently of 
the involution. If additivity fails, there is no obvious way of 
enlarging f, since both the supremum and the involution 
have to be defined on f •. This is consistent with the discus
sion given at the end of III: compatibilities may always be 
coarsened, but not always refined. 

As a final remark, we notice that the construction al
ways works for indexed PIP-spaces of type (B) or (H): Each 
of these can be embedded canonically in a Dirac space, resp. 
a nested Hilbert space [in other words, condition (13) of Ref. 
S may be satisfied automatically]. Thus one may as well as
sume the existence of the central Hilbert space JY = JY# 
from the beginning. Here again we see how simple this class 
of indexed PIP-spaces is. 
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APPENDIX: SOME FACTS ABOUT LOCALLY CONVEX 
SPACES 

In this appendix, as well as throughout the paper, we 
are concerned with locally convex topological vector spaces 
(LeS), i.e., topological vector spaces (TVS) which have a 
base of neighborhoods of zero consisting of convex sets, or 
equivalently, spaces with a topology that can be defined in 
terms of a family of seminorms. Our reference is the textbook 
of Kothe, 6 except for the notation of the different topologies, 
where we follow Schaefer.23 

l. Completeness: ALeS E [T] is complete if every 
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Cauchy net has a limit in E; it is quasicomplete if every closed 
bounded set in E [T] is complete; it is sequentially complete if 
every Cauchy sequence has a limit in E. 

Of course, completeness => quasicompleteness => se
quential completeness, and the three notions coincide for 
metrizable spaces, i.e., Banach or Frechet spaces. 

2. Dual pairs and canonical topologies: Two vector 
spaces E, Fform a dual pair (E,F) if there is a bilinear form 
(,1·) on E X F, separating in both arguments: 
(elf) =0, VfEFimpliese=O, (elf) =0. VeEE,im
pliesf = O. For any LCS E, with dual E', (E,E') is a dual 
pair. 

Given the dual pair (E,F), the weak topology u(E,F) is 
the coarsest topology on E for which the linear forms 
e - (elf),JEF, are continuous, and in fact, for which the 
dual of E is F. It is locally convex and Hausdorff. 

A basis of neighborhoods of zero consists of the sets So, 
where S runs over all finite subsets of F, and SO = [eE E I 
I (el f) I" 1, V fE S ] is the absolute polar of SCF. 

The weak topology on F, u(F,E), is defined similarly. 
The Mackey topology 'T(E,F) can be defined as the finest 

topology on E such that the dual is F (its existence is the 
content of the Mackey-Arens theorem); a basis of neighbor
hoods of zero is given by the sets TO, where T runs over all 
absolutely convex, u(F,E )-compact subsets of F. 

The strong topology P (E,F) is defined by the basis of 
neighborhoods of zero [ UOJ where U runs over all absolutely 
convex u(F,E )-closed and bounded subsets of F. 

A topology T (E) onE is called a topology of the dual pair 
(E,F) if the dual of E [T (E)] is F. Then one has, for any 
topology T (E) of the dual pair: 

u(E,F) < T (E) < r(E,F) < P (E,F). 

Ifwe start with a given topology T (E) on E we have the same 
inclusions with F = E'. 

In a dual pair (E,F), several classes of subsets of E de
pend only on the dual pair and not on the topology of E, i.e., 
they coincide for all topologies of the dual pair. Such are: 
closed subspaces, convex closed subsets, dense and total sub
sets, bounded subsets. 

ALCSE[T]isbarreledifT(E) = r(E,E') = P(E,E'). 
A metrizable LCS always carries its Mackey topology, 
T (E) = r(E,E '), but need not be barreled. A complete metri
zable LCS, i.e., a Banach or a Frechet space, is always 
barreled. 

A barreled LCS E [T] is called a Montel space if every 
bounded subset of E is relatively compact. A Montel space is 
necessarily quasicomplete and reflexive (see below), and its 
strong dual is also a Montel space. An infinite dimensional 
Banach space cannot be Montel. Typical examples are liJ, cp, 
Y(R"), Y'(R"). 

3. Reflexivity: Given an LCS E, the canonical topolo
gies u(E ' ,E), 'T(E ' ,E), P (E ' ,E) are defined in the same way; 
thus, with the notation of Sec. 4: 

E'I p~E'IT~E'I(T' 

By definition (E 'I T)' = E, but the dual of the strong dual, 
called the bidual, E" = (E 'I p)' may be strictly larger than E. 
A LCS E is called semireflexive if E " coincides with E as a 
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vector space. E is called reflexive if, in addition, the strong 
bidual E" [P (E ",E ')]=(E 'I f3)' I f3 coincides with E as a 
TVS. 

The two notions are different in general, but they coin
cide for Frechet spaces. In fact, a Frechet or Banach space is 
reflexive iff it is semireflexive, iff it is weakly quasicomplete, 
or iff its strong dual is reflexive. Notice that an incomplete 
normed or metrizable space can never be reflexive. 

A dual pair (E,F) is reflexive if each space is the strong 
dual of the other: (E I p)' = F, (F I p)' = E. Equivalently, if 
E I T and FIT are both semireflexive, or if they are both bar
reled:r(E,F) = P (E,F)andr(F,E) = P (F,E). Inareflexive 
pair, both spaces are reflexive and quasi complete for their 
weak and their Mackey ( = strong) topology. 

4. Projective limits: Let be given a vector space E, a fam
ily [Ea ] of LCS and maps ia:E - Ea such that for every 
nonzero XE E there is some a with ia (x) =1= O. Then there is a 
coarsest topology on E that makes all the maps ia continu
ous; it is called the projective topology and E with this topol
ogy, E proj ,is called the projective limit of [Ea ] with respect 
to the maps ia . The projective limit is said to be reduced if 
ia (E) is dense in Ea for each a (this can always be achieved 
without restriction of generality). The following properties 
are useful: 

• Eproj is complete (resp. quasicomplete, sequentially 
complete) if every Ea is. 

• Given any LCS Y, a linear map t:Y - Eproj is con
tinuous iff'each composed map ta = ia ot : Y - Ea is 
continuous. 
The following examples are important: 

(i) Let E be a LCS, H a subspace of E. The subspace 
topology on H is the projective topology with respect to the 

embedding i:H - E. ... . 
(i) tet [Ea I be as above and E = IlEa. The product 

topology on E is the projective topology with respect to the 
projection maps Pa:E - Ea· 

(iii) In a general projective limit, E proj is isomorphic to a 
closed subspace of the product IlEa' In the case considered 
in this paper [Ea ] is a family of vector subspaces of a given 
vector space V, each of which is itself a LCS. Then E proj 
= proj lim Ea is the subspace nEa with the projective topol

ogy. Eproj is metrizable iff the family [Ea ] contains a cofinal 
countable subfamily ofmetrizable spaces (this makes sense 
since the subspaces are partially ordered by inclusion). 

5. Inductive limits: Let be given a vector space F, a fam
ily [Fy I ofLCS and mapsjy:Fy _F. Then there is a finest 
topology on Fthat makes all the mapsjy continuous; it is 
called the inductive topology and Fwith this topology, denot
ed Find' is called the inductive limit of {Fy I with respect to 
the mapsj . Given any LCS, Y, a linear map t:Find - Y is 

y • 

continuousiffeachcomposedmapty = t ojy:Fy - Ylscon-
tinuous. Again three cases are worth mentioning. 

(i) If E is a LCS, H a closed subspace, the quotient topol
ogy on E /H is the inductive topology with respect to the 
canonical surjection 1T':E _ E / H. 

(ii) For any family {Fy J, let F = ~Fy; the direct sum 
topology on F is the inductive topology with respect to the 
embeddings j y :Fy - F. 

(iii) For a general inductive limit, F;nd is isomorphic to a 
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quotient of !.Fy • 

6. Duality and hereditary properties: Let E be aLeS, H a 
closed subspace. Let HIe E' be the orthogonal space of 

H:H I = {fE E'I (flh) = 0, VhEH J. HI is a closed sub
spaceofE '. Then the dual ofHisE 'IH',andthedualofE IH 
isHI. 

As for canonical topologies, the hereditary properties 
are the following: 

• The Mackey topology is inherited by quotients, but not 
by closed subspaces in general: 

r(E,E') ~ EIH =r(EIH,HI),r(E,E') ~ H<r(H,E'IHI). 

we do get equality for subspaces in two cases: if r(E,E ') ~ H 
is metrizable, or if H is a dense subspace (hence not closed). 

• The weak topology is inherited both by quotients and 
closed subs paces, whereas the strong topology is inherited by 
neither of them, in general. 

Direct sums and products are dual to each other: 

( IlEa)' = I.E~, 
pro) 

( I. Fy)' = II F~, 
Ind 

and Mackey topologies go through: 

Reduced projective limits and inductive limits are also dual 
to each other: 

(proj lim Ea)' = ind lim E ~ 

(if the lhs is reduced). 

(ind lim Fy)' = proj lim F ~ 

Combining all the above results, we get finally, for the 
Mackey topologies: 

proj lim (Ea IT) < (proj lim Ea) I T 

(equality if lhs is metrizable). 

ind lim (Fy IT) = (ind lim Fy) IT 
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Weak topologies go through projective limits only, and 
there is no general result for strong topologies. 
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We study in some detail the correspondence between a functionJ on phase space and the matrix 
elements (Qj)(a, b) of its quantized Qj between the coherent states la) and Ib). It is an integral 
transform: Qj(a, b) = S{ a, b Iv J J(v) dv which resembles in many ways the integral transform of 
Bargmann. We obtain the matrix elements of Qj between harmonic oscillator states as the Fourier 
coefficients ofJwith respect to an explicit orthonormal system. 

I. INTRODUCTION 

Quantization is a word which should be used with cau
tion, since it means many things to many people. We under
stand it here in the sense first sketched by Weyl,1 where it 
describes a "harmonic analysis" procedure. It consists in 
Fourier analyzing a (fairly arbitrary) function on phase 
space, and then replacing the "elementary building blocks" 
(i.e., exponentials on phase space) by appropriate operators 
(which have since been known as Weyl operators, and are 
exponentials of linear combinations of the operators X and 
P). 

A satisfactory and intrinsic description of the proce
dure became possible when von Neumannz proved the 
uniqueness theorem (Steps towards the theorem can be 
found in Weyl's book. I) which states that for a given (finite) 
number of degrees offreedom there exists-up to unitary 
equivalence--essentially only one irreducible family ofWeyl 
operators in Hilbert space. This theorem is a cornerstone of 
quantum mechanics for a finite number of degrees of free
dom. It seems however to have appeared too late to be fully 
incorporated in the mainstream of texbooks on the subject. 

The intrinsic and symplectic formulation of quantum 
mechanics, made possible by von Neumann's theorem, was 
developed by Segal3

,4 and Kastler,5 largely as a by-product 
of work aimed at systems with infinitely many degrees of 
freedom (The MIT thesis of R. Lavine6 is devoted to finite 
numbers of degrees offreedom). The ingredients are as 
follows: 

(1) A phase space E which is defined (without any "a 
priori" decomposition into position and momentum) as an 
even-dimensional vector space (dim E = 2v) with an anti
symmetric nondegenerate bilinear form fT. 

(2) A Weyl system W which is a family of unitary opera
tors, labeled by points in phase space, acting irreducibly on a 
Hilbert space ~ and satisfying 

(1.1) 

Given E and fT, von Neumann guarantees the existence and 

"Scientific collaborator at the Interuniversity Institute for Nuclear sciences 
(In the framework of research Project 21 EN). 

uniqueness (up to unitary equivalence) of W, but does not 
commit us to any concrete realization ofW. The Weyl quan
tization procedure is then a two-step affair: (a) Fourier anal
ysis:J(v) is written as 

J(v) = 2 - 'J eia(v,v'>](v')dv'; 

(b) substitution of W( - v/2) for eia(v.l, giving 

Q(f)=2- vJ w( ~v )!(V)dV 

as the definition of the "quantized" off 

(1.2) 

(1.3) 

I t was shown in Ref. 3 that the correspondence !-Q (f) 
is inverted by 

!(V)=2-
Vtr(w( ~ v)Q(f») 

= 2 - v( ( W ( ~ v ), Q (f») ts ' (1.4) 

where ('»HS is the inner product in the Hilbert space if HS 
of Hilbert-Schmidt operators in ~, and that the map 
J-Q (f) is unitary from L Z(E) onto if HS' Consequently, 

(fIJZ)L'(El = «Q (f1),Q (fZ)))HS' (1.5) 

If e a denotes the function e O(v) = eia(o.v) we have 
Q (e Q) = W ( - a12), and so, by extension of Eq. (1.5) 

«Q (eQ),Q (eb»)HS = J e - Q(v)eb (v)dv = 2zv D(a - b), 

in a sense to be made precise (see, e.g., Ref. 7). This map is 
discussed in more detail by Pool. 8 

In Ref. 9, one of us made the remark that step (a) of the 
quantization procedure (Fourier analysis) can be avoided at 
the price of replacing the Weyl operators W(v) by Wigner 
operators II (v) which are simply Weyl operators multiplied 
by parity, i.e., if II (0) is the parity operator (which can be 
defined intrinsically up to a sign in any Hilbert space that 
carries a Weyl system), and if ll(v) is defined by 

ll(v) = W(2v)ll(0) = W(v)llW( - v), 

then Q (J) can be written directly as 

Q (f) = 2"f J(v)ll (v) dv (1.6) 
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and we do not have to consider the Fourier transform! of the 
function! The reason for calling II (v) a Wigner operator is 
that the Wigner quasiprobability density p",(v) correspond
ing to a pure state tP is just the expectation value of II (v): 

p",(v) = 2V (tP,ll(v)tP) 

(see Ref. 7). 
Equation (1.6) expresses Q (f) as a superposition of 

Wigner operators, which are in some ways simpler than 
Weyl operators, namely, (i) Every Wigner operator II (v), in 
addition to being unitary [ll *(v) = (ll (V»-I] is also selfad
joint [ll *(v) = II (v)]. Consequently, II (v) is involutive 
[(ll (vW = 1] and its spectrum consists of the numbers + 1 
and -1. (ii) The relationship (1.1) for Weyl operators is 
replaced by 

II (v I)ll (v2)ll (v3) = ei<P(V"V2,V')ll(v l - V2 - v3) (1.7) 

(see Huguenin 10), whereq;>(v l ,v2,v3) = 4[o(V I ,V3) + o(v3'v2) 

+ o(v2'v l )] is the oriented area of the triangle spanned by VI' 

V2' v3; thus, Eq. (1.7) is affine (i.e., independent of the choice 
of origin in phase space) while Eq. (1.1) is vectorial (i.e., 
dependent on the choice of origin). 

We can again invert formula (1.6) to obtain an expres
sion analogous to Eq. (1.4), but giving now a direct corre
spondence between/and Qr: 

(1.8) 

Wigner operators (without the name) were already pre
sent in Ref. 11. They can also be found in Ref. 12, where a 
decomposition of operators with respect to Wigner opera
tors is given, analogous to Eq. (1.6), and relation (1.8) is 
derived for the function used in this decomposition. The 
Wigner operators were however not discussed in Ref. 12 as a 
means to do Weyl quantization without having to pass 
through the Fourier analysis step. That the II (v) formulas 
(1.6) and (1.8) may be more convenient then the W(v)formu
las (1.3) and (1.4) was also implicitly recognized in Ref. 13, 
where indeed some nondiagonal matrix elements involving a 
parity operation were used rather than the diagonal ones to 
compute classical function, which amounts exactly to pre
ferring Eq. (1.8) as a direct formula to the indirect version 
(1.4) containing still a Fourier transform. 

In this paper we will exploit Eq. (1.6) to study directly 
the relationship between the function/and matrix elements 
of the corresponding operator Qf' Weare particularly inter
ested in the matrix elements of Qf between coherent states. 
So the coherent state formalism will be the second main in
put in this paper. 

The coherent state formalismhas"a long and proud his
tory in quantum theory.,,14 Coherent states can be consid
ered as eigenstates of a displaced harmonic oscillator (it is in 
this form they historically made their first appearance; see 
Ref. 15), as wave packets satisfying the minimum-uncertain
ty conditions, or as the eigenfunctions of the annihilation 
operator associated to the harmonic oscillator. For more de
tails concerning these different points of view, see Ref. 14 
and the references quoted there. We will consider the coher
ent states as displacements of the harmonic oscillator vacu
umfl: 
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(1.9) 

where the operator representing a shift in phase space by the 
vector a is the Weyl operator W(a). 

The coherent states have many interesting properties 
and have therefore been widely used in quantum physics. 
One property which has been frequently made use of is the 
resolution of the identity operatorl6: 

1 = f dv Ifl V)(fl VI· (1.10) 

One can use this property to represent every vector tP in JY' 
by the wavefunction t/J", defined as 

t/J",(v) = (n v,tP). (1.11) 

The set of wavefunctions constructed in this way forms a 
Hilbert space when equipped with the L 2 norm, and one has 

V q;>,~: (q;>,tP) = (t/J'I',t/J",) = f dv t/J'I'(v)t/J",(v) 

(1.12) 

[this is again Eq. (1.10)] and 

t/J",(a) = (t/Jf}",t/J",). (1.13) 
In fact, the mapping tP~", is, up to a Gaussian factor, the 
unitary map from our abstract Hilbert space JY'to the Barg
mann-Segal Hilbert space of analytic functions JY' BS 17.18 in
tertwining the operators W(a) of the irreducible representa
tion of the Weyl commutation relations on JY' with the usual 
Weyl operators on JY' BS' For the special choice JY' 
= L 2(R J with the Schrodinger realization of the commuta

tion relations this unitary map was constructed explicitly in 
Ref. 17. 

With the help of the unitary map tP~", one can easily 
transport the Weyl operators W(a) on JY'to the Hilbert 
space (t/J",; ~l· The irreducible representation of the 
Weyl commutation relations obtained in this way is the co
herent state representation of the canonical commutation 
relations. Note that to define the coherent state representa
tion we have used the harmonic oscillator vacuum n. To 
define this n in an unambiguous way some additional struc
ture on E, u is needed. Therefore, one introduces a complex 
structure J on E, compatible with u (see Sec. 2). This is anal
ogous to but weaker than the usual decomposition of E into a 
direct sum of x space and p space. 

In what follows we will define an integral transform 
which relates/to the matrix elements of Qf between coher
ent states: 

(aIQflb)=(na,Q~b)= f dvla,blvlf(v). (1.14) 

Such a direct relationship between/and the matrix elements 
of Qf enables us to study some aspects of the quantization 
procedure by means of a correspondence between function 
or distribution spaces instead of as a map from functions on 
phase space to operators on a Hilbert space. Of course, we 
could achieve this by using directly the classical functions, 
equipped with the twisted product rather than the usual 
product-this is the point of view of deformation theory; see 
for instance Ref. 19- or the functions occurring in the so
called diagonal or P respresentation. 16.20-23 In both these ap-
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proaches, however, functions corresponding to very nice op
erators may have quite singular features: the classical func
tion corresponding to the parity operator is a delta function, 
and it is a well-known fact that theP-representation function 
of a trace class operator may have such big growth at infinity 
that it is not even a tempered distribution. Working with the 
correspondence!-(a I Qf Ib ) we gain in smoothness with re
spect to these two approaches; the price we pay for this is an 
increase of the numbers of variables used (4v variables in
stead of 2v). 

Coherent states can be defined in any Hilbert space car
rying an irreducible Weyl system, which means that the ma
trix elements (1.14) can be computed in any representation, 
and are representation independent. We will use this to 
choose one specific representation, namely, the coherent 
state representation (written in an intrinsic, i.e., coordinate
less way), which is particularly well suited for calculations 
with coherent states; the matrix elements we compute will 
however be independent of this particular choice of repre
sentation. The kernel! a, b I v J (which was briefly discussed 
in Ref. 24) is studied in Sec. 3; the notations are explained in 
Sec. 2. We consider in particular a bilinear expansion for the 
kernel with respect to a basis formed by the matrix elements 
hmn (v) of the Wigner operators n (v) between harmonic os
cillator states. These functions hmn are given explicitly by 
Eq. (3.28). The Fourier coefficients of an arbitrary function! 
with respect to the basis hmn are the matrix elements of Qf 
between harmonic oscillator states. 

The integral transform (1.4) which is discussed in Sec. 4 
is analogous in many ways to the transform of Bargmann. 17 

This analogy and the differences are discussed in Sec. 6. 
The discussion of the integral transform given here is 

not at all exhaustive: a deeper study will be carried out in a 
forthcoming paper; we will study in particular the corre
spondence between some classes of distributions and the cor
responding operators. A first application of Eq. (1.14) can be 
found in the computation of the classical functions corre
sponding to linear canonical transformations in Ref. 25. 

2. THE GEOMETRICAL SETTING 

We find it convenient to work in phase space without 
coordinates whenever possible. We shall however also re
write some of the main formulas in a notation with coordi
nates which may be more familiar to most readers. 

A. Affine phase space (symplectic geometry) 

We denote by E a set which has the structure of an affine 
space (i.e., which can be identified to a real vector space after 
the choice of an origin). Assume that E is even dimensional 
and that we have associated an "oriented area" qJ(a, b, c) to 
every triangle with vertices a, b, c (taken in a given order). 
We assume the following: 

(i) qJ does not change if all its arguments are shifted by 
the same vector. 

(ii) If a point ° is chosen as the origin, then u(a, b) 
defined by 

u(a,b) = !qJ (a,o,b ) 
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is symplectic (i.e., bilinear, anti symmetric, and 
nondegenerate ). 

The function qJ can now be expressed in terms of u: 

qJ (a, b, c) = 4(u(b, a) + u(a, c) + u(c, b». 

We see that it is totally antisymmetric: it changes sign if any 
two arguments are interchanged. 

B. Phase space with a symplectic and a Euclidean 
geometry 

Consider in E a reference frame, i.e., a family of vectors 
aI' b l , .. ·, av , bv that span E and such thatu(aoa) = u(bobj ) 

= 0, and u(aob) = 8ij' For our purposes (the building of a 
representation space for the Heisenberg commutation rela
tions) all the relevant information is contained in the map J 
defined by 

Ja; = bo J a; = bi> J b; = - a; 

Notice that J has the following properties: 

(i = 1, ... ,v). 

(2.1) 

(which is expressed by saying that J is a complex structure), 

u(Ja, Jb ) = u(a, b), (2.2) 

and 

u(a, Ja) > 0, if a #0. (2.3) 

It follows that the bilinear form 

s(a, b) = u(a, Jb) (2.4) 

defines a Euclidean geometry on E. A Triangle a, b, c has 
now not only an oriented area qJ(a, b, c) but also side lengths 
(s(a - b, a - b »1/2,. .. , which however depend on the choice 
ofJ. 

We shall also use the complex combination 

h (a, b) = s(a, b) + iu(a, b), (2.5) 

which makes E into a v-dimensional Hilbert space. 
Examples: (1) Take E = ICV with 

u(a, b) = Im(a.b), (2.6) 

Ja = ia. (2.7) 

Then 

s(a, b) = Re (a.b ), (2.8) 

h (a, b) = a.b, (2.9) 

and all the conditions above are satisfied. (2) Take 
E = RV EI1 RV. Any a in E is written as (xa' Pa). Define 

u(a,b) = ~(Pa,Xb - Pb·xa), 

J(xa,Pa) = (Pa' - xa)· 

Then 

s(a,b) = !(xa,xb +Pa'Pb)' 

(2.10) 

(2.11) 

(2.12) 

and all our conditions are fulfilled again. We can now use 
this structure to build a representation of the cannonical 
commutation relations. 
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C. A representation space for canonical commutation 
relations 

On E, we consider the space of holomorphic functions 

fY (E) = ! <p : E-C I VJa<p = iVa<p for any a in E }, (2.13) 

where 

(va<p )(v) = lim ~ <p (v + lia). 
'\~o Ii 

On the other hand, we define the Gaussian n by 

n (v) = exp[ - is(v,v)]. (2.14) 

We shall say that a function ¢J on E is modified holomor
phic if it is the product of a <pEfY and of the Gaussian: 
<p (v) = ¢J (v)n (v). 

This combination of both fY and n gives us Z, the space of 
modified holomorphic functions: 

Z(E) = !<pn I <pEY}. (2.15) 

An alternative way of defining Z is 

Z (E) = ! ¢J : E-C I D Ja¢J = iD a¢J }, (2.15') 

with (D a¢J )(v) = (V a¢J )(v) + s(a, v)¢J (v). 
The Hilbert space we will use in the sequel whenever we 

want to consider a concrete representation space is now giv
en by 

Yo = Z (E)n L 2(E;dv), (2.16) 

where dv is the Lebesgue measure, translationally invariant, 
normalized by the requirement 

(2.17) 

On this Hilbert space, we define a set of unitary operators 
W(a) by 

(W(a)¢J )(v) = exp[ia(a, v)]¢J (v - a), for any a in E. (2.18) 

These W (a) are called Weyl operators. It is easy to check that 

W(a)W(b) = exp[ia(a, b)] W(a + b), (2.19) 

which implies we have a representation of the canonical 
commutation relations. One can easily see this in the exam
ple given above: 

E = RV E9 RV, 

W«Xa ,0» W(O,h» 

= exp( - ~ Xa·h )W«Xa,h» 

= exp( - iXa,Pb)W«O,h»W«Xa,D). 

This is exactly what one would have expected from 

W«Xa,Pb» = exp(i(xa.x + h·P », 
with 

[Xj,Pd = iOjk • 

The representation given by Eq. (2.18) in the space (2.16) is 
irreducible. 

Owing to von Neumann's uniqueness theorem for re
presentations of the canonical commutation relations for a 
finite number of degrees offreedom, any result we will obtain 
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in our particular representation on Yo can be transcribed to 
any irreducible representation. 

Some particular functions in Yo will playa special role 
in the sequel: They are called the coherent states and are 
defined as 

n a(v) = (W(a)n )(v) = exp(ia(a,v»n (v - a). (2.20) 

These coherent states have the following "reproduc
ing" propertyI6.17: 

(n a,¢J) = f n a(v) ¢J (v) dv = ¢J (a) for any ¢JEYo' (2.21) 

Writing this otherwise, we have 

(¢J,l/J) = f ¢J (v) l/J(v) dv 

= f (¢J,n ")(n v,l/J)dv; 

hence 

f1nV)(nVldv=l. (2.22) 

It is now easy to see that the n a are normalized ele
ments of Yo: 

(2.23) 

As we already mentioned in the Introduction it is often use
ful to introduce Wigner operators, i.e., products ofWeyl 
operators with the parity operator. We define 

1T: l/J-;P, (2.24) 

with ¢(v) = l/J( - v). This operator conserves the modified 
holomorphy properties of and is thus an involutive unitary 
operator from Yo to itself. Moreover, one easily sees that 

llW(v) = W( - v)ll 

or 

llW(v)ll = W( - v). 

Hence, II represents the parity v- - v on phase space. The 
Wigner operators II (a) are now defined as 

ll(a) = W(2a)ll 

i.e., 

(ll (a)l/J)(v) = eia(2a,v)l/J(2a - v), for any l/J in Yo' 

It is easy to check that 

(2.25) 

(2.26) 

ll(a)ll(b )ll(c) = exp[i<p (a,b,c)]ll(a - b + c). (2.27) 

3. THE FUNCTIONS {a,blv} = Itlv} 

Definition: Let Jll'" be a Hilbert space carrying an irredu
cible representation ofthe Weyl commutation relations for v 
degrees of freedom. Denote by n a the coherent state cen
tered at a E E, and by II (v) the parity operator around v 
(Wigner operator). Given a, h, vEE, we define 

(3.1) 

with 

K = 2 -v. (3.1') 

The numbers I a, b I v I can be easily calculated and have 
simple properties. 
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A. Explicit form, symmetries, and special values 

One has 

!a, b Ivl = 2v
exP(iCP ( ~ ,v, ~ )1 n (a + b -2v), 

(3.2) 

i.e., the phase of ( a, b I v I is the oriented area of the triangle 
with vertices !a, v, !b. The number! a, b Iv) is real if and only 
if the three points ~a, v, !b are collinear. 

The absolute value of Kia, b Iv) is the exponential of the 
negative of half the squared Euclidean distance from v to the 
midpoint (a + b )/2 of the segment (a, b). It takes its maxi
mal value (which is 1) when v is the midpoint of (a, b). 

If we denote by t the pair I a, b ) we have 

1- t 1- v) = ( - a, - b 1- v) = la, b Iv) = I~ Ivl· 
(3.3) 

Denote by t the pair {b, a I. (This will be justified below.) 
Then 

((Iv) = (b,alv) = (a,blv) = (~Iv). (3.4) 

If the arguments of (a, b Iv) are shifted, we have 

(a + c,b + clv + c) = exp[ia(c,a - b )](a,b Ivl. (3.5) 

One has 

la,alvl = l(a,alv)1 =K- In(2v-2a) (3.6) 

and 

(3.7) 

B. Expression of {a,blv] in coordinates 

(1) Identify EwithC V. Thena(a,b) = Im(a.b ),Ja = ia, 
and sea, b) = Re(iib ). So 

!a, b Iv) = 2Vexp( - !lal2 - ~Ib 12 -21v12 

- a.b + 2b.v + 2v.a). (3.8) 

(2) Identify E with R v Ell R V. SO a is the pair 

a = ( xu,Pa I: a(a, b) = !(Pa Xb - Pb x a), J(xa,Pa) 

= (Pa' - x a ), and sea, b) = !(Pa Pb + Xa Xb). 
Then 

(a,blvl =2"exp[ -!Ixa +xb -2xv12 

- !IPa + Pb - 2pv 12 + i(xv(Pb - Pa) 

- Pv(Xb -Xa) + !PaXb - !PbXa)]. (3.9) 

C. Analyticity and regularity properties 

The expression (3.2) can be rewritten as 

(a, b Iv I = 2Vexp[2h (b,v) + 2h (v,a) - h (b,a)] 

Xn (a) n(b) n (2v), (3.10) 

where h (a, v) is defined by Eq. (2.5). In coordinates, Eq. 
(3.10) is just Eq. (3.8). 

Since Eq. (3.10) can be rewritten as 

(a, b Ivj = 2"exp[2ia(b,v)]n 2v-b(a) 

= 2"exp[2ia(v,a)] n2v-b(b) 

= 2"exp[ia(a,b) ]n -I(a - b) 

xn Ylb(\l2v)n Yla(Y 2v), 
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we see that (a, b I v) is modified holomorphic in a, modified 
antiholomorphic in b, and a product of a modified holomor
phic function with a modified antiholomorphic one in v. In 
each of these variables it is infinitely differentiable and of 
Gaussian decrease at infinity. 

D. Fourier transforms and integrals 

The (symplectic) Fourier transform F can be defined by 

(Fg)(v) = K f exp[ia(v,v')]g(v') dv'. (3.11) 

Then 

F2 = 1, Fn = n, Fn a = n - a. (3.12) 

Ifa function tP is modified hoi om orphic [see Eq. (2.15')], it 
satisfies(FtP )(v) = tP ( - v). Ifit is modified antiholomorphic, 
it satisfies (FtP )(v) = tP (v). So 

K f exp[io{a,a')] [a', b Ivl da' = ! - a, b Ivl· (3.13) 

In particular, 

K f !a',blvjda'=K- l exp[ia(b,2v)]n(2v-b). 

(3.14) 

Similarly, 

K J exp [ia(b,b ') l! a, b ' I v) db ' = ! a, b I v). (3.15) 

In particular, 

K J (a, b ' Iv) db' = K- Iexp[io-(2v,a)] n (2v - a). 

(3.16) 

The Fourier transform in the variable v can be comput
ed directly. It is 

K J exp[ia(v,v')] (a, b Iv') dv' = ~(a, - b Ilvj. (3.17) 

In particular, 

K J !a,b Iv') dv' =Kn -b(a). (3.18) 

One has also 

f (a, alv) da = 1. (3.19) 

We now consider integrals that are bilinear in the sym
bols (a, b Iv). Particularly important is the relationship 

f J la,blvllb,alv'j dadb=D(V-V'), (3.20) 

which can also be written as 

I (tlvlltlv') dt= f (tlv)~ d~={j(v-v'). (3.21) 

We shall derive it here, in order to show how simple the 
calculations are: 

f f [a, b Ivllb, alv') da db 
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= K-2f f (na,Il(v) n b)(n b,Il(v')n a) da db 

= K-2 f (n a,Il (v)Il (v')n a) da 

=K-2f exp(i<p(v,v', ~ »n 2(v-v')+a(a)da 

= K-2exp(4io(v',v» n (2v -2v') 

X f exp[ 4io(a,v - v')] da 

= exp[ 4io(v',v)] n (2v' -2V)K-48(4v' -4v) 
= 8(v' - v), 

Another useful relation is 

f la,blvl!c,dlvjdv=nd(a)nb(c). 

We give finally two integrals of triple products: 

f f la,blvjlb,clv'Jlc,dlv"} db de 

= K-2exp[ic:p (v, v' ,v")]! a, d I v - v' + v" J 

and 

f f f la,blvl!b,clv'l!c,alv"jdadbdc 

(3.22) 

(3.23) 

= K-2exp[ic:p (v,v',v")]. (3.24) 

E. Bilinear expansions of (;1 v}; The orthonormal family 
hmn(v} 

Since I; I v J will be used as the kernel of an integral 
transform, it is natural to expand it into a sum of products of 
functions of v and of functions of;. Such expansions can be 
found immediately since the I a, b I v J 's are matrix elements 
of irreducible families of operators. 

1, Generalities 

For any orthonormal base en in JY', we define the func
tions emn by 

(3.25) 

These e mn form an orthonormal base inL 2(E): orthogonality 
is a consequence ofEq. (3.22), and completeness follws from 
the fact that the family (Il (a) j is an irreducible family of 
operators. 

It is now obvious that 

m,n 

2. In the representation on .Yo 

Let leI"'" ev } bea symplectic base onE, 0", i.e., aset ofv 
vectors satisfying 

O"(ej,ek ) = 0, o(ej,Jek ) = 8jk . 

We define the normalized monomials h [n] on E by 

h (nJ(v) = 1 IT (h (ej,vW'. 
Y[n]! j~1 

(3.27) 

Here [n] is a multi-index, with [n]! = n; ~ I (nj!)' 
The functions h [n]n form an orthonormal base in !I" o' 

In fact, they are the eigenfunctions of the harmonic oscilla-
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tor (see also Sec. 5). In the following we shall drop the square 
brackets in the notation h [nl, In this particular case we have 

now 

hmn (v) = K-1(h mn,Il (v)h nn) 

mi~,n) ((n)(m)) 1/2 = K-In (2v) L (-1) s 

s~O s s 

X h n - S(2v) h m - S(2v) (3.28) 

and 

(a, b Iv j = n (a) n (b) L h mea) h n(b) hmn (v). (3.29) 
m,n 

Formula (3.29) implies we can also write the hmn as 

hmn(v) = _1_ [(Da)m(Db)"( a, b Iv} L ~ b~O 
mIn! 

= _1_ [(va)m(Vb)"«a, b Iv}n-l(a)n-l(b»L~b~O' 
mIn! 

where D a and va are defined in Sec. 2c. 
If one identifies E with C v, the h n are simply 

1 
h n(z) = ... /_zn, 

V n! 

and the h mn are given by 

hmn (z) = 2v2m + ne -2Iz(' m:t~n) [ -
Yn!m! X zn-s zm -so 

s! (n - s)! (m - s)! 

Identifying E with R 2v, one gets 

and 

h n(x,p) = ... } 2 - n12(p + ix)" 
V n! 

mi~.n) 
hmn(x,p)=re-<x'+P') L (_2)-S 

s= 0 

Y n! m! 2(n + m)12 
X------

s! (n - s)! (m - s)! 
X (p + ix)" - S(p _ ix)m - s. (3.30) 

In particular, we have 

hnn (x,p) = ( -1) nre - (x' + p') 

n n' X L (-2) s • (x 2 + p2y 
s ~ 0 s! s! (m - s)! 

= (-1) nrexp( - x 2 - p2)Ln(2x2 +2p2), (3.31) 

whereLn is the Laguerre polynomial with multi-index [n] in 
the variables xJ + pJ (j = l, ... ,v). 

As a consequence ofEq. (3.17), we see that 

(Fhmn)(V)=K(hmn,Il( ~ )Ilhnn) 

= (-1) nK
2hmn ( ~ ). (3.32) 

4. THE INTEGRAL TRANSFORM: MAIN PROPERTIES 
A. The map from f(v) to Q,(Q 

Let/ES '(E) bea tempered distribution on E. Let! be its 
Fourier transform, which we write freely as 
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j(v) = K f exp[iq(v,v')V(v') dv'. 

Let 

m." 

(4.1) 

(4.2) 

be the Fourier series expansion offin the orthonormal sys
tem (3.28). By Eq. (3.30), the expansion ofjis 

j(v) =,rI ( -1)'im"hmn ( ~ ). 

Definition: The Q transform offis the function Qf on 
E X E, defined by 

Qf(t) = Qt<a,b) = I {a,b Ivlf(v)dv, (4.3) 

to be interpreted, if necessary, as the evaluation of the func
tionalf on the testing function {a, b I· j. 

Remark: The above definition is more restrictive than 
necessary since the testing functions (a, b I· j can handle 
more general distributions "of type S". 26.27 We shall not try 
here to study in detail the functional analysis associated with 
Eq. (4.3). 

By Eq. (3.17), Qf and QJ are related through 

Q/a,b) = K-2Qj. (a, - b), with ~(v) =f( -4v). (4.4) 

In fact, this relationship between the matrix elements of QJ 

and Qj. is just a consequence of the equivalence of formulas 
(1.3) and (1.6). Indeed, we have from Eqs. (1.3) and (1.6) 

QJ(a,b) = K- 1 I dvj(v)(fl a,n (v)fl b) 

= K I dvf(v)(fl a,w( - ~)fl b) 

= K I dvf( - v)(na,n( ~ )nfl b) 

= K-3 I dv f( - 4v)(fl a,n (v)n - b) 

= K-
2Qj. (a, - b). (4.5) 

Furthermore, by Eq. (3.29) and (4.3), the function 
Qt<a,b) can be expressed in terms of the Fourier coefficients 
fmn: 

Qt<a,b) = n (a)n (b) I h "(a) h m(b )fmn' 
m.n 

where the functions h n(a) and h m(b) are defined by Eq. 
(3.27). 

An examination of either Eq. (4.3) or (4.5) shows that 
Qt<a,b ) is modified holomorphic in a and modified antiholo
morphic in b, i.e., it is holomorphic in t with respect to the 
complex structure (J, - J). 

B. Inverting the map f--O, 

Given Qt< 0, we can reconstructfthrough 

f(v) = I {t IvjQt<t)dt= II {a,b IvjQt<b,a)dadb, 
(4.6) 

provided the integrals converge. This is an immediate conse
quence of (3.21). 

In other words, the same kernel is used for (4.3) and its 
inverse just as in Fourier transforms and the integral trans
forms 17 of Bargmann. 
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C. Physical Interpretation 

So far, we have only defined some integral transform 
f(v)--Qt< t) by means of the kernel {t 1 v j. Of course, we 
always had in mind the physical interpretation of all this 
when we defined our map from one function space to an
other. This physical interpretation follows immediately 
from formula (1.6) and definition (3.1) of the kernel {a, b Iv I. 
One has 

Qt<a,b) = K-1I dvf(v)(fl a,n(v)fl b) = (fl a,Qf fl b). 

So for any a, bin E, Qt<a, b) is the matrix element between 
the coherent states fl a and fl b of the quantum mechanical 
operator Qf corresponding to the "classical observable" f 

In an analogous way, the Fourier coefficient 

fmn = f hmn(v)f(v) dv, (4.7) 

with 
hmn (v) = K-1(h mn,n (v)h nn), 

the h S being normalized monomials [see Eq. (3.27)], is equal 
to the matrix element of Qf between harmonic oscillator 
states: 

fmn = (nIQfl m ). 

D. Action of a, in !.t' orE) 

The action of the operator Qf on !.t' O<E) can be written 
explicitly with the help of the function Qf<t )[ see Eq. (2.21)]: 

Vtf; E!.t' o(E) : (Qftf;)(a) = I db Qf(a,b )tf;(b). (4.8) 

E. Unitarity of the correspondence f--O, 

The function Qf( t ) is an element of Z (E X E; 
(J, - J»,i.e., modified holomorphic in its first variable and 
modified antiholomorphic in its second variable. 

Define !.t'(E XE) = L 2(E XE; dv ®dv)nZ (E XE; 
(J, - J». Equipped with theL 2 norm, this is a Hilbert space. 
Supposefis square integrable. Then 

f d~ IQ/~W 
= f f da db Q/a,b) Q/a,b ) 

= f f f f dadbdvdv,/*(v){b,alvlf(v'){a,b Iv'} 

= f f dv dv'/*(v)f(v')8(v - v') 

= f dv If(vW· 

Hence the mapf(.)--QA-) is a unitary map from L 2(E) to 
2" o(E XE); its inverse is defined by Eq. (4.6). 

In fact, this unitarity is nothing else than the well
known unitarity of the correspondence between square inte
grable functions and Hilbert-Schmidt operators. 8 Indeed, 
one can check that the operator Qf is Hilbert-Schmidt if the 
function Qf(.) is square integrable, and one has the equality 

. IIQfll~s = Tr(Q;Qf) = I d~ IQ/ ~w· 
F. Products 

Let A and B be operators on 2"0' Then 
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(A, B )(a,b ) = (f) ° ,ABf} b) 

= J (f) 0,Af} C)(f} c,Bf} b) dc 

Hence, 
= f A (a,c)B (c,b) dc. 

(Qf·Qg)(a,b) = f Qia,c)Qg(c,b) dc. 

We define the twisted productJo g by 
Qfo g = Qf·Qg· 

Hence, 

(fo g)(v) 

= J {~lv)Qfog( f) d~ 
= J J f {a,b IvjQAb,c)Qg(c,a)dadb dc 

= J J J J J J(v')g(v") 

X [a,b Iv){ b,c/v' J[ c,a/v"jda db dc dv' dv" 

(4.9) 

= K-
2f f J(v")g(v") exp[itp (v,v',v")]dv' dV", (4.10) 

which is a well-known expression. 10.28 

G. Bounds on Q,(a,b) 

Define the following two regularizedJunctions associat
ed tol 

JR(V) = f J(v')f} (2(v' - v» dv', (4.11) 

j,.(v) = J J(v') f} (v' ~ v) dv'. (4.12) 

They can be obtained by choosingJas the the initial value of 
a diffusion (heat) equation and waiting the appropriate time. 

Assume now thatJis a (locally integrable) function so 
that II/ (the absolute value off) is well defined. Denote by 
/IIR the regularized Eq. (4.11) of I II. Then Eq. (4.3) gives 

/QAa,b)/ 'K-11JIR ( a ~ b ). (4.13) 
On the other hand, if the Fourier transformj ofJis a 

function (here one should not think of Qf as, say, a Hamil
tonian but for example a resolvent),and if 1 j I, is the regular
ized Eq. (4.12) of /i/. we obtain from Eq. (4.4) 

IQAa,b)1 = K-2IQJ. (a, - b)1 

,K-
3IhIR ( 0 ~ b) 

=Klil,(2(a-b». (4.14) 

Ifboth/andjare functions we obtain 

2 (O+b) -I Qf(a,b )/ ,IJIR -2- /J/,(2(0 - b». (4.15) 

For the diagonal matrix elements one obtains24 an equality, 
which does not require any special assumption onf, 

Q/o,a) = K-1JR(0). (4.16) 

More generally,Jcan be assumed to be a measure. 

H. Positivity of Qf 

Suppose that Qf is positive, i.e., 
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Since 

{a,blv) =K-1exp[2ia(v,0)] f}2v-O(b) 

(see Sec. 3c), this is equivalent to 

V¢E.Y' 0: f f 1/'(0)1/'(2v - 0)exp[2ia(v,0)] J(v) do dv;;;.O, 

(4.18) 

provided we are allowed to change the order of the integra
tions, which is certainly true, for example, forJEL 2(E;dv). 

We can rewrite condition (4.18) as 

V¢E.Y' 0: f f 1/'(a)1/'(b )exp[ia(b,a)] J( a; b) do db;;;.O. 

(4.19) 

ForJEL 2(E;dv), Eq. (4.19) is a necessary and sufficient con
dition for Qf to be positive. 

If, moreover, we supposefis essentially bounded 
(fELoo) and integrable (fEL I), then Eq. (4.19) is implied by 

VnEN, V a]> ... ,anEE : the matrix 

X (exP[ia(aJ,ak)]f(.! (aj + ak »]. is positive. 
2 j.k 

(4.20) 

So, forJEL 00 n L I, Eq. (4.20) is a sufficient condition for Qf to 
be positive. 

A similar result, though in a different context, can be 
found in Ref. 29; the fact that the matrices 

[exp [ia(aj,ak ) 1 J(a k - aj) 1j k 

are considered in Ref. 29 and not 

[exP[iC7(aj ,ak )]f( OJ :a
k )L 

as here, is due to their studying the correspondence 
f-S dvf(v) W(v) and notf-S dvf(v)ll(v). 

Examples: Using Eq. (4.20), one can easily check that 
the following functions yield positive operators: 

J(v) = f} (I - al(2v), with a < 1. 

In particular, 

f(v) = n (2v) andf(v) = n (v), 

f(v) = exp[2s(c,v)] f} (2v), 

f(v) = exp[2C7(C,V)] f} (2v). 

5. EXAMPLES 
A. Operators corresponding to elementary functions 

For some functions we shall use Eq. (4) to compute both 
Qf and Qr 

(I)J(v) = 1. Then QI(a,b) = f} b(a) or QI = 1. 
l(v) = K- 18(v). Hence, Q,5(a, b) = K-1QI(a, - b) 
= K-1n - b(a). This implies Qo = K-1ll, which is, of course, 
implicit in Eq. (4.3). 

(2)f(v) = exp[ia(c,v)]. This gives Q/a,b) = 
expWa(c,b)] f} b + c/2(0); hence Qf = II (c/4)ll. Applying 
again Eq. (4.4), we see that 
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and 

Qb, = K-In (e). 
(3)f(v) = fl (av) for aER. 

Then 

Q;(a,b) = [ 4: a
2 
r exp [io(a,b )] (a' - 4)/(4 + a') 

X [fl (a + b) ] (a')/(4+ a2 )[fl (a _ b )]4/(4 + a'). 

As a consequence of the fact 

[F fl (a.)](v) = a -2v fl (a-Iv), 

we see that 

Q!l(a,)(a,b) = (2a)2vQn(4a)(a, - b). 

(4) As a special case of (3), we have 

Qn(2)(a,b) = K fl (a) fl (b); 

hence, 

Q!l(2) = K Ifl)( fl I· 
(5)f(v) = s(v,v). This is the Hamiltonian of the harmon

ic oscillator. We have 

Q;(a,b) = l ; + h (b,a) ]fl b(a), 

or 

with 

N: fl b 'r--+h (b,.)fl b. 

We see here the expected vacuum energy term v/2; more
over, one can easily check that for Un = h nfl, one has 

NU"=nu,,, 

which is in accordance with the well-known fact that the Un 

are the harmonic oscillator eigenfunctions. 17 

(6)f(v) = a(e, v). This gives Q;(a,b) = (i/2)fl b(a) 
X [h (b, e) - h (e,a)]. Define He : if; 't--+h (e,.)if;. Then H ~ : 
if;-+Dc if; with Dc = "Ye + s(e,.) or ~.fl 't--+("Ye~)fl or 
fl b -+h (b, e)fl b, and Qa(e.) = (il2)(H~ - He)' Analogous
ly, QS(C,) = !(H~ + He) and Qh(e,) = He· 

(7)f(v) = a(e l, v) a(e2,v). Then 

Q(;r(C, .. h;r(cc") 

=Hs(el,e2)+Hc,H~, +He,H~ -He,He, -H~H':.: 

Analogously, 

B. Functions corresponding to elementary operators 
1. Dyadics 

Take A to be the dyadic A = I¢ )(if;I. Then 

fA (v) = J J la,b IvJ ¢(b)if;(a)dadb 

= (if;,QI5, ¢). 

In particular, 

fnd)(!l'l(v) = le,d IvJ, 
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fin ')(fl'1 (v) = K-
I fl (2v -2c), 

fin )(n I (v) = K-
I fl (2v), 

fiu,,)(uml (v) = hmn (v), 

From this last example we see that h mn [given for instance by 
Eq. (3.31 ')] is the classical function corresponding to the 
projection onto the subspace Cu n • For the special case v = 1, 
this is the projection onto the nth eigenspace of the harmonic 
oscillator (a similar expression, obtained in a different way, 
can be found in Ref. 19). 

2. Multiplication operators by holomorphic functions 

Consider A: if; -+F.if;, where Fis some (holomorphic) 
function such that F.fl aE2' 0 for any a. 
Then 

A (a,b) = F(a)fl b(a), 

and 

fA (v) = K-IJ fl (2v - 2b) F(b) db; 

hence, 

fA = K-
I(fl 2 * F), fl2(V) = fl (2v). 

3. Permutation operators 

SupposeE=EI <9 ... <9En ,withJEj CEj ,lrJj,o(Ej ,Ed 
= 0 for j #- k: this is the phase space for the simultaneous 

description of n particles (dim Ej = 2v' for any j; nv' = v). 
Let I e{ , ... ,e~v' J be a symplectic base in each Ej • For any 

1TEP(I, ... ,n)[P(1, ... ,n) is the set of all permutations of 
(1, ... ,n)], we define 

Prr :E-+E, 

Qrr : 2'0 'r--+2' 0' 

¢ (v) -+¢ (Prr(v». 

Clearly, 

Qrr(a,b) = fl b(Prr(a». 

To compute the classical function corresponding to Q7l"' we 
split up 1T into a product of independent cyclic permutation 
operators. The classical function splits up in a product of 
independent functions, corresponding to these cyclic permu
tations. For the cyclic permutation 1T = (1, ... ,m) (this per
mutation maps 1 to 2,2 to 3, ... , m -1 to m, m to 1), we get 

(1/2)¥; -I) 

frr(v1" .. ,vm ) = 2v
'(m -1) 11 

j~1 

X exp [i~ (V2j _ I ,P;; I (v 2),P rr- 2 (V 2J+ I »] 
for m odd, 

and 

(m/fi- I 
_ v'(m-I) frr(v" ... ,vm ) - 2 

j~1 

for m even, with 
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k 
Vk = I (_I)j-k(P,Y-k(v). 

j= 1 

In particular, if we describe two particles, and we want to 
consider the operator Q1T for 1Tl = 2, 1T2 = 1, we have 

./(12)(VI,V2) = <5(VI - P1T(V2)· 

For three particles, we see that 

./(123) = 22v'exp[ilP(v l ,P ;-1(V2)'P ;-2(V3»] 

and 

./(12)(3) = <5(v I - P1T (V2»· 

These different expressions can be considered as special 
cases of the classical functions corresponding to general 
symplectic transformations computed in Refs. 28 and 25. 

6. A COMPARISON WITH BARGMANN'S INTEGRAL 
TRANSFORM REF. 17 

In Ref. 17 some explicit expressions are given for the 
unitary operator intertwining the Schrodinger representa
tion with the coherent state representation of the Weyl com
mutation relations. We rewrite here this result in our 
notations. 

Identify E with R 2v = R v Ell R v = x space Ell P space, 
Let us denote the x space by E I' In what is usually called the 
Schrodinger representation the Hilbert space used is L 2(E I)' 
i.e" the space of square integrable functions on E I with re
spect to a Lebesgue measure on E I • 

Bargmann's integral transform is a unitary map A from 
L 2(EI) to 2' o(E, J) which can be represented by a kernel: 

A : L 2(EI)----+2' o(E,J), 

't/t/JE L 2(EI) : (A¢)(v) = f dx A (v,x) ¢(x). (6.1) 

The kernel A (v, x) has many interesting properties. For fixed 
x, it is an element of Z, and for fixed v it is square integrable 
on E I' This is analogous with our kernel [~ I v J which for 
fixed ~ is square integrable on E, and for fixed v an element of 
Z [(E Ell E; (J, - J) J. Moreover, we know (see Sec. 4.E) that 
ourintegral transform Qis unitary from L 2(E) on 2' o(E Ell E, 
(J, - J». So it would seem that our integral transform is just 
a double Bargmann transform: 

A : L 2(EI)----+2' o(E, J) , 

Q:L 2(E)=L 2(E1) ®L 2*(E I ) ----+2' iE, J) ® 2' o(E, J)* 

",,2' o(E Ell E,(J, - J». 

We donote here by K* the dual of K; the isomorphy 
2' o(E, J) ® 2' o(E,J)*=2' o(E Ell E,(J, - J» follows from 
the fact that 2' o(E Ell E,(J, - J» is isomorphic to the Hilbert 
space of Hilbert-Schmidt operators on 2' o(E, J) (see Sec, 
4.E). It is however not altogether true that Q is just twice A. 
Indeed, on has 

A (v,x) = I U[m ](V)<P[m ](x), (6.2) 
[m] 

where u[m] = h [m] nand <P[m] are the eigenfunctions of the 
harmonic oscillator, respectively, in 2' o(E, J) andL 2(E I) 17; 
on the other hand [see Eq. (3,29)], 
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[a,b l(xv,Pv)J = I U[m](a) u[n](b) h[mlln](xv,Pv), (6.3) 
[mlln] 

where h[mlln ](v) is given by Eq. (3.29) and is definitely differ

ent from <P[m ](2 1/2x v)<P[n ](21/2pv) (the factor V2 has to be 
introduced because of a difference in normalization in the 
measures on EI and E). This can readily be checked in an 
example. Take v = 1, m = n = 1. Then 

<PI(2 1/2x v)( <PI (V 2pv) = xvpv e - (x; + p;) 

and 
, ') , , h ( ) = 2 e - (x,. + p,. ( - x,. - p,. + I) 

II xv,Pv 

# <PI(V2xv)<,hl(V 2pv)' 

Another way of seeing that the integral transform Q is not 
merely a double Bargmann transform is to look at the explic
it expressions for the kernels A (v, x) and [~ Iv J. We have 17 

A (v,x) = n - v/4
e

(i!2)x'P"e - ip')(e" (\!2)(x - x,)' 

= n (X"P')(x) , (6.4) 

where n (X"P')(x) is the coherent state centered round (xv ,Pv)' 
written in the x representation, while a direct calculation 
from Eq. (3.9) gives 

[a,b I (xv ,P,,) J = n (Xa + X,')1V2,(P',-Pa)/VT(Y2xv ) 

X n (Pa + p,,)IY 2 .(x" - xa);\/2 (\12p v), 

(6.5) 

which is again very different from the expected 

A (a,Y2xv)A (b,Y 2pv) 

= n (Xa'Pa)(V2xv>n (X'"P")(V 2pv)' (6.6) 

In a certain sense these differences are due to the fact that the 
integral transform Q has to do with quantization, while A is 
just a unitary map from one quantum mechanical realization 
to another. Indeed, if we look at Eqs. (6.2) and (6.3), we see 
that on the 2' 0 side everything is all right: Eq. (6.3) contains 
one straight copy u[m ] (a) and one complex conjugate copy 

urn ](b) of the 2'0 function u[m lv) in Eq. (6.2); but things 
go wrong with the L 2 function. This is precisely because 
L 2(E), the initial space of Q, has to be considered as a space of 
classical functions, while the initial space of A is a quantum 
Hilbert space. 

Another way of seeing this is the following: By taking a 
double Bargmann transform one treats Xv and PI' as two 
equivalent but independent ("commuting") variables: in Eq. 
(6.6) Xv is only linked with Xu,Pa' andpv only with Xb,h. 
However, this is not what happens in a quantization proce
dure; there x" andpu are linked with thexa ,Pa as well as with 
x b, Pb: some mixing has taken place. 
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It is demonstrated that the superspace ofthe supersymmetry theory can be identified in a natural 
manner with a family of concrete spinor structures over space-time. 

1. INTRODUCTION 

The theories based on the Fermi-Bose supersymmetry 
invariance are recently a subject of considerable investiga
tions. One introduces in these theories the concepts of super
space, and supersymmetry group. However, riO deeper sig
nificance is given to the superspace itself, and the question 
about its interpretation is still open. The purpose of this pa
per is to propose an interpretation of superspace and super
fields, and discuss it in some details. The interpretation is 
derived from the notion of spinor structure on a space-time 
manifold, hence we begin with a short discussion of this. 

The starting point of our consideration is a condition of 
existence of a spinor structure on space-time E formulated 
by Crumeyrolle.' It should be stressed that the notion of 
spinor structure over E is to be understood here in a less 
common, but a very natural way as a possibility to attach 
half-spinor spaces.2' (m) and.2' *(m) to every point m of E in a 
continuous manner.2 The necessary and sufficient condition 
for this is the existence ofa global fieldf(m) of isotropic 
bivectors on E, generated by a family of real orthonormal 
tetrads. 

This condition is equivalent to a reducibility of the bun
dle S./o of orthonormal tetrads to Sc, where CtJ (the Cru
meyrolle group) is a two-parameter Abelian subgroup of the 
Lorentz group .!.t' 0' topologically equivalent to H2. The re
ducibility of S ./" to Sri assures the existence ofa global cross 
section of S y',,' hence, according to the known3 Geroch re
sult, the existence of the SL(2,C}-bundle SSL(2.C) being the 
prolongation of Sy " . We see then that the Crumeyrolle con
dition is equivalent to the more known Milnor-Lich-
nerowicz one.4 

. 

On the other hand, the reduction of SSL(2.C) to the bun
dle S ( defines a global field of isotropic bivectorsf(m), 
hence also' the spin or spaces.2'o (m) and.2'; (m) at each point 
m of E. These spinor spaces are odd and even parts of the 
invariant under SL(2,C} decomposition of the minimal left 
ideal C 'f(m) of the complexified Clifford algebra C '(m). The 
sum UmEE.2'O (m) will be denoted by goo and called a concrete 
spinor structure over the space-time E. 

We can pick up another fieldf'(m) of isotropic bivec
tors as well another minimal left ideal C 'f'(m) ofthe Clifford 
algebra C '(m). This means that we can attach to each point 
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of E another spinor space .2'e(m) [.2' ~(m)] in a continuous 
ways. The resulting concrete spinor structure umEE.2'e(m) 
will be denoted go e' 

It is evident that one can define a lot of different, al
though equivalent, concrete spinor structures go e over E, 
provided the space-time admits at least one such a structure. 
Hence some new degrees of freedom appear. To study them 
we observe that the above considerations lead to a one-to
one correspondence between elements of SL(2,C}/~ and 
concrete spinor structures go e' On the other hand, it is 
known6 that the homogeneous space SL(2,C}/~ can be par
ametrized by elements 

0= (::),0 + (OJ ,Oi) (where Oa = O!) 

of a two-dimensional complex space, which transform as 
spinors under the Poincare group, Thus these additional de
grees of freedom lead to a richer than E structure parame
trized by (xlI.,O,O +). The main goal of this paper is to demon
strate that just this structure is the superspace as introduced7 

and considered by Wess and Zumino, Salam and Strathdee 
and others. ' 

Let us observe that our family of different spinor struc
tures emerges also inside the Milnor-Lichnerowicz ap
proach. Indeed, the structure group SL(2,C} of the bundle 

SSL(2.C) can be considered as a ~ -bundle over SL(2,C)/~. 
The Lie algebra of the group ~ defines a two-dimensional 
spinor space by the Cartan-Whittaker construction.8 So we 
have at each point mEE a family of different spinor spaces, 
one space for one element of SL(2,C}/~ . 

Coming back to the parameters 0, it is demonstrated in 
Sec. 2 that if we fix one spinor space, say .2'0 (m), at point 
mEE, then any other spin or space .2'e(m) is represented in a 
natural way by one and only one element Ue of .2'o(m) (the 
so.-call pure spinor, introduced by Cartan, and Chevalley9) 
WIth ue = Uo + 0 = SeUo, where Uo represents .2'0 (m), and 
se ESL(2,C}. 

On the other hand, we can make use of the known '0 
isom?rphism between the Hermitian part ofany .2'e(m) 
®.2' (I(m) and the tangent space TmE. Ifwe pass now from 

.2'e(m) to.2'(1 + Am) we see that it has to be accompanied by a 
translation in the affine tangent space Am E. The translation 
vector z is determined by the condition: . 

XII +x, +z=xe+<, 

A simple calculation leads to 

Z = 0 ® E* + E ® 0 *. (1.1 ) 
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This construction can be done at any point m of E, 
hence some global problem arises: The labelling spinor Uo 
should be consistently defined for the whole spinor structure 
15' (I' To do this we fix a global cross section 'oem) = (eo,e l , 

e2 ,e, J III of the bundle 5 ( (the existence of such a cross sec
tion is assured by topological properties of '6'). This cross 
section defines a global field of canonical spinor frames 
(p,eTl", of ..ro(m). Now, because the pure spin or uo(m) re
presenting..ro (m) has the same coordinates in any canonical 
frame (p,eTl m' we can identify spinors uo(m) = sliuo(m) at 
each point m of E by their coordinates in the frame (p,eT I", 
corresponding to m. Thus only one spinor U e is associated 
with the spinor structure 15' Ii' 

A transition from 15' II to 15' 0 + < leads to the 
transformation 

(xl',8,8 + )-(xl' + 8 + ifE + E + if8,8 + E,8 + + E +), 

(1.2) 

which is essentially a consequence of the translation intro
duced by (Ll), written down in the frames '0 (m). Because 
any element (A ,a) of the covering group?) 0 of the Poincare 
group acts in the following manner6

: 

(A,a)(x,8,8 +) = [X(A)x + a,A8,8 + A +], (1.3) 

we obtain superspace uti parametrized by (Xl' ,8,8 +) with 
the action of the graded Lie algebra spanned by Poincare 
generators PI' ,Lin' together with, anticommuting to the mo
ments, operators generating transformations (1.2) defined 
on it. 

The paper is organized as follows: In Sec. 2 we consider 
general properties of a spinor structure on the space-time E. 
Invetigations leading from the family of concrete spin or 
structures to the superspace are placed in Sec. 3. Section 4 is 
devoted to a study of superfie1ds. 

2. SPINOR STRUCTURE ON SPACE-TIME 

The spinor structure on space-time is usually defined 
(following Milnor and Lichnerowicz4

) as a prolongation of 
the Lorentzian structure 5, " on space-time E to the spinor 
group SL(2,C). If such a prolongation 5 SL(2.1:) there exists, we 
can construct the associated bundle 5 SL(U) [.I], where..r is a 
two-dimensional complex vector space equipped with the 
skew bilinear form 

Hence we can attach to each point m of E a spin or space 
.I (m) given by the fibre of this vector bundle. 

However, we can reverse the question and look for con
ditions which allow us to attach to each point of the space
time a two-dimensional spin or space in a continuous way. It 
has been shown I that the necessary and sufficient condition 
for this is a reduction of the bundle of orthonormal frames 
5 '" to the bundle 5 ( , where the two-parameter Abelian 
group '6' is generated by 

AI =L02 +L23' A2 =Lol -L31' 

(where L ,,, are the standard generators of the Lorentz 
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group). The spinor space..r (m) at the point m is given by a 
minimal left ideal of the Clifford algebra of the tangent space 
Tm E. 

It is well known that one can define a vector field (or a 
tensor field) on any manifold E, because the notion of tan
gent space at each point mEE does not require any additional 
assumptions about E. When the manifold E is additionally 
equipped with a nondegenerate metric tensor g of signature 
( + , - , - , - ), then a possibility of the existence of spinor 
fields appears. Namely we can construct the Clifford bundle 
C (E,g), each fibre of which is the Clifford algebra C (T mE, 
Qm) (here Qm is the quadratic form over the tangent space 
TmE defined by the metric tensor g", at m). We shall denote 
the Clifford algebra C (T mE,Qm) by Cm • If the Clifford alge
bra Cm is simple (it is true lO for any even-dimensional mani
fold) then its finite dimensional irreducible representations 
are already given by its minimal left ideals. The elements of 
any minimal left ideal will be called spinors. 

Thus the space-time E, as a 4-manifold which carries a 
smooth global Lorentzian tensor field g, allows the construc
tion of the Clifford bundle C (E,g), what enables us to define 
the spinor spaces Sm at each point m of E. To build up such a 
space Sm let us fix an orthonormal frame '0 = (eo ,e l ,e2 ,e3 l 
of TmE. This frame defines the Witt base(Uo of the complexi
fication (TmE)' of the vector space TmE: 

(Uo = (XI ,X2 'YI 'Y2l 

= (!(eo +e3 M(ie l +ezM(eo -e3 M(ie l -ez»)' (2.1) 

as well the isotropic bivector 

j=YIYz (2.2) 

(we will denote the Clifford product as above, although in 
this case it reduces to the exterior product). In this manner 
the spinor space Sin given by the tetrad, 0 is equal to 

Sm = C,! (2.3) 

(C I and Q I will denote the complexifications of C = Cm and 
Q = Qm respectively. The obvious index m will be omitted.) 
The dimension of the spinor space S is equal to four, and we 
can represent it in one and only one way as a sum of two 
subspaces: 

(2.4) 

of so called odd and even half-spinors respectively. 
The spinor space S = .I EEl..r * is the underlying vector 

space of the irreducible representation of the Clifford group 
G.' Hence the space S is an underlying space of correspond
ing representations of subgroups of G, such as Pin(l,3), 
Spin(I,3), and Spin + (1,3)1, which form the following chain: 

Module norm 
condition 

norm 

parity condition 

condition N (5) = I 

Pin(I,3) - Spin(l,3) - Spin + (1,3). 

(2.5) 

The representations of G and Pin(l,3) are irreducible, 
whereas the representation ofSpin(1,3) is reducible to the 
sum of two inequivalent irreducible representations acting 
on the half-spin or spaces..r and .I *. The same is true for the 
group Spin + (l,3)=SL(2,C). The representation of 
Spin + (1,3) on the half-spin or space .I has an additional 
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property: We can construct the bilinear invariant skew form 
Eaf3 on.2'. (The same holds for.2' *.) 

Every isotropic bivector / given by the orthonormal 
frame according to (2.2) defines a four-dimensional spinor 
space S with the Clifford group G as the symmetry group (it 
means that S is equipped with all G-equivalent spinor 
frames). This does not determine, however, the structure of 
S with a sufficient accuracy. Fortunately there are at our 
disposal the mentioned subgroups of the Clifford group 
(2.5), and we can define the spinor space as the vector space 
with one of these subgroups as the symmetry group. For 
physical reasons we prefer the symmetry group which pre
serves the decomposition of the space S onto half-spinor 
spaces .2' and .2' *. This condition indicates the group 
Spin(1,3), which is the covering group ofS0(1,3), as a possi
ble candidate. But this group is still not good enough, as it 
does not preserve the (skew) scalar product in.2' (.l' *). So we 
arrive at the spinor space as the complex vector space with 
Spin + (1,3)~SL(2,C) as its symmetry group. 

Two isotropic bivectors/ = YIY2 and!, = Y;Yi define 
the same minimal left ideal of the algebra C' (that is 
C'f= C'f') ifand only if!, = IlfwhereA is a complex num
berl. Hencel, if only / and /' define the same minimal left 
ideal of C', then they have to define the same maximal totally 
isotropic subspace of (T mE)'. 

Let us fix a maximal totally isotropic subspace (m.t.i.s.) 
of (T mE)', for example the subspace Zo spanned by Y 1 and Y2 
defined by (2.1). (We recall thatYl andY2 define/=YIY2, 
hence the spinor space S = C 'I) It appears II that every total
ly isotropic two-dimensional subspace Z of (TmE)' can be 
represented by an element of S. 

Indeed, let/z be the product of the elements of some 
base of Z. As we have told, /z is determined by Z up to a 
scalar factor different from zero. Then/zC' is a minimal 
right ideal of C'. Because the intersection of any minimal left 
ideal of C' with any minimal right ideal is a one-dimensional 
vector subspace of S 9, we shall call any element of this sub
space a representative spin or of Z (or pure spinor). 

It is known" that a representative spinor of any totally 
isotropic subspace Z of (TmE)' is always a half-spin or. We 
are interested only in such m. t.i. subspaces Z of (T mE)' 
which are related to the Witt bases associated with real orth
onormal tetrads by (2.1), because we are interested in the 
spinor (half-spinor) representation of the Minkowski space, 
but not of its complexification [from now on we shall restrict 
ourselves only to such subs paces Z of (T mE)']. So we take 
into account only such m. t.i. subspaces Z which are linked to 
Zo by an element of 2" o' All such Z's are represented by two 
even half-spinors belonging to.2' * instead of the one-dimen
sional subspace C 'fzn/z" C'. Moreover, if U z is a representa
tive spinor for Z, then sUz is a representative spin or for 
X (s)Z, where sESL(2,C) and X is the covering map, 
X:SL(2,<C)-2" o' 

Any orthonormal (real) frame r defines an isotropic bi
vector / by (2.2) and a m.t.i.s. Z spanned by Yl' Y2 [see 
formula (2.1)]. The same Z can be, however, defined in this 
manner by a whole class of orthonormal frames. If the sym
metry group of the related spinor space S is the Clifford 
group G or the group Pin(I,3), then this class contains 
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frames linked one to another by transformations of 
2" = 0(1,3).12 Ifwe want the symmetry group of S to be 
Spin(I,3), then between frames of the class defining Z act 
transformations ofSO(I,3). In this case the class into consid
eration is the image, under the covering map, of the sub
group of elements sESpin(1,3) fulfilling the condition: 

sfs ~ 1 = ±f (2.6) 

We limit our attention to the physically most important case 
of Spin + (1,3)~SL(2,C). The considered class offrames de
termining the same m.t.i.s. Z is given now by the condition 

sfs ~ 1 = J, (2.7) 

where sESpin + (1,3), instead of (2.6). This subgroup of 
Spin + (1,3) will be denoted ~ and called the Crumeyrolle 
group. Because the image of ~ under the covering map: 
X (~) = CCf ~~ leavesZ invariant, we can define a bijection 
from the family of all m. t.i subs paces into the homogeneous 
space 2"oICCf. 

An orthonormal frame r can be used to construct, be
sides/and m.ti.s. Z as above, half-spinor spaces.2' and.2' * 
together with canonical spinor frames: {p,O' J: = {x IJ,X,J J 
in.2', and similar frame {p* ,0'* J in.2' *. Any other frame from 
the class rCCf defines the same.2' (and.2' *) with a CCf -equiv
alent canonical spinor frame. Hence it is natural, and will be 
advantageous, to understand the spinor space as the linear 
space.2' together with the class of all CCf -equivalent canonical 
frames. So, for example, we should distinguish between the 
two spinor spaces:.2' equipped with canonical frame {p,O'J, 
and .2' ~ equipped with canonical frame { - p, - 0' J, be
cause these canonical frames are not CCf -equivalent as ca
nonical frames. We can consider these spinor spaces as de
fined by land - /respectively. 

Let us take one arbitrary spinor space .2' ~ (.2'0) related 
to an orthonormal frame ro and a m.ti.s. ZOo Recall that any 
m. ti.s. Z can be represented by two elements of .2' ~. If the 
nonzero spinors representing the m.t.i.s. Zo are denoted by 
± uo , then any other m.t.i.s. Z = X(x)Zo is represented by 

spinors ± SUo, sESL(2,C). The distinction we made between 
.2' and.2' ~ allows us to represent.2'o by Uo E.l' ~, and.2'o ~ by 
- Uo ' and similarly every other .2'by SUo, and.2' _ by - SUa' 

with sESL(2,C). We can represent the spinor spaces by ele
ments of.2'o instead of.2' ~, making use of the known antiiso
morphism:.2' *_.2'. Because the set of different m.t.i.s. 
Z C (Tm E)' related to orthonormal frames in T mE is in the 
one-to-one correspondence with 2" olCCf, we obtain that the 
set of different spinor spaces .2' (.2' *) at each point m of the 
space-time E is in a one-to-one correspondence with 
SL(2,C)ICCf . 

Now let us summarize the arising picture: the quadratic 
form defined by gm allows us to construct 2"0 ICCf in number 
different m. t.i. subspaces Z of(T mE)' related to orthonormal 
real frames of Tm E, and SL(2,<C)ICCf in number different 
half-spin or spaces .2' (.2' *). Choosing one frame ro we can 
construct an isotropic bivector /by (2.2), m.t.i.s. Zo, and 
half-spinor spaces.2'o and.2' ~ together with their canonical 
spinor frames {p,O' J and {p* ,0'* J. Any other half-spinor 
space.2' including.2'o itself is represented by some element of 
.2'0' If.2'o is represented by Uo , then .2'0 _ is represented by 
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- uo, and any other ~ is represented by sUo~o with 
sESL(2,C), such that 'oX(s - I) = , and the frame ,defines~. 
We want to point out that the group C(! which leaves invar
iant the m.tj. subspace Z is also the stabilizer group of the 
homogeneous SL(2,C),-space ~. 

The m. t.i. subs paces are a redundant element in the pre
sented derivation of spinor spaces ~ and ~ * from a given 
frame, of T mE. However their vital importance manifests 
itself in our construction of the one-to-one correspondence 
between different spinor spaces at a given point of E and 
different elements of one of these spaces. This correspon
dence, in turn, will be essential in the next section. Besides, 
the considerations of m. t.i. subspaces could be of some inter
est in the general instanton problem, especially in the pres
ence of the Ward observation, and result of Atiyah and 
others. 

3. FROM SPINOR STRUCTURE TO SUPERSPACE 

Section 2 demonstrated that, at each point of space
time, we can construct just as many half-spinor spaces ~ (m) 
as there are elements ofSL(2,C)/C(! and the same number of 
spaces ~ *(m). Moreover; if we fix one ofthem, say ~o(m), 
then everyone space ~ (m) is represented by an element of 
~o (m). The space ~o (m) itself is represented by spinor Uo 
~o(m) which has components (~) in the canonical base 
Ip,O'j = IxJ;xJj associated with orthonormal frame,o 
= I eO ,el ,e2 ,e3 j· We shall denote by ~e (m)the spinor space 

at the point mEE represented by Uo . + ~o (m). Making use 
of the canonical base we can define an element Se ofSL(2,C) 
such that 

(3.1) 

The spinor space ~e(m) is related with the frame' = '0 
XX(se- l

) 

As we know, \0 the Hermitian part of the tensor product 
~e(m) ® ~ ;(m) is isomorphic to the tangent space TmE for 
any choice of the spinor space ~ e (m) at the point mEE. How
ever, if we extend the Lorentz group Yo to the Poincare 
group &"0 as the symmetry group of the tangent space, then 
we should consider this tangent space as an affine space. 
Hence we should relate with any spinor space ~ e (m) a vector 
Xe as an origin of the affine tangent space AmE. It is natural 
to associate the vector 0 with the space ~o. It implies that the 
vector Xe associated with ~e has the form: 

(3.2) 

So we obtain a correctly defined isomorphism between the 
Hermitian part of ~e(m) ®~ ;(m) and ArnE. 

Now observe, that any spinor € of ~o(m) defines a 
translation in ~o(m) 

E«(}): = () + E, (3.3) 

hence generates a transformation in the set of all spinor 
spaces given by: 

E(~e(m»: = ~8+ .(m). (3.4) 

Moreover, the translation by E in Io (m) generates a transfor
mation of the corresponding points in ArnE, 

(3.5) 

But Xe + < is not equal to xe + Xc Ifwe want to preserve the 
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previous correspondence (3.2) between the spinors which 
label the different spinor spaces and vectors associated with 
these spaces: €_x. ,(}-xe ,() + E-Xe +.' etc., then the trans
lation (3.3) in ~o(m) should be always accompanied by a 
translation of the affine tangent space. This translation is 
determined by a vector z calculated from 

Xe + X< + z = Xe + <' 

We find easily that 

z = () ® €* + € ® () *. 

(3.6) 

(3.7) 

Hence we see that the transition from ~o to ~< does not 
cause any transformation in the affine tangent space, but if 
one goes from ~e to ~e +. with (}-=I=O, one must accompany 
it with the appropriate translation in ArnE. These consider
ations can be visualized by associating with any spinor space 
~e the family \xe"oYo j of affine frames in the affine tan
gent space ArnE. 

Let us consider now some global aspects of the problem 
of existence of different concrete spinor structures 'If e over 
E. The necessary and sufficient condition for the existence of 
spinor structure is the existence ofa global field/em) of iso
tropic bivectors on E, related to a family of real orthonormal 
tetrads over E. This family consists of elements of S'C (the 
appropriate reduction of the bundle Sf.)' The topological 
properties of the group C(!, mentioned in Section I, make it 
possible to pick up a global field 'oem) of orthonormal tet
rads belonging to St,' (a global cross section of S't). We see 
now that we can attach the m.t.i.s. Zo(m) and half-spinor 
spaces ~o (m) (~ ~ (m» together with their canonical spinor 
frames \p,O' j m (\p * ,O'*j m ) to every point m of E in a smooth 
manner. Then we obtain a concrete spinor structure 'If 0 de
fined by the global field/oem) of isotropic bivectors deter
mined by '0 (m), by (2.1), and (2.2). Any half-spinor space 
~o (m )E'lf 0 is represented, according to Sec. 2, in itselfby the 
spinor uo(m), which in the canonical frame \p,O'j m has co
ordinates independent of m. So we can attach to the whole 
'If 0 one element uo of the fibre ~o of the vector fibre bundle 
'If o. The concrete spinor structure 'If 0 _ defined by the field 
- /(m) will be represented in this~o by spinor - uo. 

Let us take now sESL(2,C), such that seC(!. The global 
cross section r 0 (m )X( ± s - I) will define new concrete spinor 
structures 'If and 'If _ represented in ~o by suo and - suo 
respectively. The concrete spinor structure 'If will be la
belled by (}~o, with 

suo = Uo + (). (3.8) 

So the global fields of isotropic bivectors sfs - 1 and 
- sis .', generated by the global cross section 'oem) 
XX( ± s - ') gives concrete spinor structures go' e and go' fI 

respectively. 
Proceeding in this way we attach to any element of 

SL(2,C)/C(! a concrete spinor structure 'If e labelled by an 
element () of the fibre ~o of the vector fibre bundle 'If o. As a 
result we obtain an extension of the space-time E with addi
tional degrees of freedom provided by elements of 
SL(2,C)/C(!. This extension has virtually a structure of the 
assoicated bundle SSL(2.C) [SL(2,C)/C(!]. The transformations 
of the group .9 0 act on this new space, parametrized by 
(x,(},() ~) in the following way: 
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(A,a)(x,O,O +) = [X(A)x + a,AO,O + A +], (3.9) 

what has been essentially shown by Bacry and Kihlberg.6 

Owing to the above discussion [and formulas (3.6) and 
(3.7)], we see that a transition from one concrete spinor 
structure 'l? () to another one, say 'l? () + ., leads to the 
transformation: 

(xl',O,O +~(xI'+O + oPE + E+UI'0'O+ E,O + +E+), 
(3.10) 

where 

0) 1_(0 
l' U - i 

~). if = (~ (3.11) 

The obtained structure is manifestly the superspace JI, 
while the transformation above is the supersymmetry. 

4. SUPERFIELDS 

From the point of view assumed above we see that, 
roughly speaking, the supers pace is just space-time 
equipped with all concrete spinor structures. The labels of 
these spinor structures are exactly the new parameters, 
widely exploited in supersymmetry theories7

.
13

• 

Taking the superspace JI as a background of a physical 
field theory, we will consider the simplest case of a scalar 
field 4> (x,O,O +) on JI. The field 4> undergo the following 
transformation under a finite supersymmetry T.: 

T.4> (x,O,O + ) = 4> (xl' + E + oPO 

+ 0 + oPE,O + E,O + + E + ); (4.1) 

or in the infinitesimal form: 

84> = (E ~ + E + _a_ + (E + oPO + 0 + oPE) ~)4>. 
ao ao + axl' 

Hence we obtain infinitesimal generators: 

Q = ~+(O +d') ~ 
a aoa a axp-' 

Qa = _a_+(d'O) ~. 
ao +a a ax

" 
We can check'·lJ that: 

and 

IQ",Q(31 = IQa,Q(31 =0, 

I Q" ,Q(31 = 2cr:z(3PI" 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

where P" are generators of translations of the Poincare 
group. Thus t~ graded Lie algebra (GLA) of operators PI" 
L ,ll., Qa' and Qa acts infinitesimally on our superspace. 

Salam and Strathdee7 have shown that irreducible re
presentations (defining supermultiplets) of this GLA can be 
worked out by means of the Wigner method of induced re
presentations. To every such representation corresponds a 
superfield which decomposes, according to this representa
tion, into a sum of finite number of scalar terms describing 
particles of different spin. A similar decomposition appears 
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if we regard the spinor parameters as Grassmannian ones in 
order to obtain the exponentiation of the anticommuting ele
ments of the G LA. 14 The Grassmannian character of the 
spinor parameters can be also observed if we (according to 
Ref. 13) identify the Minkowski space coordinates as even 
elements of order two, and the spinor parameters as odd 
elements of order one of the Grassmann algebra of the spinor 
space. 

Calculating 84> according to (4.2) we see that the super
symmetry turns boson fields into fermion ones, and vice 
versa. (Superfields, which we can regard as linked to super
multiplets, contain particles of different spin.) 

Besides scalar superfields we also consider "vector" su
perfields 4>1' (x,O,O +) or "spinor" ones 4>a (x,O,O +) with the 
appropriate transformation properties under Poincare 
group: 

4> ~(x',O ',0 1+) = X(A ); 4>v (x,O,O +), 

4> ~(x',O ',0' +) = A ~4>i3(x,O,O +), 

and so on. 
If we disregard the fact of existence of many different 

(nevertheless equivalent) concrete spinor structures on E, 
then superfields collapse into usual physical fields, as the 
parameter 0 loses its meaning. Thus we see that the super
fields are more fundamental then the conventional fields, 
because the later are results of neglecting the additional de
grees of freedom. 

If space-time does not admit a spinor structure (there is 
no prolongation of 5Y' 0 to 5 SL(2,C)' or there is no reduction of 
5Yo to 5.,,) then the superspace JI cannot be globally con
structed. Nevertheless a local trivialization of the bundle 
5Yo allows us to make such a construction locally over any 
element U; of an open covering I U; 1 ;El trivializing 5Y' o' Let 
JI; and Jlj be two such "local" superspaces over U; and U; 
respectively. However the transition from a concrete "local" 
spinor structure defined over U;nU; by JI; to a concrete 
"local" spinor structure defined over the same set by Jlj is 
described generally by a transformation belonging to the 
Clifford group. 
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The Crumeyrolle group C(J for four-dimensional space-time E is explicitely calculated. It is shown 
that the complexification of the Lie algebra of the group 'G' is a spinor space. In this manner the 
condition of the existence of a spinor structure over E, formulated as the reduction of the 
structure group of the bundle of orthonormal frames to 'G' , enables us to associated the spinor space 
to each point of space-time in a continuous way. 

1. INTRODUCTION 

Milnor, Lichnerowicz, Bichteler, and Penrose were the 
first to define the notion of a spinor structure on a Rieman
nian, and pseudo-Riemannian manifolds. They have also 
provided a necessary and sufficient condition for the exis
tence of such a structure I : A space and time orientable 
space-time manifold E carries a spinor structure if and only 
if the second Stiefel-Whitney class of Evanishes. It has been 
demostrated by Geroch2 that this condition, for a noncom
pact space-time, is equivalent to the existence of a global 
field of orthonormal tetrads on E. 

There is, however, another approach to this problem, 
based on the Clifford algebras, developed by Chevalley' and 
CrumeyroIle.4 This approach provides us with another (but 
equivalent to the previous one~) necessary and sufficient con
dition for the existence of a spinor structure on a space-time: 
A space and time orientable space-time manifold E carries a 
spin or structure if and only if the structure group 2" a of the 
bundle S y " of orthonormal tetrads over E is reducible6 to a 
group 'G' which we will call the Crumeyrolle group. 

One of the goals of the present paper is the explicit cal
culation of the Crumeyrolle group. This is done in Sec. 3. 
Before this we give a short exposition of the Clifford algebras 
approach to the spinor structure (Sec. 2). 

In Sec. 4 we use the known relation 7 between generators 
of the proper Lorentz group 2" a and antisymmetric tensors 
to demonstrate that the Lie algebra h of the Crumeyrolle 
gro~p 'G' is spanned by two Cartan-Whittaker' tensors. Ap
plymg the Cartan-Whittaker construction we obtain that h 
is spanned by two spinors, say u and v. This result leads in a 
natural manner to the following geometrical interpretation 
of the mentioned Crumeyrolle condition: The reducibility of 
S /" to the Crumeyrolle group C(J allows us to attach (in a 
continuous way) to each point of the space-time manifold a 
two-dimensional complex space spanned by the spinors u 
and v. 

It is worth to note that the Crumeyrolle group 'G' ap
peared also in quite different circumstances. Namely, it has 
been demonstrated by Finkelstein, Bacry, and others9 that 

·'Supported by Polish Ministry of Science, Higher Education and Technol
ogy, Project MR I 7. 
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40-007 Katowice, Poland. ' 

the spin degree offreedom is connected to certain coordi
nates in a homogeneous space of the Lorentz group. The 
only case which cannot be realized as a rigid system of 
space-time points is obtained when the corresponding ho
mogeneous space has just the group C(J as its stabilizer 
group. 10 We comment on this topic in Sec. S. 

2. SPINOR FIELDS 

In the general case of a pseudo-Riemannian space-time 
manifold E we cannot consistently define spinor fields. I I To 
make it possible we have to attach to each point of E a two
dimensional spinor space (half-spinor space) in a continuous 
way.5 

It is known'" that the metric tensor field g on E allows 
us to construct the Clifford bundle C (E,g) over E. We can 
define a quadratic form Qm on the tangent space TmE at a 
point m of E as Qm(x) =gm(x,x), where x E TmE, andgm 
denotes the metric tensor at m. The fibre of C (E,g) over m is 
the Clifford algebra Cm of the tangent space TmE. Let 
lea, e l , e2 , e)) be a base of TmE. 

Definition 2.1: The Clifford algebra Cm of the given 
quadratic form Qm has the underlying vector space spanned 
by the elements denoted by ei , ei, '''ei, with an increasing se
quenceofintegers ii, i2 , "', i k between 0 and 3, and by unit 1. 
The multiplication law (the Clifford multiplication) is deter
mined by the form Qm : 

(2.1) 

for any y,zETmE, whereBm(y,z) isa bilinear form associated 
with Qm: 

Bm(y, z) = Qm(Y + z) - Qm(z) - Qm(Y) , (2.2) 

and A denotes the exterior product. 
It follows from (2.1) that 

x 2 = Qm (x)· 1 . (2.3) 

It is easy to see that the exterior algebra A T mE may be 
identified with the Clifford algebra of the zero form on T mE. 

Definition 2.2: By the spin or space Sm at a point m of E 
we understand the vector space of the unique, up to equiv
alence, irreducible representation of the Clifford algebra em. 

The representation mentioned in Definition 2.2 is given 
by the minimal left ideal of the complexification C;" of Cm . 

Let (TmE)', Q;", C;" denote the complexifications of 
TmE, Q"" and Cm respectively. Now every orthonormal 
frame ra = I eo, e l , e2 , e3 ) of T mE allows us to introduce the 
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Witt base tuo = lXI' X2 'YI 'Y21 of(TmE), given by: 

xI=~(eO+e3)' Yl=!(eO-e3), 

Xz = !(ie l + el ), Yz = WeI - e2)· (2.4) 

Linear spaces: N, spanned by I x I' X z J, and P, spanned by 
! Y I 'Y2 J, are totally isotropic subspaces of (T mE)'. They are 
supplimentary to each other, and 

B ;"(x j, x) = B ;"(Yj,Y) = 0, 
B ;"(xj,Y) = t5ij , (2.5) 

whereB;" is defined by (2.2) with Q;" in the place ofQm . We 
set/ = YIYZ' Now C;"J is the minimal left ideal of C;". Let 
C Nand C P be the subalgebras of C;" generated by Nand P 
respectively. Then we have: C;"J = C N

/. We define a repre
sentation of C;" on C N by 

(P(v)U)/= vu/, if VEC;", UEC N. (2.6) 

Now, because C;"J is the minimal left ideal of C ;" , p is 
simple. The spinor space S m appears to be identical with C N 

(see Chevalley, Ref. 3, pp. 42 and 70), 

Sm =CN=C;"/. (2.7) 

The spin space Sm is not only the underlying vector 
space of the simple representation of the Clifford algebra of 
the quadratic form Qm (x) = g m (x,x), but also the space of 
representations of some groups contained in C;", and strict
ly connected with Qm . Let C * C C ;", be the multiplicative 
group of invertible elements of C ;". The Clifford group Gis 
defined as the subgroup of C * consisting of elements SEC * 
such that 

SXS-IETmE VXETmE. (2.8) 

Because Qm(sxs-IP = (SXS-I)2 = Qm (x). 1 ,we conclude 
from (2.8) thatthere exists a natural mapping q; : G~O(1 ,3), 
with q;(s) denoting the linear automorphism x~sxs - I of 
TmE. In fact we have: q; (G) = 0(1,3) with the kernel iso
morphic to the group GL(1) of nonzero real numbers. There 
are some subgroups of G which are the covering groups of 
appropriate subgroups ofthe Lorentz group ~ = 0(1,3) 
(see Fig. 1). 

c:,,:Jc·vvv .. G~ .... 

\

pin(l,3) 'V"\AA~ Spin(l,3)~ Spin + (1,3) 

Ker¢i = Z, I _ I _ I _ 
ker¢i, = Z, ({J t ({J t ({J, t ({J" 

Kerti', = Z2 0(1,3) ~SO(!,3) ~SO, (1,3) 

FIG.! 

In the middle row of the diagram of Fig. 1 there are the 
covering groups of the corresponding subgroups of ~ with 
covering mappings;P, qJI' qJo (which are the appropriate re
strictions of q;).12 When we restrict ourselves to the group 
Spin(I,3) as a symmetry group of the spinor space Sm' then 
the spinor representationp is a sum of two inequivalent irre
ducible representations on the spaces of two-spinors (half
spinors), So and Se' where So is spanned by I x I f, X 2 / J, or 
(because of 2.7) by I x I , X 2 J, and Se is spanned by 
If, xlxzfJ, or by 11, xlx21· The spinor spaceSm = So EBSe 
has the canonical base Y = I f, X I f, Xz f, X I xzf J . 

Now we wish to consider half-spinors as the basic quan-
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tities. This means that we should be able to obtain the space 
T mE from the tensor product SoSe in such a way that for any 
transformation of Sm given by sESpin(1,3), the space TmE 
will be transformed by q;(s)ES0(1,3). We have only one pos
sibility: to assume that the Spin + (1,3)-group is the symme
try group of our spinor space.5 

So from the above considerations we see that every 
orthonormal frame ro = ! eo, el , el , e3 I at m makes possible 
a construction of the minimal left ideal C;"J as well as the 
spacesSo andSe> which are the odd and the even parts of the 
invariant under SL(2,C) decomposition of this minimal left 
ideal. More precisely, see Fig. 2. 

half
orthonormal the Witt base isotropic spinor spinor 
baseofTmE~ of(TmE), ~biyectorrvv~space ~spaces 

c'f 

FIG. 2 

Up to now we have defined the half-spinor spaces So 
and Se at a-point m of E starting with a fixed orthonormal 
frame ro at m. Another basis r will define the same half
spinor spaces if and only if' there exists an element s of 
Spin + (1,3), such that q;(s) : ro~r, and 

sjs - 1= /. (2.9) 

The last condition is equivalent to 

s/=/. (2.10) 

The general isotropic bivectorf' defining a minimal left 
ideal of C;" is given by 

Sjs-I = f'=/=-A/, (2.11) 

or 

(2.12) 

where AER, A=/=-O, and s belongs to the Clifford group G. In 
the case of (2.11) we obtain another spinor space S ~,' corre
sponding to the minimal left ideal C;" f' =/=-C ;" /, which ob
viously leads to another half-spinor spaces S ~, S ;. In the 
case of (2.12) we obtain the same spinor space Sm' but with 
the whole Clifford group as its symmetry group. 

Hence two Lorentz observers ro and rat mEE can con
sistently introduce their own spinor spaces starting with ro 
and r respectively (according to Fig. 2), if and only if they are 
related by q;(s), with s given by (2.9). In the opposite case the 
spinor bases: Y = !YIYZ, XIYIYZ' XZYIYZ' XI xlYIYll, and 
Y' = Iy;y;, x;y;y;, x;y;y;, x; x;y;y; I defined by ro and r 
respectively, will be bases of essentially different spinor 
spaces. On the other hand, the two observers can observe the 
same spinor space, say Sm' defined by ro, and the only differ
ence will be in different spin or bases introduced by them in 
Sm .So, if ro has introduced the base Y and r = roq;(s) = ro 
q;( - s), then the basis Y' = ± sY is connected to the ob
server r. (The Lorentz frame r defines Y' only up to the 
sign.) 

Definition 2.3: The elements s of the group Spin + (1,3) 
which satisfy the condition (2.9) form the subgroup of 
Spin + (1,3) which we shall denote by Cif and call the Cru
meyrolle group. The group qJo (Cif) will be denoted by Y;;. 

Krystyna Bugajska 2098 



                                                                                                                                    

Now let us return to the problem of spinor fields in 
space-time. Because the bundle of orthonormal tetrads $ J 

(the Lorentz structure) is locally trivial, there is an open 
covering! Uj J jEI of the space-time manifold with local fields 
of orthogonal tetrads h j (here h j is a local crossection over U j 

given by the local trivialization). This enables us to construct 
spinor spaces over U j in a continuous way. But we know that 
spinor spaces given by hj(m) and hj(m) for mEUjn~=I=0 will 
be the same only if the frame hj(m) can be obtained from 
h/m) by means of an operation belonging to '1fJ. It does not 
mean anything else but the fact that the transition functions 
of the principal bundle $1' must take their values from '1fJ. 
However it is well known6 that this is the necessary and suffi
cient condition for the reducibility of the structure group.5t' 
of the Lorentz structure to C(f. 

To summarize: We can associate half-spinor spaces 
with any point m of E in a continuous way iff the space-time 
manifold is time and space orientable [that means that the 
Lorentz bundle $1' is reducible to.? ° = so + (1,3)], and 
the structure group of $.Y is reducible to '1fJ. When these 
conditions hold, we can consider spinor fields on E as basic 
quantities from which, by reduction of the tensor product of 
an appropriate number of spinor fields, we obtain every 
physical spinor, vector, or tensor fields (see, e.g., Penrose, 
Ref. 1, Geroch2). 

3. THE CRUMEYROLLE GROUP '(j 

It is obvious that the Crumeyrolle group of Qm will be 
the same for every point m of the space-time E (it depends 
only on the signature of the quadratic form Qm)' Therefore, 
we can and will now look for the explicit form ofthe group '(j 

for the abstract Minkowski space M. We know that for every 
Lie group G any subalgebra t of its Lie algebra f' is the Lie 
algebra of exactly one connected Lie subgroup G ' of G. 13 For 
that reason we shall look for the Lie algebra h of '1fJ . 

A. Lie algebras of groups C*, G, and Spln.(1 ,3) 

By C· we have denoted the multiplicative group of in
vertible elements of the Clifford algebra C. Let us recall that 
on the Clifford algebra of the quadratic form 
( + , - , - , - ) we can define the natural vector-space to
pology. It allows us to treat the group C· as a Lie group. Let 
us find its Lie algebra. 

Every element XEC defines an endomorphism of the 
vector space of C given by the left Clifford product Fx : 
u-xu for every uEC. Because the dimension of C is equal to 
24 = 16, Fx is represented by a matrix 24 X24. The exponen
tial map is well defined for any matrix, so we have 

(3.1) 

The map F of C into Hom (C,C) defined by: x-Fx for every 
XEC is a homeomorphism3 between C and a subspace of the 
vector space of endomorph isms of the linear structure un
derlying C. Hence we can define the element exp x of the 
Clifford algebra C as such one for which we have 

expFx = Fexpx . (3.2) 

Since for commuting elements x, y of C 

2099 J. Math. Phys., Vol. 21, No.8, August 1980 

exp(x + y) = (expx) (expy) , (3.3) 

we see that expx is an invertible element ofC, and (expx) - 1 

= exp( - x). Now let us introduce the Lie product in C 

[x, y] = xy - yx for each X,YEC (3.4) 

(xy is the Clifford product). From 

F,x,y J = [Fx' Fy] (3.5) 

we see that we may regard C as the Lie algebra of C *. 
Inner automorphisms of the group C * define the adjoint 

representation of this group on its Lie algebra C. Indeed, an 
automorphism ({Js: C *-C·, SEC· given by 

({Js(s') =SS'S-I for each S'EC·, (3.6) 

induces the transformation «({Js)': C-C with 

«({Js).x=sxs- I for each XEC, (3.7) 

and for the adjoint representation we have 

«({Jexp)'y = exp(adx)y , (3.8) 

where (adx)y = [x, y]. 
Let us recall that the Minkowski space M can be consid

ered as a subspace of C, and the Clifford group G is the 
subgroup of C· consisting of all such SEC· that «({J s)' M 
= M. Thus elements X of the Lie algebra of the Clifford 

group G will satisfy 

«({JexpX).y = exp(adX)yEM for each yEM. (3.9) 

It follows immediately that X belongs to the Lie algebra of G 
when adX maps Minto itself. It can be shown3 that such a Lie 
algebra is spanned by elements e j ej , i <j, and by the unit 1. It 
can also be demonstrated that the Lie algebra of Spin + (1,3) 
is spanned3 by products ejej , i <j (ej> ej are vectors of M 
orthogonal to each other). 

Now we demonstrate that the products ejej are closely 
related to infinitesimal operators of one parameter sub
groups of rotations and boosts. For i,j = 1,2,3 we have 

2ei ·ej = B (ej> e) = 2Dij (3.10) 

(the dot denoting the scalar product). Now if we take (2.1) 
into account, then for every x, yEM we have 

xy+yx=B(x,y)·I. (3.11 ) 

It implies the following result for matrix elements of ejej , 
i,j= 1,2,3, i<j: 

(eje)" =!B (ek' (adeje)e,) 

= !B (ek, ejeje, - e,eje) 

= 2(DkA" - DkjD,;) . (3.12) 

Now for i = 0 we have B (eo, e) = 28oj ,j = 1,2,3; and 

(eOe)k' =!B (ek , (adeoej)e,) 

= 2( - DkODjI + DkjDo,). 

Summarizing: 

!(eie)k' = - gjkDj, + gi/Djk , 

with gij = diag( + , - , - , - ). 
Let us define 

Lij = !iejej . 

Commutation relations for Lij are 

Krystyna Bugajska 

(3.13) 

(3.14) 

(3.15) 

2099 



                                                                                                                                    

(3.16) 

Lij = - Lji , i,j = 0,1,2,3. 

We conclude that we have obtained the Lie algebra of the 
Lorentz group with L 23 , L 31 , LI2 as infinitesimal operators 
of the one parameters subgroups of rotations, and L o, , L 02 , 
L 03 as infinitesimal operators of proper Lorentz transforma
tions along ei • 

B. The Crumeyrolle group 

Coming back to the group C{J we observe, that the con
d}tion (2.10) implies that if X belongs to the Lie algebra 1 of 
C{J, then 

X/=o, (3.17) 

with/introduced earlier,f = YIY2' Because X belongs to the 
Lie algebra of Spin + (1,3), it must satisfy conditions 

(adX)yEM for each yEM, (3.18) 

and 

a(X)+X=O, (3.19) 

where a is the so called main antiautomorphism3 of C, and 
a(zy) = yz for z,yEM. From the condition (3.18) we obtain 
thatXhas to be real, hence coefficientsAij of the decomposi
tion X = ~i <j Aijeiej must be real, 

Aij =Aij. (3.20) 

On the other hand, the general element X of considered 
Lie algebras has the form 

X = allxlYI + a l2 x IY2 + a21 x 2YI 

(3.21) 

where XI' X2, YI' Y2 are the elements ofthe Witt base intro
duced earlier (see Fig. 2). From (3.20) we obtain 

X = allxlYI + bX2YI + bYIY2 , 

with a II real. But 

al,(a(x,y,)+x,y,)=a" , 

so a" = 0, and 

X = bx2y, + bY'Y2 

= C, (x2y, + YIY2) + iC2(X2YI - Y'Y2) 

(3.22) 

(3.23) 

=A,(eOe2 +e2e3)+A2(eOe, +e,e3), A"A2 real. 
(3.24) 

We see that the Lie algebra of the Crumeyrolle group is 
spanned by 

(3.25) 

It can be easily checked that [X" X 2 ] = O. From (3.15) we 
obtain that XI could be identified with A, = L02 + L 23 , 

whereas X 2 could be identified with A2 = Lo, - L 31 . 
The Iwasawa decomposition of 2'0 has the form 

2'0 = % d./V , (3.26) 

where % is the maximal compact subgroup SO(3), d is the 
Abelian one-parameter subgroup generated by the accelera
tion L03 , and O/Y is the nilpotent Abelian two-dimensional 
subgroup generated by A, and A2 defined above. Thus the 
Crumeyrolle group is identical with'/v. 
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4. SPINOR STRUCTURE 

In the previous section we have determined the Lie al
gebra 1 of c?; which, of course, is isomorphic to the Lie alge
bra h of the subgroup C{J of the Lorentz group 2' 0' Because 
for every subalgebra of a Lie algebra there exists exactly one 
connected Lie subgroup, we see that C{J is defined uniquely 
by h. 

It is known that every generator of the Lorentz group 
can be expressed as 

X=rkL ik , (4.1) 

where Fik is an anti symmetric tensor (each tensor F ik corre
sponding to a single element of the Lie algebra of 2'0 . We 
can establish a connection between a complex 3-vector 
F = B + iE and a skew tensor Fik by 

F = (F 23 + iFO', F 3' + iF02, FI2 + iF03), (4.2) 

which establishes a connection between the vector B + iE 
and an element F'kLik of the Lie algebra of 2'0' 

From (3.25) we see that the Lie algebra h is spanned by 
elements connected to vectors: 

F, = (1, i, 0), F2 = (i, - 1,0) . (4.3) 

These vectors obey the condition: 

F,·F,=O, i=I,2, (4.4) 

which implies that the two invariants of a skew-symmetric 
tensor F,k: 

(4.5) 

and 

'li'ijklFijFkl = 2B·E (4.6) 

vanish for the tensors connected to F I and F 2 • 

Now let us return to the problem of spin or fields on the 
space-time manifold E. We have already seen that such 
fields can be defined when the Lorentz group 2'0 of the 
bundle of orthonormal frames 5/ " over E is reducible to Cf,' . 

On the other hand, this means that to each point mEE we 
attach the Lie algebra h spanned by two mutually ortho
gonal "null" complex 3-vectors F, and F 2' It is known,' 
however, that for every skew-tensor F,k related to such 
"null" vectors by (4.2) (the Cantor-Whittaker tensor) there 

corresponds a complex 2-vector w = (~':) given by 

(WO)2 = !(F02 _ F23 + i(FO' + F I3»), 

(W')2 = !(F02 + F23 _ i(FO' + FD»), 

wow' = !(F 12 _ iF03) . 

(4.7) 

Moreover,' if such a tensor F,k with vanishing invariants of 
(4.5) and (4.6) was transformed by an element cPo (S)E2' 0' 

then the related spinor w would be transformed by 
sESL(2,q. 

Now we should check the action of the Lorentz group 
2'0 on its Lie algebra. To do this let us take into account that 
the Lorentz group is isomorphic to SO(3,q in the following 
way': (J'·F is a traceless matrix with determinant equal to F2 
for any complex 3-vectors F = B + IE, where 
(J' = (a, , a 2 , a,) are the Pauli 2 X 2 matrices. Any element s 
ofSL (2,q acts linearly on such matrices: 
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S : (J'.F---+s«(J'.F)s - 1 , 

SO we have the relation 

(4.8) 

s«(J'·F)s .. 1 = (J'.(R F) with RESO(3,C). (4.9) 

The last formula expresses the action of the Lorentz group 
on its Lie algebra through the convention of (4.1) and (4.2). 
Thus we see that Fik is transformed by elements of the Lo
rentz group, hence the element w related to it by (4.7) is 
transformed by the elements of the group SL (2,C). 

In this manner we have obtained the following picture: 
The condition of the existence of a spinor structure over the 
space-time E, i.e., the reducibility of the Lorentz structure 
5/" to the group Y;, can be regarded as a feasibility of setting 
up, at each point of E, two spinors u and v associated with 
generators A 1 and A2 of the Lie algebra of Y; by means of 
(4.7). Hence we can construct at each point of E a two-di
mensional complex space spanned by these u and v, with the 
group SL(2,C) as a symmetry group. This provides a simple 
and visual interpretation of the existence condition for a 
spinor structure. 

5. TWO-SPINOR SPACE AS A HOMOGENEOUS SPACE 

It is surprising that when we wish to achieve the possi
bility of having continuous variables describing spin,9 i.e., 
when spin degree offreedom is connected to certain coordi
nates in the homogeneous space of the Lorentz group, the 
smallest homogeneous space which admits half-integer spin 
wave functions and possesses an invariant measure, is the 
space with Y; as the stabilizer group. A homogeneous space 
of the Lorentz group (that is the space on which!fo acts 
transitively) may be realized as a coset space !f 01 Y of 2'0 
modulo some subgroup Y, the stabilizer group, and charac
terized by its invariant measure if it exists. The existence of 
such a measure is of importance for defining an interaction 
in a field theory based on a homogeneous space. Finkelstein9 

has shown that we can have Dirac-like states only when the 
stabilizer group is equal to : the unit element of !f 0' or the 
one-dimensional group generated by AI' or the two-dimen
sional group generated by A2 and A2 . However the first two 
cases can be realized by a rigid system of space-time points, 
hence are less appealing. So the most interesting is the third 
case, when the stabilizer group is the Crumeyrolle group. It 
is easy to see that in this case the corresponding homogen
eous space is equivalent to the two-spinor space. 

Indeed, let us take some base {p, (7J of the abstract two
dimenstional spinor space~, [p = (6), (7 = ~)]. It may be 
easily verified that if we remove the point (g) from~, the 
remaining space is a homogeneous space for SL(2,C). We 
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know that if a complex 3-vector F describes some element X 
of the Lie algebra of !f 0 by (4.2) and (4.1), then (J'·F defines 
an element in the Lie algebra ofSL(2,C) corresponding to X. 
Thus from (4.3) we see that the Lie algebra of <?f is spanned 
by matrices: 

(~ O
i) and (~ ~) , (5.1) 

which means that any element of <?f has the form 

S = (~ ~) with SEC. (5.2) 

So 

<?fp=p, (5.3) 

which is sufficient for us to conclude that <?f is the stabilizer 
group of the spin or space ~. 

Thus spinor space itself is the smallest homogeneous 
space which can be used to describe half-integer spins by 
means of scalar wave functions in the sense of Finkelstein, 
Bacry, and others (all homogeneous space with the same or 
conjugate stabilizer groups are identified). 
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Stochastic field theory for a real scalar field, considering both zero and positive temperatures, is 
~eveloped from complements to Nelson's stochastic mechanics. These complements include path 
mtegral formulas for the moments of the stochastic process, a functional differential equation for 
the gene~ating function~l, and a virial theorem. Using these and Yasue's nonstandard analysis 
formulatIOn of stochastIc field theory, a rigorous meaning is given to the path integral formulas 
for the field moments and to the functional differential equation of the field's generating 
functional. 

INTRODUCTION 

Let us define stochastic physics as that part of physical 
theory which uses probabilistic methods as the fundamental 
mathematical tool and consistently employs a classical sta
tistical interpretation in the description of atomic and suba
tomic phenomena. It is natural to divide this in two regimes, 
namely the nonrelativistic regime, or few-body theory, and 
the relativistic regime, or many-body theory. 

There are two schools in nonrelativistic stochastic 
physics which will be called stochastic mechanics (SM) and 
classical stochastic electrodynamics (CSED).! The first 
school may be considered to be a phenomenological version 
of the second. One assumes that the mechanics is described 
by a diffusion process in the first school, the ideas being that 
no system is isolated and in fact interacts with a medium 
having infinitely many degrees offreedom, the physical 
cause of the diffusion.2 CSED carries this latter idea even 
further, assuming that the cause of the stochastic fluctu
ations is a stochastic electric field that even exists when the 
temperature is zero. 3

•
4 In this case one no longer has a diffu

sion process, but in two recent papers, De la Peiia and Cetto 
have shown that CSED has a Markov limit closely related to 
SM.3 

Although it is admitted here that Nelson's theory2 is 
phenomenological, it is useful for two reasons: The first is 
that it significantly overlaps with quantum mechanics (QM) 
without being equal to it. 2 In fact, it might be reinterpreted as 
an Euclidean formulation of QM, although this question 
needs much closer examination. The second reason is that 
SM plays an important role in stochastic field theory 
(SFT)5-7. Guerra and Ruggiero showed5 that SM as formu
lated by Nelson2 can be used to give a real time interpretation 
to Nelson's free Euclidean scalar field,s i.e., this field be
comes a real zero-point field in SFT. It has also been 
shown6

•
7 that the zero-point and positive-temperature elec

tric fields used in CSED3
.
4 can be obtained in the same way. 

Hence, SFT could be an alternative to quantum field theory 
(QFT) that limits to SM and CSED. 

There exist obvious mathematical advantages in work
ing with a stochastic description of high-energy phenomena 
if one thinks in terms of constructive QFT where many of the 

"Research financed in part by Colciencias. 

methods of statistical mechanics are employed. Moreover, 
SM and SFT provide a dynamical description of tunneling 
phenomena. 9.10 The purpose of this paper is to present some 
new mathematical techniques in SM that extend to SFT. 

In the next section complements to Nelson's SM2 are 
developed. These include path integral formulas for the mo
ments of the stochastic process and a functional differential 
equation for the generating functional for both the zero and 
positive temperature theories. The virial theorem used in 
this section is derived in the Appendix. In the third section 
the results of the previous section and Yasue's nonstandard 
analysis formulation of SFT!! are used in order to give a 
rigorous meaning to the path integral formulas for the mo
ments of a real scalar stochastic field as well as to the func
tional differential equation for the field's generating 
functional. 

COMPLEMENTS TO STOCHASTIC MECHANICS 

Let us consider a system with N degrees of freedom. 
According to Nelson, 2 the stochastic process describing the 
state of the system satisfies 

dq(t) = b (q(t), t )dt + dw(t) . (1) 

For zero temperature, it is postulated that dw is the Wiener 
process with each component independent and with an over
all diffusion constant fzlm: 

(dw;(t) = 0, (2) 

(dw;(t )dwj(t ') = !!.... o;/j(t - t ')dt dt' . (3) 
m 

Here ( ) denotes the ensemble average (Le., the average with 
respect to the underlying probability measure). For positive 
temperature, it is postulated that dw is the differential pro
cess with independent components satisfying Eq. (2) and7 

o 00 . • 

(dw;(t)dw/t') = _'_1 L e"" .. (I-1 )dtdt', (3') 
13m n ~ - 00 

where 

(4) 

It is easily seen that the limit/3-oo in Eq. (3') gives Eq. (3). 
The form ofEq. (3') is dictated by the KMS condition!2 if 
one thinks in terms of Euclidean quantum theory, but so far 
there exists no direct motivation for it in terms of stochastic 
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physics. Therefore, if one insists on a purely stochastic inter
pretation in the sense of Guerra and Ruggiero,5 Eq. (3') must 
be taken as a postulate. For this reason it is proposed that Eq. 
(I) through (4) be taken as the basic postulates of equilibri
um SM. However, this proposal presents some serious inter
pretive problems (see the last section). 

Thus, the point of view here differs from the usual one 
in SM, since Nelson considers a stochastic process to be asso
ciated with each quantum state.z However, then one would 
immediately confront the problem that the probability den
sity can have nodes. As a solution to this problem, Albeverio 
and H!hegh-Krohn showed13 that any stationary state lJt of 
the Schrodinger equation can be associated with a homogen
eous Markov process of the heat equation with Dirichlet 
boundary conditions on the hypersurface lJt = O. Although 
one can consider such ideas important for systems that are 
not in equilibrium, equilibrium systems do not possess this 
problem of nodes since the process for positive temperatures 
mixes in "excited states" in the correct way and tends to the 
"ground state" process at zero temperature (later on this 
behavior will be seen explicitly for N non interacting oscilla
tors). This observation also should relax Nelson's concern 
about the problem of the superposition of stationary states. 14 

It is proposed here that the only stationary states in stochas
tic physics are equilibrium states. Stationary states in the 
sense ofnonrelativistic QM do not exist in CSED, 15 so there 
is no reason to suppose that they suddenly appear in SM, 
which can be considered to be the phenomenological limit of 
CSED.3 

For practical calculations, the viewpoint of this paper 
presents a problem, however. At zero temperature, the most 
direct way to determine the forward derivative or drift 
b (q(t ),t )in Eq. (I) isby using the Schrodingerequation.z For 
positive temperature, b (q(t ),t) usually depends on the tem
perature (for further discussion of this point, see the Appen
dix), but there is nothing corresponding to the Schrodinger 
equation that will determine b. 16 It is fortunate that for the 
oscillator b (q(t ),t ) = - UJq(t ), i.e., the temperature depen
dence is contained in q(t) itself; this permitted applying the 
same direct methods of solution ofEq. (1) in the positive
temperature case7 as the zero-temperature one. Z However, in 
general, one must develop other methods for determining q 
since the form of b at positive temperature is not given. 

The method that will be developed in this section is 
based on the assumption that the moments of q determine q 
itself. In the practical applications to SFT, this is all one will 
need. The final formulas (8) and (9) look very much like 
Euclidean quantum mechanics. This will be discussed in 
more detail later. 

For zero temperature, Yasue has shown that the transi
tion probabilities for q can be written as9 

p(x, t /xo' to) = y' p(x)/p(xo) fdllw(q(.» 

X exp [ -Ii-If (V - E)dt' J . (5) 

Here Ilw represents the Wiener measure concentrated on 
pathsqsuch thatq(to) = xo,q(t) = x, and Ecan be interpret
ed as the average energyZ; 
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E = J (!mb Z + V)p dx . (6) 

It is important to note that Yasue's proof does not depend 
on the Schrodinger equation but only on the Fokker-Planck 
equation. Moreover, accepting Eq. (3') and the Markov na
ture of the process, one has the same equation with a differ
ent drift and periodic boundary conditions in time. Hence, 
the proof is valid for positive temperature if one uses a peri
odic Wiener measure. For applications, one will only need 
p(x,(3 /xo,O) due to this periodicity. 17 

Now let us note that the time-ordered moments of the 
stochastic process q are given by (for zero temperature) 

(q;, (tl) ... q;p(tp» = lim p(O, T'IO, T)-1 
T'·-CQ 
T_- QlJ 

X f dxl .. -j dxp p(O, T'lxp, tp)x;p 

xp(xp, tplxp_I' tp_ 1 )X"'Xx;, 

xp(xz, tzlxl' tl)x;,p(XI' t./o, T). (7) 

The notation is such that X;. is the ij th component of the N
dimensional vector Xj and {I < tz < ... < tp' Let us now intro
duce a generating functional G { J I for these moments de
fined by 

G {J j = f dllw(q(.»exp[ -li-J:'(V + J.q)dt']' (8) 

Thus, G {J J is essentially the transition probability 
p(O,T'IO,T) corresponding to the same potential Vbut with 
an external interaction J.q added. Using the usual definition 
of functional derivative, one sees that 

( ( » I· ( -/iY bPG {J J I q;, (t1)···q;P tp = Im--
T'~oo G {J I oJ;, (tl)···OJ;p(tp ) J=O 

T ___ 00 

(9) 

The same formulas (8) and (9) are valid for positive tempera
ture, except T = 0, T' = (3, Oo;;;;t l < '" < tp 0;;;;(3, and no limit is 
needed. In this case, the Wiener measure must be periodic, of 
course. 

The generating functional (8) is closely related to the 
formal one used in Euclidean QM. 18 The Wiener integral 
contains a term that looks like 

_ m ('q(t ,)zdt' (10) 
2 JT 

so one may formally write 

G {J j = J ~q(.)exp[Ii-ISE {q(.)j -1i-1J:'J.q dt'] , (11) 

where f ~ q(.) represents a path integral, 

SE{q(·)} = LT'L (iq, q)dt' , (12) 

and L is the classical Lagrangian. However, the subscript E 
has been written in (12) to emphasize that a real physical 
time interpretation has been given to Euclidean QM in the 
spirit of Guerra and Ruggiero.5 Although Eq. (12) is a Wick
rotated 19 action, the real physics is in Eq. (9). QM would say 
that the right-hand side of (9) is the Wick-rotated ground 
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state to ground state transition amplitude. SM states that it is 
the time-ordered moment of the stochastic process. More
over, one has arrived at (9) without ever leaving the theoreti
cal framework of SM. 

Expressions (8) and (11) are in terms of functional inte
grals. It may be useful to have an expression for G I J J in 
terms of a functional differential equation. It is to be ob
served that !dJ q(.) is translation invariant, i.e., 
!dJ(q(.) + q'(.» = !dJ(q(.» as long as q'(T) = q'(T') = O. 
Hence, one has the identity 

_D _ f!dJ(q(.) + q'(.»exp[Ii-ISE I q(.) + q'OJ 
Dq;(t) 

- Ii-I ('J.(q + q')dt'] I, = O. (13) 
JT q ~O 

This gives the following functional differential equations for 
G(JJ: 

[ 
d 2 D av ( D )] 0= J;(t)+m-

2
--- - -- G!JJ. 

dt DJ;(t) ax; M (t) 
(14) 

As an example of an application of formulas (8) and (9) 
and Eq. (14), let us consider the case of N noninteracting 
oscillators. This overworked example is an important one for 
SFT (see the next section). 

For the zero-temperature case, the calculation of the 
moments has appeared before l8 (without being interpreted 
as SM!), so only the result is quoted. One has 

(q;(t» =0, (15) 

(q;(t)q/t'» = -21i D;je-W(I-I') (t>t'). (16) 
mw 

Higher-order moments are determined by these (the process 
is Gaussian). Using the virial theorem that has been devel
oped for SM (see the Appendix), one has 

E = Nmw2(q2) = !NfzUJ. (17) 

Thus, one may say that the average energy per oscillator is 
!fzUJ. Note that this is very different from saying that each 
oscillator has the ground state energy. This is an imporant 
difference in interpretation between quantum mechanics 
and stochastic mechanics that should not be overlooked. 

For positive temperatures, one still finds that 
(q;(t )qj(t '» for t> t' is the Green function DE satisfying lS 

.. 2 1 , 
-DE +w DE = - -D(t-t). 

m 
(18) 

However, now one must have DE({3fz) = DE(O) in order to 
guarantee the KMS condition. Thus, 

D. . 00 ejlU,,(1 - I') 

k(t)qj(t'» = _'_1 L 2 2 (19) 
13m • = - 00 w + w. 

in agreement with a previous result. 7 Thus, the average ener
gy is 

Nw 2 
00 

E = Nmw2(q2) = -- L (w2 + W~)-I . (20) 
{3 .~-oo 

Using 

(21) 
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one obtains 

E = !NfzUJ coth(! {3fzUJ) . (22) 

This is exactly the quantum expression for the ensemble 
average of a system of noninteracting oscillators. It should 
be noted that these positive-temperature results have been 
confirmed in the recent article by De la Pella and Cetto 
which deals with the oscillator in CSED.4 

In the case of the oscillator, Eq. (14) reduces to 

0= J;(t) + ----mw2 
-- GIJJ. [ 

d2 D D ] 
dt 2 DJj(t) M;(t) 

(23) 

One can easily verify that 

G!J J =IT exp [ - Ii-I ('dtl ('dtzofj(tl)DE(t l - t2)J;(t2)] , 

,=1 JT JT 
(24) 

is the solution to Eq. (23). This isjust the functional integral 
(8). 

STOCHASTIC FIELD THEORY 

One should not consider SM to be a complete nonrelati
vistic theory considering the results ofCSED mentioned ear
Iier.3 ,4 However, it does not seem to be as limited as one 
might have believed. As a phenomenological approximation 
to CSED, it serves a useful check on the more complete 
theory. 

CSED, of course, cannot be a complete theory of atomic 
and subatomic phenomena either. SFT, to the extent that it 
has been developed, already limits to CSED since the zero
point and positive-temperature electric fields can be consid
ered as free noninteracting fields in SFT.6,7 

Let us consider a real stochastic scalar field satisfying 

(0 + m2)cp(x) = j(x) . (25) 

Herej(x) is the nonhomogeneous term representing all 
sources [this may contain self-interactions, e.g., V'(cp(x», or 
terms that are fixed and external to the system, or terms that 
come from other fields]. 

Ifj = 0, a simple procedure of randomization can be 
applied for turning the classical field into a stochastic 
field. 5-7 Let us take a bounded and smooth region Gin R.3 
Let e; be the characteristic functions of the negative Lapla
cian in G, i.e., 

(26) 

where the k 7 are the characteristic values. Then cp has an 
expansion 

cp (x, t) = Laj(t )ej(x) . (27) 

One then associates one-dimensional stochastic oscillators 
with each a;(t) and takes the limit G--+R? [One can equally 
well do the infinite-volume limit directly by taking the e; to 
be a complete set of 2"(R3) in Y(JR3).) One gets Nelson's 
free Euclidean fieldS for {3 = 00 5,6 and the positive-tempera
ture free field20 for {3 < 00 [in the sense that the average ener
gy, and hence 10gZ ({3), are the same]. The moments are 
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(cp (x, t)cp (y, t '» = _1_ fd 3ke'1<·(x - Y)G «(j)(t - t') 
(21T)3 

= __ d 4k ___ _ 1 f ei(k,x - y) 

(21T)4 m 2 + (k,k) 
(/3 = 00), (28) 

where G W)(t - t') is the right-hand side ofEq, (16) for 
/3 = 00 [and Eq. (19) for /3 < oo} taking IZ = m = 1 and i = j, 
and (,) denotes the Euclidean inner product. In both cases we 
have the real time interpretation discovered originally by 
Guerra and Ruggiero. 5 Note that the moment is continuous 
for /3--00. This continuity relates to an important interpre
tive point which will be discussed in the last section. 

Well known problems arises whenj#O. However, let us 
again suppose that the moments of cp determine cpo This is 
consistent with the interpretation of the moments as Wick 
rotations of the vacuum to vacuum transition amplitudes . 
(vacuum expectation values of time-ordered products), but 
it may not be if one is to adhere to the strict stochastic inter
pretation, so this is simply taken as a hypothesis. In this case, 
by analogy with Eq. (9), (11), and (12), one might suppose 
that 

where it is understood that t I < t2 < .. , < tp and 

G!J I = f ii7cp (.)exp[f:'drj d3x(2'(cp, iq;) - Jcp) 1 (30) 

is a path integral over the classical cpo 
For the free equilibrium field atiero temperature, the 

calculations can be carried out formally and Nelson's free 
Euclidean field8 results [see Eq. (28)}. This is not surprising, 
since the formulas are the same ones used in Euclidean 
QFT. 18 Moreover, changing T' to/3 and Tto 0 and integrat
ing over cyclic paths gives the positive-temperature free 
equilibrium field20 [also given by Eq. (28)). However, again 
the left-hand side of (29) indicates that the interpretation is 
different in SFT since one is considering the moments of 
stochastic fields which satisfy the relativistic equation (25). 

The advantage ofEqs. (29) and (30) is that they permit 
one to treat interacting fields and one can, at least formally, 
apply perturbation theory. 18,20 Nevertheless, the path inte
gral formulas (29) and (30) are only formal expressions. The 
rest ofthis paper is dedicated to giving them a rigorous 
meaning using Yasue's nonstandard formulation ofSFT." 
In the process Yasue's construction will be clarified, espe
cially in its relation with the simple randomization proce
dure outlined above. It should be noted that the rigorous 
path integral formulas may be given the standard Euclidean 
interpretation for the self-interacting scalar field, but for 
other fields this is not the case, as one will see upon reading 
the last section. 

Let Y be a regular ultrafilter in the natural numbers N. 
Then the ultra product 

(31) 
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is well defined by Robinson'S theory of nonstandard analy
sis. 21 Yasue calls this ultra-Euclidean space, II but this name 
is misleading since • E is not a nonstandard version of any 
RN. However, as he notes, • E is a vector space over the non
standard reals 

·R= IIR/Y (32) 
NEN 

and a • Euclidean space with respect to the inner product 

[a(N)].[b(N)] = [a(N).b(N)] = [La~N)b~N)] . (33) 
,<N 

Here [a(N)] denotes the equivalence class of (a(N» modulo 
Y. 

The right-hand side ofEq. (32) is, of course, only one of 
many non-Archimedean fields that contain the real numbers 
and infinitesimals. With respect to model theory and its rela
tion to analysis, 21 one would like to be able to make compact
ness arguments in .R. (This is not needed in what follows, 
however.) This means that Y must be a regular ultrafilter in 
the set of finite subsets of card 2', where !£ is the language 
of the model associated with ·R.21 Therefore, Yasue's con
struction necessarily implies that 2' is countable. This may 
seem strange from the point of view of type theory,21 but 
from the mathematical physicist's point of view it is easy to 
justify: It is impossible in one's finite lifespan to write down 
more than a finite number of symbols and/or formulas from 
any language! 

Yasue chooses a free ultrafilter, II but regularity of Y 
guarantee that Y is free since N in infinite. Moreover, this 
implies that each AEY is infinite. This observation gives a 
direct way of associating aER with an element of ·R: Take 
a~N) = a except possibly in a finite number of pairs (N,l)' 

Each [a(N)]E·E defines a field from R3 to·R by Ya
sue's formula II [where now we take ei to be a complete set of 
2'(R3

) in Y(R3
)]: 

cp (x) = [La~N)ej(x)] . 
,<N 

(34) 

Let us denote the set of all such cp by • K. Yasue calls this 
Kawabata space. II As he notes, • K is homeomorphic and 
isomorphic to "'E. Thus, '" K, like'" E, is not an extension of 
any standard set. However, it is possible to relate Eqs. (27) 
and (34) iIi such a way that one can embed standard fields in 
.K. One simply takes akN) = aj 6ki for each N. Then the 
Fourier decomposition ofEq. (34) gives a Fourier coefficient 
[l:k<NakN)6ki], and this isa j by the remarks in the preceding 
paragraph. This relation between standard and nonstandard 
fields is not obvious in Yasue's work II and will play an im
portant role in later developments. 

Following Yasue, II one can now construct stochastic 
fields via the homeomorphism between'" E and • K. Let q(N) 
be a diffusion process in RN satisfying Eq. (1). Then [q(N)] is 
a stochastic process in • E. Hence, 

IP (x, t) = [L q~N)(t )ej (X)] 
,<N 

(35) 

is a stochastic field in • K. 
If 
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(36) 

it is possible to construct a solution to Eq. (25) using Eq. 
(35). One takes anharmonic oscillators q(Nl satisfying22 

iit) + (k ~ + m2)q~Nl = liN) , (37) 

wherej/Nl = oijk There is only one technical point to 
check: One must insure that a(Nl does not depend on q(Ml for 
M> N. For an extemalj, this is obvious. For polynomial or 
exponential self-interactions, each power of cp is a local prod
uct in the sense of Yasue, 11 so each Nth component of the 
power only contains q(Ml with M = N. For interactions with 
other fields, one also has polynomials in cp and other fields 
(or derivatives of these), so again no Nth component con
tains a q(Ml with M> N. 

As an example, consider 

j(x) = -4Acp(X)3. (38) 

Then 

-4A 

XO;j f d 3xeje;, e;, e;, . (39) 

It should be noted that (37) cannot be solved by the 
method developed by Nelson for solving the anharmonic 
oscillator (see the second reference in Ref. 2), since, as in Eq. 
(39), the a(Nl generally depend on q(Nl. However, assuming 
certain regularity conditions on the a(Nl, Eq. (37) can be 
solved in the sense that one can in principle determine all the 
moments by using Eq. (9). This is all that will be needed in 
what follows. 

For j = 0, the construction outlined above reduces to 
the randomization procedure used in the case of free fields. 
Thus, the free fields are standard. For interacting fields, one 
should expect that in general they will be nonstandard, since 
distributions can be considered as nonstandard elements. As 
an example, 0 (x - y) may be written as 

o(x - y) = [Ie;(y)e;(x)] , (40) 
,<.N 

which each x and y is a perfectly good nonstandard number. 
Therefore, one either has to cope with nonstandard elements 
of * K for the interacting case or one has to smear the cp(x) in 
order to get a generalized stochastic process. This latter pro
cedure is not excluded, but the meaning ofEqs. (29) and (30) 
is not obtained by considering it. Thus, such generalized sto
chastic processes are not considered in this paper. 

Let us note here an amusing advantage of the nonstan
dard SFT. Consider the average energy E of the free stochas
tic field. As a nonstandard real number, it is 

E = [LJ (k ~ + m2)1/2coth(~P(k ~ + m2»] . 
'<.N 

(41) 

This is infinite, of course, since it includes the infinite energy 
contributed by the zero-point field. However, it can easily be 
distiguished from the other nonstandard real numbers and 
used unambiguously in calculations. One can perform a sim
ple renormalization of course, but this denies the real exis
tence of the zero-point field. Actually, the renormalization is 
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not necessary since only energy differences are important, 
i.e.,EI - E2 should be near standard foranyenergiesE I and 
E 2•

23 Thus, all energies can be referenced to the energy in Eq. 
(41) for P = 00. Other renormalizations are not so obvious. 

It is now an easy step to give meaning to formulas (29) 
and (30). Let us first define a transition probability that is an 
easy extension ofYasue's definition of the probability densi
ty.11 Let cp and CPo be two elements of *K independent of t. 
Then the transition probability p(cp,t ICPo,to) that the stochas
tic field cp(x) is cp at t if it is CPo at to is defined by 

p(cp, t Icpo, to) = [P<Nl(x(Nl, t IX~Nl, to)] , (42) 

where P<Nl(X(Nl, t IX~Nl, to) is the transition probability for 
the component stochastic process q(Nl in Eq. (37). Obvious
ly, one has that O<p(cp,t I CPo, to) < 1 by applying the definition 
of truth in the model *R,21 and one easily sees that Eq. (42) 
satisfies the Chapman-Kolmogorov equation 

fp(cp, t Icp\> tl)P(CPI, tllcpo, to)OCPI = p(cp, t Icpo, to)' 

where one uses the definition 11 

fF!CP locp= [fdNx(NlF(Nl!x(Nll] 

(43) 

(44) 

forcp = [l:;<.Nx~Nle;] and for afunctionalFon *K of the type 

F!cp 1= [F(Nl!x(NlJ]. (45) 

From (42) and (5), one also has that 

p(cp, t Icpo' to) = [ V p(X(Nl)lp(X~Nl) f d,uw (q(.» ] 

xexp{ - {(V(Nl_E(Nl)dt'} (46) 

=~ :~~) fd,uw(cp('»S!cp(-)l, 

where 

S!cp(')l= [exp { - {(V(Nl_E(Nl)dt'}], (47) 

Now let us consider explicitly the field equation 

(0 + m 2)cp = j + J , (48) 

whereJis an arbitrary extemalinteraction. WhenJ = 0, cp is 
the solution of (25) whose moments are needed. Define 

G!J I ==[G(Nl!J(Nll] 

= [f d,uw(q(Nl(.»exp{ - f:'(V(Nl + J(Nl.q<Nl)} ] , 

(49) 

(50) 

Also define 

oGIJI [OG(NlP(Nll ] 
oj (x) = ;~ oJ~Nl(t) e;(x) , (51) 

with higher-order functional derivatives being defined in an 
analogous manner. Then 
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T_- 00 

(52) 

To prove Eq. (52), let us assume that xl, ... ,xp are al
ready time ordered. Each J(N) defines an external interac
tion for q(Nl, so G(N){J(N)} makes sense. Thus, 

(<p (xl)···<p (xp» 

= (L, .. ~</j~)(tl) ... qj~)(tp)ei' (XI)-•. eiJxp )]) 

= L"'~<N (qj~)(tl)···qj~)(tp)k, (xl) ... eip(Xp)} 

[ 

. (-I)P 
= hm I (N) (N) 

T'-oo i".·.,i,.<N G {J } 
T_- 00 

<5"G(N){J(N)} I ] 
X (N) (N) ei, (xl)···eip(xp) . 

8J i, (t l )···8J 2p (tp ) J'''~O 
(53) 

Using the definition of multiplication in *R, this expression 
reduces to the right-hand side of (52) as long as one can 
interchange limits and the brackets []. This is always possi
ble since one can choose T and T' large enough so that 
T<t l < .. , <fp <T' and J(x) zero outside of [T, T']. ~or the 
positive temperature case, T = 0, T' = p, and there IS no 
problem, of course. 

It is interesting to observe that Eq. (51) almost agrees 
with the usual definition of functional derivative, which 
satisfies 

J
dx/(x) 8G {J} 

8J(x) 
lim G {J + E/} - G {J} . (54) 
E-o' E 

To see this, write 

I(x, t) = [I b jN)(t )ei (X)] . 
r<N 

(55) 

If one could interchange the limit and [ ], he would have the 
right-hand side of (54). It is not clear that this can always be 
done, however. Yasue's definition II of 8F /8<p(x) also suffers 
from this same problem. 

In conclusion, (49) and (52) give a rigorous meaning to 
the path integral formulas (29) and (30). As far as the author 
knows, this is the first rigorous definition given in the math
ematical physics literature, irrespective of whether one gives 
a SFf interpretation or an Euclidean field theory 
interpretation. 

Let us now note that (54) also gives the means to derive 
the usual functional expansion for G {J }. Let us treat J + zj 
as the external source, and consider Go{J + zj}, which re
duces to G {J} for z = 1. Then one has 
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Go{J + zj} = exp[zJdXj(X) _8_ ]Go{J} . 
8J(x) 

Hence, 

(57) 

G{J} =exp [JdXj(X)_8_]Go{J} , (58) 
8J(x) 

which gives the expansion of G {J } in terms of the free field 
Go{ J}. Equation (58) can be used as a formal basis for per
turbation theory. 

Equations (37) and (39) can also be used to obtain a 
functional differential equation for G {J}. For ).<p4 theory 
one has 

0= [J(X) + (..::1 4 - m2
) _8_ -4). (_8_)3]G {J} , 

8J(x) 8J(x) 
(59) 

where ..::1 4 is the four-dimensional Laplacian. This is just the 
Wick-rotated version of the usual functional differential 
equation ofQFf, but a rigorous meaning and interpretation 
has been given to it as an equation in SFf. It can be used to 
develop equations for the Green functions DE (X 1'''''Xp ) de
fined by 

10gG {J} = ! (- ,1Y Jdxl ... JdxpDE J(XI)· .. J(Xp). 
p~O p. 

(60) 

It is easy to see that 

(-l)P <5"G{J} I = ~DE(XI""'Xp), (61) 
G{J} 8J(x l)···8J(xp) J~O p. 

which is why such equations are of interest. 

CONCLUDING REMARKS 

Stochastic theories of microscopic phenomena have re
ceived general criticism on the grounds that they do not pre
clude the possibility of hidden variables. However, SFf is 
only a mathematical model used much in the same way that 
one uses ensembles in statistical mechanics. The fields are 
classical in the sense that they are solutions to classical field 
equations, and their stochastic nature is a model of all the 
random contributions from sources in the universe. If one 
accepts this argument, hidden variables are not needed. 

More specific criticisms have been directed at Nelson's 
theory, so it may be interesting to dwell on this point a mo
ment. Let us refer explicitly to the recent criticism of Gra
bert et al. 24 and treat several points. In their title, these au
thors ask: "Is quantum mechanics equivalent to a classical 
stochastic process?" The answer is obviously no; neither 
Nelson for anyone else has ever pretended that the theories 
are equivalent. Nelson has repeatedly indicated essential dif
ferences, 2 and the work in CSED by De la Pefia and Cett03

,4 

shows clearly that CSED is not equivalent either. 
It is interesting that Grabert et al. 24 completely ignore 

CSED as well as SFf. Criticisms about the form of the corre
lation [their Eq. (4.12), and Eq. (16) in the present paper] 
appeared earlier in CSED in a paper by Claverie and Din
er,25 for example. However, Nelson's process is a Markov 
process, and De la Pefia and Cetto have also shown that 
CSED possesses a true Markov limit.3 
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Grabert et al. also observe that there exists a drift veloc
ity for each solution of the Schr6dinger equation. 24 Math
ematically, this is true, and this could be a valid criticism for 
those who would consider that SM in its present form can 
directly describe all quantum states. Nevertheless, their 
comment is not relevant to the contents presented in the 
second section of this paper, since the author's proposal that 
SM is an equilibrium theory means that there exists only one 
drift velocity which is a function of temperature. In fact, in 
this author's modest opinion, none of the stochastic theories 
have been able to go beyond equilibrium states, so the entire 
study of nonequilibrium phenomena remains to be done. 

The comments in Sec. V of the paper by Grabert et al. 24 

in which they refer to the non quantum nature of the stochas
tic correlations can hardly be taken as a criticism of SM 
when these same authors admit that " ... various definitions 
of quantum-mechanical correlations have been introduced 
in different contexts." IfQM cannot decide on which corre
lations are the right ones, no comparison can be made be
tween it and SM. 

Nelson shows how SM can be considered a logical ex
tension of Newtonian mechanics. 2 Davidson takes a more 
abstract viewpoint. 16 As a result, he shows that there is an 
infinity of diffusion processes, each with a different diffusion 
constant, which lead to the Schr6dinger equation. This am
biguity merely points out the phenomenological nature of 
the Markov approximation, of course, and hence the phe
nomenological nature of the Schr6dinger equation. 

One can also anticipate criticisms of SFT. The first is 
that the theory is not really Lorentz invariant. This can be 
seen most easily by considering the electromagnetic field. 
For the radiation gauge the free field moments are26 

(Ai (x, t )Aj(Y' t» = 2~ f d 3kG (/3)(t - t ') 

xe'K'(X-Y)(D
ij 

- ki kj /lkI 2). (62) 

For an arbitrary gauge and in 4-vector notation one has for 
/3 = 00 

(AI' (x)A,,(Y» = 4~ f d 4k(k, ktlei(k,x- y) 

X [ - gl'" - kl'kv(1 - f(lkl»/«k'7])2 - k.k)], (63) 

wherefis the gauge function, ( , ) denotes the Euclidean 
product, and· the Minkowski product. Equation (63) may be 
compared with the free Proca field moments: 

(A (x)A (y» = -1-fd 4ke i
(k,X- Y ) 

I' v (21Tt 

X (m2 + (k, k »-1 [ - gl'v + kl'kv1m2] . 
(64) 

Note that neither (63) nor (64) possesses Lorentz invariance. 
The term in brackets are invariant because the fields satisfy 
their corresponding relativistic equations (they are just the 
polarization vector sums), but the rest of the integrands is 
not because it corresponds to the moments of the component 
oscillators. One can understand this phenomena by consid
ering the fact that (63) and (64) are the limit /3-00 ofthe 
positive-temperature fields. The statistical ensemble present 
for positive temperatures is still present in the limit, so the 
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moments should not be Lorentz invariant. However, the ref
erence frame in which one calculates seems to be irrelevant 
for /3 = 00 (even though the moments are not invariant) 
since the energy spectrum of the field is Lorentz invariant. 

The second criticism that might be applied to SFT can 
also be applied to SM and CSED at positive temperatures. If 
one considers the periodicity of the positive-temperature 
paths in the second section of this paper, one finds that even 
at the low temperature of 10 K, the fundamental period is of 
the order of to-II sec, being smaller for higher temperatures. 
This seems very strange, and this author does not know how 
to interpret it in the real-time framework of SM. These re
marks also hold for positive-temperature SFT and hence for 
positive-temperature CSED, since the positive-temperature 
fields are composed of positive-temperature oscillators (in 
general, anharmonic). 

One way out of the dilemma mentioned above is to sim
ply assume that SM and SFT are Euclidean theories. Howev
er, (63) and (64) are clearly not Euclidean correlations, and 
this will be true of all higher-spin fields. The Euclidean fields 
would have to be completely iSO(4) invariant, i.e., one also 
would need (A, iAo), the old-fashioned four vector, and not 
(Ao, A). The essential point here is that the stochastic AI' 
satisfies the relativistic equation. 

These interpretative problems and criticisms aside, it 
should be mentioned that Yasue has already considered 
Yang-Mills fields in his study of tunneling phenomena. 10 

Here the whole question of quantization of gauge fields 
should be re-examined in the context ofSFT using the rigor
uous methods developed in this paper. Fermion fields can be 
studied using anticommuting c-numbers. 27 In this case the 
component stochastic processes of the field should give a 
method for studying spin in SM or CSED. 

Various authors have indicated the usefulness of con
sidering Euclidean fields as stochastic diffusion processes in 
infinite-dimensional space. 28 Nonstandard SFT clearly of
fers an alternative that is more closely related to our intu
ition. The author believes that it should be developed further 
in order to see if it can make more transparent some of the 
problems confronting high-energy physics. 
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APPENDIX 

Here the virial theorem used in the second section of 
this paper is derived. 

In classical mechanics, the virial theorem has a simple 
derivation. 29 The corresponding derivation in QM is slightly 
complicated by the formalism and by having to keep track of 
the commutators?O In SM, as will be seen, the derivation 
approaches the simplicity of the classical-mechanical deriva
tion. Let us consider the case of zero temperature. 

Let us start with Newton's law in the form22 

Steven M, Moore 2108 



                                                                                                                                    

(65) 

Thus, the ensemble average of the virial is 

(66) 

The renormalized kinetic energy is2 

(T) = (Imb;12). (67) 

Thus, the right-hand side of (66) reduces to 

2(T) - (D (Iqj·mb j)) . (68) 

Hence, the virial theorem holds if the last term is zero. 
Let us recall that2 

D!(q(t),t)= (~+b.V+ ~L1)!(q(t),t) (69) at 2m 

for any smooth function/, so that 

= f d NXp(X) (~ + b·V + 2: L1 )(x.mb). (70) 

Using adjoints2
, one has that 

= fdNx(x.mb) ( - :t -b·V - V·b + ~L1 )P(X). 
2m 

However, p satisfies the Fokker-Planck equation2 

ap = _ V.(bp) + ~L1p. 
at 2m 

Thus, the last term in (68) is indeed zero. 
Thus, one has the virial theorem 

2(T) = (Iqj' av (q;)) . 
aXj 

(71) 

(72) 

(73) 

Note that the averages are ensemble averages instead of time 
averages as in the classical case. 29 However, since the process 
is assumed to be ergodic, (73) is equivalent to a virial theo
rem with time averages. The equivalence is not apparent in 
QM.30 Indeed, the interpretation of the virial theorem in QM 
is not even clear. 

One may also note that no boundedness assumptions 
were made on the sample paths of q, as is done in the classical 
case.29 Here stationarity is the substitute for boundedness. In 
QM these considerations are not even treated,3° although it 
is an interesting question when one considers that the quan
tum-mechanical propagator is also made up of classical 
trajectories. 18 

In the case where Vis homogeneous of degree k, one 
may apply Euler's theorem as in the classical case. 29 One 
obtains 

2(T)=k(V). (74) 
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This was used in the second section of this paper in order to 
express (T) in terms of ( V). 

For positive temperature, one only has to restrict his 
attention to periodic solutions q(t). It is also important to 
note the b j depend on temperature in general. This is easily 
seen in the example of the hydrogen atom: For zero tempera
ture, one has 

e2 q 
b=---

fl Iql 
so the average energy per hydrogen atom is 

1 me4 

€= -m(b2
) = - --, 

2 2fl2 

(75) 

(76) 

which agrees with the quantum result except for interpreta
tion. However, for positive temperature, one sees that Eq. 
(75) cannot possibly be correct, since one would still get Eq. 
(76). 

Thus, in general, Eqs. (73) and (74) are only useful in 
expressing (T) as a function of ( V), since the temperature 
dependence of b is not a priori known. 16 
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This study describes some properties of random walks in a plane which differ from free random 
walks through an extra weightfactor ( -1) for every crossing of some branch line T. The 
statistical distribution of these walks is derived, asymptotically for very long walks, in the case 
that T consists of a half-line. It is pointed out that these walks are relevant to (1) self-avoiding 
random walks in a plane; (2) the simple entanglement problem in polymer physics. 

1. INTRODUCTION 

In this paper we study the properties of random walks 
in a plane which have a weight which differs in some essen
tial respects from the weight of the free random walks which 
have been studied extensively throughout the last sixty 
years. l

.
2 The weight of these walks is defined as follows: 

Imagine some curve T in a plane, which may consist of sever
al disconnected continuous parts. For an arbitrary random 
walk configuration (C) we determine the number of times 
[n(C)] that C crosses T. The a priori weight W(C) of this 
configuration is now defined by 

(1) 

where Wo( C) equals the a priori weight of C in the standard 
case offree random walks. As W (C) can be negative, the 
usual probabilistic interpretation does not apply. The most 
important new aspect of W (C) is the fact that its sign de
pends on whether the total number of crossings between C 
and T is even or odd; this is a global, rather than a local, 
property of the configuration C. 

We shall take for T the collection of points with Carte
sian coordinates (x,y) with - 00 <x < 0 andy = 0; this will 
be called the "branchline" for reasons which will become 
obvious shortly. We shall calculate the function 

p(x,y,N)= I W(C), (2) 
c 

where the summation extends over all those configurations 
which (1) start at some fixed point (xo,Yo); (2) consist of N 
steps; (3) reach (x,y) at the end of the Nth step. This class of 
random walks is remarkable for two reasons. In the first 
place, a simple relation exists betwen them and the two-di
mensional simple entanglement problem. The latter prob
lem consists of calculating the configuration sum Qn (x,y,N) 
over all those configurations which have the properties (1), 
(2), and (3) as stated above and which, in addition, wind 
exactly n times around the origin of coordinates. It follows 
from these definitions that 

+00 
p(x,y,N) = I (-I)"Qn(x,y,N). (3) 

n = ~ 00 

"'Permanent address: Department of Applied Physics, Twente Unviersity 
of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands. 

The simple entanglement problem has been studied by 
Prager and Frisch,3 Edwards,4.5 Saito and Chen,6 and 
Wiegel. 7.8.9 

The second reason these random walks are remarkable 
is their relation to the two-dimensional self-avoiding ran
dom walk problem. This relation has been discussed recently 
in detail by the author.9

.
10 Actually, the relation with self

avoiding random walks become evident only after a further 
complex phase factor has been included in the weight. The 
resulting complex-weighted random walks also playa role in 
the combinatorial solution of the Ising model and the free
fermion case of the eight-vertex model. ll

.
l7 For these rea

sons it is useful to study the random walks with weight (1) for 
their own sake. 

2. GENERAL CONSIDERATIONS 

We represent a random walk configuration by a set of N 
steps, each of the same length I. The functionsp(x,y,N) were 
defined in the introduction; they are connected by the recur
rence relations 

p(x,y,O) = o(x - xo)o(y - Yo), (4) 

1 f+1r 
p(x,y,N) = - S(x,ylx-lcosa,y-lsina) 

21T -11' 

xp(x -I cosa,y -I sina, N -1) da, (5) 

where S (x,y Ix' ,y') = - 1 if the straight line which connects 
(x,y) and (x',y') intersects T; S = + 1 ifno intersection 
occurs. 

Let B denote those points in the plane with a shortest 
distance to Twhich is smaller than I. If (x,y)iB the integral 
relation (5) reads 

1 f+1r 
p(x,y,N) = - p(x -I cosa,y -I sina, N -1) da. 

21T -11' 

(6) 

For N> 1, p(x,y,N) will be a slowly varying function of x, y, 
and N and the integral relation can be replaced by the diffu
sion equation 

ap =!:.. (a2p + a
2p

). 
aN 4 ax2 ay2 

(7) 

Now consider the original integral relation (5) in the 
case in which (x,y) is on the branchline T, i.e., x < O,y = O. In 
this case (5) gives 

2111 J. Math. Phys. 21 (8), August 1980 0022-2488/80/082111·03$1.00 © 1980 American institute of Physics 2111 



                                                                                                                                    

limp(x,y,N) = -limp(x,y,N) (x <0). 
ylO yrO 

(8) 

Moreover, if the walks starts on the x axis, every walk from 
(xo,O) to an arbitrary point (x,y) gives, after reflection in thex 
axis, a mirror image which leads from (xo,O) to (x, - y) and 
which has exactly the same number of intersections with T. 
For this case one finds 

p(x,y,N) = p(x, - y,N), (yo = 0). (9) 

Combination of the last two equations gives the boundary 
condition 

p(x,O,N) = ° (x < 0, Yo = 0). (10) 

As a consequence of this boundary condition one can 
calculate the statistical distribution of the walks from the 
expansion 

p(x,y,N) = IIs(x,Y)I~(xo,Q) exp( - AsN), (11) 

where thels denote the orthonormal eigenfunctions 

( 
a2 a2 ) 4As 

ax2 + ay2 Is + [2 Is = 0, 

under the boundary condition 

ls(x,O)=O forx<O. 

(12) 

(13) 

This calculation forms the subject of Sec. 3. The same for
malism can be used if T consists, not of a single branchline 
but, for example, of two branch lines x < - !ro and 
x> + !ro, as is the case for the self-avoiding random walk 
problem (compare the discussion in Refs. 9 and 10). It is also 
of interest to consider the case in which the walks are re
stricted to some domain in the plane. If D denotes the cir
cumference ofthis domain then (11)-( 13) need to hold inside 
D; on D one has to impose the additional boundary condition 

Is = 0, (x,y)ED, (14) 

in the case of an absorbing boundary, or 

als Tn = 0, (x,y)ED, (15) 

in the case of a hard boundary; in the last equation a Ian 
denotes the derivative in the direction normal to D. 

A peculiar consequence of the boundary condition (10) 
arises in the case x = 0. According to (10) one has 

lim p(x,O,N) = 0. (16) 
X!o 

But according to (5) one has also 

lim p(x,O,N) 
xlO 

1 f+71" 
= - p(x -l cosa,y -l sina, N -1) da;j=O. 

21T - n-

(17) 

Hence the endpoint (0,0) of the branchline T is a point in 
which the functions p(x,y,N) have a finite discontinuity; this 
jump is a consequence of the geometric definition of the 
function S. 
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3. CALCUL.A TIONAL DETAILS 

If T consists of the negative x-axis it appears natural to 
use polar coordinates (r,O) with ° < r < 00, - 1T < 0 < + 1T 

x = r cosO, y = r sinO. (18) 

Transforming (12) and (13) to these coordinates one finds 

(
a2 la 1 a2 ) 4,.1, 
ay2 + -; ar + ? ao 2 f+ [2f=O, (19) 

f(r, ± 1T) = ° (O<r< (0). (20) 

The even eigenfunctions have the form 

f(r,O) = A (r) cos(n + DO (n = 0,1,2,. .. ), 

and the odd eigenfunctions have the form 

f(r,O) = C(r) sinnO (n = 1,2,3,.··). 

(21) 

(22) 

The odd eigenfunctions vanish for 0 = 0. They will, there
fore, not contribute to the sum (11) in which the initial posi
tion now has polar coordinates (ro'Oo) with 00 = 0. 

The radial part of the eigenfunction, A (r), has to be 
solved from the equation 

d
2
A + ~dA + (~_ (n+D2)A=0. (23) 

dy2 r dr l2 y2 

The solution, which has to be finite for r!a, is given by 

A (r) = BJn + 112 (-7 vi 4,.1, ), (24) 

where Jp (z) denotes the Bessel function of the first kind. In 
order to proceed with the calculation we impose the bound
ary condition (14) if r equals some very large value R; in a 
later stage of the calculation one takes the limit R-oo. If 
zp.m denotes the mth zero on the positive real z-axis of Jp(z) 
this boundary condition gives the values of A 

l2 2 
An.m = 4R 2 Zn + 1/2,m (n = 0,1,2, ... ,m = 1,2,3,. .. ). 

(25) 

The normalization constants B".m follow from the orth
onormality condition 

1TBn.mBn.m·1R rJn + 112 (; Zn + 1I2.m ) I n + 112 

x (; Zn + 1/2,m' ) dr = Dm,m' , (26) 

The integral on the left vanishes for m ;j=m'. If m = m' Eq. 
6.521.1 of Gradshteyn and Ryzhik l8 gives 

Bn.m = (211T)
1/2R- 1 

jJn + 3/2 (Zn+I12.m)j-l 

(n = 0,1,2.· ... m = 1.2.3.· .. ). (27) 

Substituting these results into the eigenfunction expansion 
( 11) one finds 

2 00 00 

p(r.O,N) = --2 I cos(n +!)(J L I n + 112 
1TR n~O m~ 1 

X (; Zn+1/2.m ) I n + 1I2 (~ Zn+1/2.m). 

-2 ( ) ( N/2 2 ) XJ n +3/2 Zn + 1I2.m exp - 4R 2 z 'I + 1/2.m • 

(28) 
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At this point in the calculation it is convenient to take the 
limit R---->-oo. In this limit the summation over m will be 
dominated by those terms for which ZIt + 112.m > 1. This im
plies that one can use the asymptotic formula 

Jp(z)~ I 2 cos(z - ~17'p -117') (p>O,z>l). (29) -V 17'Z 

This implies 

zp.m 2;(,!17'p + ~17' + (m -1)17', (30) 

J; + 312 (Zn + 112.m )2;(,2(17'Z" + 1/2.m )-1. (31) 

For large values of R the variable 

I ; = Ii Zn + 1/2.m (32) 

behaves like a continuous variable. For the number gg) ds 
of S values in the interval ds one finds 

(33) 

When the last three equations are substituted into (28) one 
finds the expression 

p(r,O,N) = (17'/2)"1 "to cos(n +!)O 1"0 s J" + 112 

X (f S ) J" + 112 (r; S ) exp( - ~ ; 2) ds. 

(34) 

The integral is given by Eq. 6.633.2 of Ref. 18, 

{ 
ro + r} p(r,O,N) = 2(17'N/2)"1 exp - ~ 

00 (2rr) X I cos(n +!)OI" +112 --%- ' 
,,~o NI 

(35) 

where the I" + 112 denote the modified Bessel functions. The 
limiting value ofp in the branchpoint follows by substituting 
of the last equation into (17); this gives for the size of the 
jump in the branchpoint 

p(O,O,N) = 21 ~(N _1)/2j-1 

{ I ro} 
Xexp - N -1 - (N -1)/2 

f (-I)"(n + n-I 1"+1/2 ( 2ro ). (36) 
n~O (N -1)1 

These results hold asymptotically for N> 1. 

4. CONCLUDING REMARKS 

The statistical distribution of the random walks under 
consideration is given by Eq. (35). Exactly the same result is 
found if one substitutes the solution of the two-dimensional 
simple entanglement problem3

-
9 into our Eq. (3); this ap

proach has been followed in Ref. 9. 
It wil1 be clear from the boundary condition (10) that 

the branchline functions as a perfect absorber. The total 
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weight WN of all walks of N steps, which for free random 
walks is given by 

W~)= I, (37) 

is now given by the expression 

2 ( r?;) 00 f+Tr WN = -- exp - --;- I cos(n + !)O dO 
17'NI NI ,,~o - Tr 

(00 ( r) (2ror) X Jo r exp - N/2 In + 112 N[2 dr. (38) 

The integral over 0 is trivial. The integral over r is first trans
formed by partial integration; the resulting integral can be 
calculated with the use ofEqs. 9.6.26 and 11.4.31 of Ref. 19. 
In this way one finds 

WN = (17'N)"1J2 ro exp ( - ~) f (_I)n(n + D- I 

I 2NI n~O 

X [I"!2 - 1/4 (2~/2 ) + I"!2 + 3/4 (2~/2 )] . (39) 

For ro >N/2 this expression reduces to (37); for ro <N/2 it has 
the asymptotic form 

WN 2;(,(8/17')1/2r-IG)(rolN/2)1/42;(, l.302226(rolN/ 2)1/4. (40) 

This last formula shows the rapid "depletion" of the total 
weight WN _N-I

/
4 as a result of crossings of the branchline. 
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Nth-order multifrequency coherence functions arising in beam propagation through focusing 
media with random-axis misalignments and focusing media with additive statistical fluctuations 
are computed. The analysis is carried out by means of a simple formula which yields exact 
algorithmic solutions to a class of canonical path integrals. 

1. INTRODUCTION 

In a previous paper,1 referred to in the sequel as Paper I, 
a functional (or path) integral applicable to a broad class of 
randomly perturbed media was constructed for the n th_or_ 
der multifrequency coherence function, a quantity intimate
ly linked to n .h-order pulse statistics. This path integral was 
subsequently carried out explicitly in the case of a nondisper
sive, deterministically homogeneous medium characterized 
by a simplified (quadratic) Kolmogorov spectrum. It is our 
purpose in this paper to lift the restriction of a background 
flat medium. Specifically, we shall compute nth-order multi
frequency coherence functions arising in beam propagation 
through focusing media with random-axis misalignments, 
and focusing media with additive statistical fluctuations. We 
shall carry out this task by means of a simple basic formula 
which allows exact algorithmic evaluations to a class of ca
nonical path integrals. 

Our work in Paper I was based on the stochastic 
Cauchy problem 

i a 
- - r/J(x,z,w;a) 
k az -

i 
= H p (x, - - 'ilx ' z,w;a)t/I(x,z,w;a), 

o - k - -

xER 2, z>O, 

i 
Hop (x, - - 'ilx,z,w;a) 

- k -

r/J(~,O,w;a) = t/lo(~,w). 

(Ua) 

- _1_ 'il~ + V( x,z,w;a), 
2k 2 - -

(LIb) 

(Uc) 

The "Hamiltonian" Hop is a self-adjoint stochastic operator 
depending on a parameter aEA, (A ,F,P) being an underlying 
probability measure space. In addition, win (1.1) denotes the 
radian frequency, k o=.k (ui) the wave number, r/J(~,z,w;a) the 
complex random wavefunction, and V(~,z,w;a), the "poten
tial" field which is assumed to be a real random function. 
The initial condition t/lo(x,w) incorporates all the informa
tion concerning the temporal frequency spectrum and the 
spatial distribution of the source at the initial plane z = O. 

.. , Research supported in part by the Office of Naval Research under con
tract No. NOOOI4-76-C-0056. 

In the course of this work we shall deal explicitly with 
the following two distinct categories of the potential field 
V(~,z,w;a) entering into (Ub): 

(i)V(~,z,w;a) = ~[x - al!(z;a)f, 

(ii)V(~,z,w;a) = ~ x 2 
- !El(~,z;a), 

(1.2a) 

(1.2b) 

where x = lxi, a is a constant, and g is a spatial frequency 
(units: radia~s/meter). The first category corresponds to a 
parabolically focusing medium whose equilibrium axis is 
perturbed via the zero-mean, range-dependent, vector-val
ued, random function l! (z;a); on the other hand, the second 
category represents a medium whose parabolically graded 
deterministic profile is additively perturbed by the zero
mean random function El(x,z;a). The absence of the angular 
frequency w in the right-hand sides of(1.2) signifies that the 
media are assumed to be nondispersive.2 

Besides their generic significance in quantum mechan
ics,3 SchrOdinger-Iike equations ofthe form (1.1) and (1.2) 
playa significant role in plane and beam electromagnetic 
and acoustic wave propagation. They are usually derived 
from a scalar Helmholtz equation within the framework of 
the parabolic (or small-angle) approximation. In this con
text, the complex stochastic parabolic equation (1.1) with 
potentials (i) and (ii) provides a good description of the for
ward propagation of low-order modes in a fiber Iightguide 
having a randomly perturbed parabolically graded refrac
tive index. It can also give some insight into the problem of 
forward propagation oflow-order acoustic modes near an 
idealized, randomly perturbed, underwater, sound channel 
axis. 

The problem under consideration in this paper, that is 
the study of nth-order pulse statistics associated with (1.1) 
and (1.2), can be made more specific as follows: Let 
G (x,x/ ,z,w;a) denote the fundamental solution (referred to 
alte~atively as the propagator) of the stochastic complex 
parabolic equation (1.1). It follows, then, from the discus
sion in Paper I that the examination of pulse propagation in a 
random medium requires knowledge of the nth-order coher
ence functions E ! G(n)(..o!, !/, z,,!:,; a J-at different frequen
cies and different transverse (with respect to z) coordinates. 
Here, the operator E ! . J signifies ensemble averaging, the 
index n is assumed to be an even integer,..o! = (~1' ~2' "', ~n ) 
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eR 2n. X' = (x' I' X' 2.···,x' n)eR 2 n, and 1£ = (WI' w2, "', 
wn)eR n; finally. the nth-order propagators G(n) are defined 
in terms of G as follows: 

nl2 

G(n)(-!. -!', Z. 1£; a) = II G·(~2P'~'2p,z,w2p;a) 
p=l 

X G (:!2P _ I o:!'2p _I ,z,w2p _I ;a). 
(1.3) 

The fundamental solution G (x,x' ,z,w;a) to (1.1) can be 
expressed as a continuous 'function8I-path integral. This can 
be used, in tum, as a basis for constructing a path integral 
representation for the nth-order quantity G(n} (-!.-!' ,z,w;a); 
specifically, G(n} (-!.-!' ,z,I£;a) 

= fd [-! (n ]exp{~ i Sp kp 
2 p= I 

X Edt {5(n-2V[~(t),t,wp;aJ}}, (1.4) 

where d [-! ( t)] = d [:!I( t )]d [:!2( t )].·.d [:!n ( t)] is the usual 
Feymann path differential measure; SP = l,p odd, SP = 1,p 
even; kp = k (wp); and theintegrationisoverallpaths~( t) 
p = 1,2, ... , n, subject to the boundary conditions 

:! p (0) = :!'p,xp :! p (z) = :! p' 

The ensemble-averaged version of the path integral 
(1.4) for potentials (i) and (ii) [cf. Eq. (1.2)] will be evaluated 
in Secs. 3 and 4, respectively. These computations will be 
made on the basis of a simple formula which will be derived 
in the next section. 

2. DERIVATION OF A BASIC FORMULA 
A. Focusing Medium with Random-axis Misalignments: 
First-order Moment 

Consider the stochastic parabolic equation (1.1) with a 
slightly modified potential of type (i) [cf. Eq. (1.2a)], viz., 

i a 
- - t/J(x, z, w; a) 
k az 

- ~2 V2
x t/J(x Z', w; a) +!g2 x2t/J(x, z, w; a) 

2k -- --

- Ff ~'I! (z;a)t/J(:!, z, w; a) + ~Q2 H2(Z; a) 

X t/J(~, z, w; a). (2.1) 

The extra multiplicative factor A. appearing in (2.1) should 
be set equal to unity in order to maintain a correspondence 
between (2.1) and (1.1), with potential (i) given in (1.2a). The 
importance of this factor will be made clear in the sequel. It 
should also be noted that the constant factor "a" incorporat
ed in (1.2a) has been changed to "ii " in (2.1), again for rea
sons which wiJI be explained later on. 

We set as our immediate goal the derivation of an equa
tion for the first moment of the wavefunction ¢'(~,z,w;a). In 
order to carry out this task, we ensemble-average both sides 
of (2.1 ) over the realizations aeA: 

i a 
--E {¢'(x,z,w;a)J 
k az -

1 
= 2k 2 V\ E { ¢'(:!,z.w;a) J + ~X2 E { ¢'(~,z,w;a) J 

- g"-iix·E {H (z;a) t/J(:!,z.w;a) 1 
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+ Jg2jf E {H 2(z; a)¢'(~,z,w;a)l· (2.2) 

To proceed further, we shall need expressions for the last two 
terms on the right-hand side of (2.2), viz., 

2 

~. E II! (z; a)¢'(~,z,w;a) J = L Xj E {Hj(z;a)¢'(~,z,w;a) J, 
j=1 

(2.3a) 
2 

E IH2(z;a)t/J(~,z,w;a)J = L E IHJ(z; a)tP(~,z,w;a)J, 
j= 1 

(2.3b) 

in terms of the first- and higher-order moments of 
¢'(x,z,w;a). This "closure" problem will be examined next 
fora special class of random functions I! (z; a). 

Let H(z; a) be a zero-mean, wide-sense stationary, 
Gaussian random process with autocovariance tensor 

E I Hj(z; a) Hie (z'; a)1 = rjle (z - z'), j, k = 1,2. 
(2.4) 

It follows, then, from the Donsker-Furutsu-Novikov func
tional formalism4-6 that 

2 iZ 

= L dz' rjle (z - z')E ! 8¢'(~,z,w;a)/ 8HIe (z'; a) I, 
Ie= I 0 

(2.5a) 

E ! H J(z; a)¢'(~,z,w;a) J = rjj (0) E { ¢'(~,z,w; a) I 

2 iZ 

+ L dz'rjle (z-z')E{Hj(z;a) 
Ie= I 0 

X [8¢'(~,z.w;a)/8HIe(z'; a)]J, (2.5b) 

where 8 (.)/8 (.) denotes functional differentiation. 
Unless further restrictions are imposed on the process 

H (z; a), it turns out that the computation of the functional 
derivatives together with the performance of the ensemble 
averaging entering into (2.5) lead to an infinite hierarchy,7 
which, in tum, exhibits the impossibility of "closing" Eq. 
(2.2) for E { t/J(~,z,w;a) J. Closure may be effected by truncat
ing this infinite hierarchy. Such a truncation leads to well
known statistical approximations (e.g., the first-order 
smoothing and the direct-interaction approximation). 

In the following discussion we shall eliminate altogeth
er the aforementioned closure difficulties by restricting the 
process I! (z; a) to be both isotropic and 8-correlated, viz., 

rjle (z - z') = (cr /2)c5j/c8(z - z'), 

where iT is a constant. With this assumption, (2.5a) and 
(2.5b) simplify t08.9 

E {Hiz; a)¢'(~,z,w;a) J 

= (cr/2)E {8¢'(~,z,w;a)/8~(z; all, (2.6a) 

E {HJ(z; a)¢'(~,z,w;a)J = rjj (0) E I ¢'(~,z,w;a) 
+ (cr/2) E {Hj(z; a) [8¢'(~,z,w;a)/8Hj (z; a)]). 

(2.6b) 

The functional derivative 87/J/8Hj required in (2.6) can be 
found from the original stochastic complex parabolic equa
tion (2.1). Omitting intermediate steps, we present here the 
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final result: 

8"'(~z,w;a) 

8Hj (z; a) 

= ikg2axj"'(~z,w;a) - ikAg2 a2Hj (z; a)"'(~z,w;a). 
(2.7) 

Equation (2.7) together with (2.6) result in closed form solu

tions for E { Hj '" J and E {H J '" J in terms of E { '" J. When 
these two expressions are used then in conjunction with (2.3) 
and (2.2), the desired equation for the first statistical mo
ment of", is obtained; specifically, 

k

i ~E{"'(~z,w;a)J = -~2 V2~E{"'(~z,w;a)J 
Jz 2k 

+ Ve (~E {"'(~z,w;a) J, z> 0, (2.8a) 

E {"'(~ 0, w; a) J = "'0 (~ w), (2.8b) 

with the effective potential Ve (~ given as 

Ve(~ = B (A; k; ii) + 1il 2(A; k; ii) x 2, 

where 

(2.8c) 

2 

B(A; k; ii) = !Ag2a2~[1 + ikAg2a2(~/2)]-1 I rjj (0), 
j~ I 

(2.8d) 

il 2(A; k; ii) = g2{1 - ikg2 a2~[ 1 + kAg2(~/4)] 
X [1 + ikAg2a2(~ /2)] -2 J. (2.8e) 

B. The Propagator of Eq. (2.8) 

Let G (~ ~, z, w; a) denote the propagator of the sto
chastic parabolic equation (2.1). It is defined by means of the 
relationship 

"'(~z,w;a) = i, d~ G (~ ~,z, w; a) "'0 (~, w). (2.9) 

Averaging both sides of the last equation gives rise to the 
expression 

E !"'(~z,w;a)J = i, d~ E {G(~~, w; a)J"'o (~, w). 

(2.10) 

The quantity E { G (~ ~, w; a) J in (2.10) is clearly the 
propagator of (2.8). It can be written as a continuous path 
integral, viz., 

E {G (~~, w; a) J = exp[ - ikB (A; k; ii)z] 

X f d Lill-)] exp {ik f dS' [~.r(;) - ~il 2(A; k; ii).r(;)]j, 

(2.11) 

which can be carried out explicitly,1O resulting in the 
expression 

E! G(~~, w; a)J = exp[ - ikB(A; k; ii)z] 

X (kil /21Tisinilz)exp ! (ikil /2sinilz) 

X [(x2 + x'2)cosflz - 4:~] J. 

C. The Propagator of Eq. (2.1) 

The fundamental solution (or propagator) 

(2.12) 

G (x,x',z,w;a) of (2.1) [cf. also the definition in (2.9)] can be 
exPressed as a continuous path integral; specifically, 
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G(x,x',z,w;a) 

- - = exp{ - ~ k£2a2 f dS' H2( S';a)} 

X f d[~(S')]exp{+ ~k fdS'[~2(S') 
- g2 ~2( 0 + 2gla!! (S';a)·~( S')]). (2.13) 

This path integral can be performed without difficulty II: 

G(~,~',z, w; a) 
= (kg/21Ti singz) 

X exp { (ikg/2 sin gZ)[(X2 + X,2) cos gz - ~.~'] 

+ (ikag2/sin gz) f dS' [~' sin g(z - S') + ~ singS' ] 

.!! (S'; a) - (ika2~ /singz) f dS' f dS" 

X sing(z - S') sin gS"!! (S';a)·!! (S' ';a) 

_(ik£2a2/2) fdS'H2(S';a)J. (2.14) 

D. Basic Formula 

Clearly, the quantity E {G (~~',z,w; a) J obtained by for
mally averaging both sides of (2.14) must be the same with 
the result derived in Sec. 2B [cf. Eq. (2.12)]. This observation 
leads to the following relationship: 

E {exp {(ikag2/singz) f dS' [~' sing(z - S') + ~ singS'] 

.!! (S'; a) - (ika2~ /singz) f dS' 

X f dS" sing(z - S') singS' '!!( S'; a)-!!( S"; a) 

- (ikAgla2/2) f dS' H 2( S'; a)}} 

= (il /21Ti sinilz)( g/21Ti singzy1exp( - ikBz) 

X exp! (kg/2i singz)[(x2 + X,2)cosgz - ~.~'] J 

X exp{ (ikil /2 sinilz)[(x2 + x,2)cosflz - ~.~'] J. 
(2.15) 

It should be noted in connection with formula (2.15) 
that the various constants, as well as x and x', need not be 
those associated with the original set in (2.14). Performing 
the averaging of (2.14) requires finding the H (z; a) that 
makes the argument of the exponential an extremum. This 
!! (z; a), however, does not depend on the specific values of 
quantities such as ~ and ~' which are defined at the end 
points only. Thus, ~ and~' may be any functions of the end
points (within reason), and (2.15) will still hold. 

The above important observation will be used in the 
following two sections in order to compute a series of nth
order multifrequency moments. 

3. FOCUSING MEDIUM WITH RANDOM-AXIS 
MISALIGNMENTS: Mh-ORDER MUL TIFREQUENCY 
MOMENTS 

Substituting the potential field given in (1.2a) into (1.4) 
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we obtain 

G (n)(-!,,!' 02, I!!. ; a) 

= Jd [-!'(t)] exp{l.- i 5p kp r dt [Set) 
2 p=' Jo 

-glx;(O + 2gl~(t)-l!(t; a) - ~a2H2(t; a)]}. 
(3.1) 

This path integral can be carried out explicitly [cf. definition 
(1.3); also, (2.13) and (2.14) with ii-a, A-l]: 

G (n)(.!".! '02, I!!. ; a) 

= (V, tiki) (gl2m' sin gz)"exp{ (ig/2 singz) 

X t Spkp [(x~ +X;2)cosgz- ~.x;] 
p=' 

+ {Uagl/singZ) f dt [(t,spkp~) sing(z - 0 

+ Ct, spkp~ ) Singt) 'l!(t; a) 

- (ia
3g3/singz) Ct, spkp) f dt [ dt' 

X sing(z - t) singt 'I! (t; a)'1! (t ';a) 

- (igla2/2) Ct, spkp) f dt H2(t; a)}}. (3.2) 

In order to evaluate the desired nth-order multifre
queney coherence quantityE ! G(n)(-!'.!,,z,I!!.; a) J from (3.2), 
we must first compute the following statistical average: 

E {exp{(ia~/singZ) f dt r Ct, Spkp5,) sing(z - 0 

+ Ctl spkp~ ) singt ]'1!( t;a) 

- (iagZ singz) Ctl spkp ) f dt f dt' 

Xsing(z - t) singt'l!( t;a).l!(t'; a) 

- (iia2
/2) ttl spkp ) s: dt H2( t; a)}}. (3.3) 

This expression, however, can be brought into a one-to-one 
correspondence with the left-hand side of (2.15) provided 
that the following changes are made in the latter: 

A.-I, (3.4) 
n 

~- I Spkp~, (3.5a) 
p=1 

" 
~'- r spkp~, (3.5b) 

p=' 

ii-a Ctl spkp). (3.6a) 

k-Ctl spkp) -I. (3.6b) 

It follows, therefore, that the statistical average (3.3) is equal 
to the right-hand side of the basic formula (2.15) if x and x' 
are those given in (3.5), and the quantities kB (A;k;ff, -
=:;B '(A;k;ii) and f) (A;k;ii) [ef. Eq. (2.8)] are evaluated at the 
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arguments A., ii, and k given in (3.4) and (3.6). 
We present next the final form of the main result of this 

section: 

E {G (n)(-!,,!, ,z,!}! ; a) I 

= (UI spkp )(g/21Ti singz)" -I(f} /21Ti sinilz) 

X exp( - iB 'z)exP{(if} /2 sinilz) Ctt Spkp)-I 

X {[ Ctl Spkp~ Yl + ttl Spkp~)r} cosilz 

- 2 Ctl Spkp~)- Ctl Sqkq~~)}} 
X exp(ig/2 Singz)( 2 ptt spkp ) -I 

X f i SpSqkpkq [(~ -~ql + (~ -~~f] 
p~lq=1 

X eosgz-2(~ -~qH5 -~~)}. (3.7) 

4. FOCUSING MEDIUM WITH ADDITIVE STATISTICAL 
FLUCTUATIONS: Mh-ORDER MULTI FREQUENCY 
MOMENTS 

Under the influence of the potential field (1.2b), the 
average of (1.4) over the realizations a E A yields the 
expression 
E IG(II) (X,x',z,w ;a)} 

= fd [-!'(t)] expl~ f SP kp 
2 p= I 

X I'd; [~2p (;) -i5 (;)]1 

XE{exp!l.- i Sp kp rd;E1 [~(t),;;a]ll· 
2 p= I Jo 

(4.1) 

To proceed further, we need to specify the structure of 
CI [~( t), t; aJ. If the latter is assumed to be a Gaussian 
random process, the statistical averaging appearing in (4.1) 
can be carried out explicitly, with the result 

II==E[exp{ ~ pt/p kp I'd;EI[~ (t),t;a)lll 

1 n " 
=exp{-- r I Sp Sq kp kq 

8 p =lq=1 

X f d; fd;'r[~ (O~q (t'),t,t']). (4.2) 

where r is the correlation function of the random process E 1 , 

viz., 

r[~( t), ~q (t '),t, t'] 

= EfEI[~ (;), t; aJ€I[~q<t'),t';a]l· (4.3) 

We resort, next, to the usual Markovian approximation 
(cf., also, Paper I, Sec. 3B), i.e., we assume that the process E 1 

is 6'-correlated along the longitudinal direction of propaga
tion. We have, then, in the place of (4.3) 

r[~(t),~ ct'),t,t'] =A [~(t),~q (;')]8ct-t')· 
(4.4) 
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(4.5) 

In many physical problems, the transverse correlation 
A [~(; )~q ( ;)] is homogeneous, isotropic, and of a power
law type (cf. Paper I and references therein), viz., 

A [~ ( ; )~q (;)] 

=A(O){I-+[L 1~(;)-~qa)lr}, (4.6) 

where Lo is a characteristic length, and the parameter P is 
usually within the range 1 <P < 4. 

Even under the restrictive assumptions made so far 
about the statistical characteristics of the random process EI , 

it is impossible to evaluateE { G (n) (X,x' ,z,w ;a) J exactly un
less the parameter P introduced in (4:6) is -equal to 2. For 
values of P different from 2, the most comprehensive contri
bution to the evaluation of nth-order multifrequency coher
ence functions can be found in the recent work by Dashen,12 
wherebyE {G(n)(x,x',z,w ;a)J, withn even, isasymptotical
ly expressible in terns of two-frequency mutual coherence 
functions E{ G(2) (X,x',z,w ;a)J. It should be pointed out, 
however, that, in cOntradistinction to single-frequency mu
tual coherence functions, the exact integration of the two
frequency quantities E {G(2) (X,x',z,w ;a)J still constitutes 
an open problem. The only reCo~rse presently is to rely on 
approximate techniques. An excellent contribution along 
this direction was made recently by Furutsu 13 who examined 
second-order pulse statistics for an initially pulsed planar 
source distribution propagating in a channel devoid of a de
terministic background profile. 

In the following we shall restrict the discussion to the 
case P = 2 (simplified or quadratic Kolmogorov spec
trum.)14 Under this assumption, (4.1) assumes the form 

E {G(n) (!..!',z,,£ ;a) 
1 n n 

= exp! - -A (0)( L L Sp Sq kp kq)zJ 
8 p=lq=1 

X fd [!(;)] exp{~ ptl Sp kp 

X f d; [ 5 ( 0 - g2 ~ (;) 

- !Dqt/qkq [~(;)_~q(O]2]), (4.7) 

where D = A (0)/2Lo 2. With g = 0, this is precisely the path 
integral evaluated in Paper I. It is possible to modify the 
tcchnique developed in that paper so that it can accommo
date the presence of a focusing background profile (g,c:0). 
Instead offollowing such a procedure in this paper, however, 
we shall recast (4.7) in a form which, when used in conjunc
tion with the basic formula (2.15), will yield a solution for 
E ! G(2) (!.-!' ,z,,£ ;a)} in a straightforward manner. 

We begin by expanding the quadratic form entering 
into (4.7) and recombining terms: 
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- ~ pt/p kp { ! D qtl Sq kq [~ (0 - ~q (0 Y} 
i n { i n 

= -2 p?/pkp 2D(qf.ISqkq~(;) 

- ~ D(rtl Sr kr)-I Ltl Sq kq ~q (;)Jl (4.8) 

With this change, (4.7) becomes 

E {G(n) (!.-!',z,,£ ;a)J 

1 n n 

= exp! - -A (0) (L L Sp Sq kp kqz) 
8 p=lq=1 

Xfd [!( ;)] exp {.!-.- i SP kp 
2 p=1 

X f d; [ 5 ( ;) - .f~ (;) 

+ ~ D Ct/rkr) -I Lt/qkq~q(;) rn, (4.9) 

where the complex-valued spatial frequency g is defined as 
follows: 

(4.10) 

We introduce next a fictitious zero-mean, Gaussian, 
vector-valued, real process F (z; a) with autocovariance ten
sor E ! F; (z; a)F j (z'; a)} = (!)5;jc5(z - z'), i,j = 1,2. It is 
well-known in this case that 

f d [-E( ;;a)] exp{i f d; l.( O'-E( ;;a) -! f d ;-E2(;; a)} 

= exp { -! f d;i( ;)}. (4.11) 

With the specific choice 

1.(;)=(D/2)lt2 i Spkp~p(;), 
p=1 

it follows from (4.9) and (4.11) that 

E {G(n)(x,x',z,w; a)} 

,:: e~p F- iA (0) Ctl qtl SpSqkpkq )z} 

(4.12) 

X f d[!(;)] f d[-E(;;a)]P[-E(;;a)] 

Xexp {.!-.- i Spkp r d; [5(;) 
2 p = 1 Jo 

- .f~(;) + 2(D /2)lt2~/ ;)'-E(;; a) n, 
(4.13) 

where P [F (z; a)] is the probability distribution functional of 
the proceSs F (z;a). 

The patlt integral with respect to X ( ;) in (4.13) is iso
morphic to n uncoupled quantum mechanical harmonic os
cillators; it can, therefore, be performed easily. The final re
sult is 

E {G (n)(-!.-!' ,z,~; a) 

= exp { - iA (0) Ctl qtl Spsqkpkq)z} 
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X ((II Spkp) (g/21T i sinjz)"exp{ (i g/2 sin gz) 

X i sqkq [(~; + ~;2) cosgz - ~ q'~;]} 12, (4.14) 
q=1 

where 

12 = E {exp { [i(DI2)1/2/singz f d~ [etl Spkp5) 
X sing(z - n + CtJpkp~p) sing~ ] 
'.f:(~; a) - (iD 12g singz) Ctl Spkp ) 

X f d~ f d~' sing(z -~) sinj~ '.f:(~; a) . .f:(~; a)}} . 

(4.15) 

We are now in a position to use the basic formula de
rived in Sec. 2D. We note that the expression for 12 given 
(4.15) can be brought into a direct correspondence with the 
left-hand side of the basic formula (2.15) by means of the 
following changes: 

A~, 

g-g, 

~- i spkp~p, 
p=1 

~'- i spkp~~, 
p=1 

ii_CD 12)1t2g -2 i spkp' 
p=l 

(4.16a) 

(4.16b) 

(4.16c) 

(4. 16d) 

(4. 16e) 

(4.16f) 

(4.16g) 

As a consequence, the statistical average (4.15) is equal to 
the right-hand side of the basic formula (2.15). In the latter, 
g, x and x' are those given in (4. 16c)-(4. 16e); B must be set 
equal to zero by virtue of (4. 16a); finally, il must be evaluat
ed at the values of -t, u, g, ii, and k specified above. (When 
this is done, one has the simple relationship il-g). 

We present next the solution of the problem under con
sideration in this section: 

E{G(")(!, X',z.~; a)} 

= exp { - kA (O)Ctl qtl SpSqkpkq )z} 
X CU"I spkp )(2 1T/) - "(g/singzY - I (g/singz) 

xexP{(igI2 singz) (2 rtl Srkr) -I ptl qtl SpSqkpkq 

X{[(~p -~q)2+(5 -~;)2Jcosgz-2(~p -~q) 

. (~~ - ~~)}}xexp{(igI2 singz) ttl Srkr)-I 

X {[Ct/pkp~p Y + Ct/pkp~~ Yl cosgz 

- 2 Ctl Spkp~p ) . Ctl Sqkq~'q)}} . 
(4.17) 
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In the absence of a focusing background channel, i.e., g = 0, 
(4.17) coincides with the main result in Paper I [cf. Eq. 
(6.36)]. 

5. CONCLUDING REMARKS 

Our main contribution in this paper is the computation 
of a set of nth-order multifrequency statistical moments 
E {G(n)(!..-!, ,z,~; a)} by means ora simpleformula [cf. Eq. 
(2.15)] which provides straightforward solutions to a class of 
canonical path integrals. Alternative methods for obtaining 
these coherence functions, such as direct evaluation of the 
corresponding path integrals (cf Paper I), or integration of 
the local transport equations satisfied by 
E {G(")(!..-!',z,~; a) J, are more difficult. 

Once the quantities E { G (n)(!..-!, ,z,~; a) J are known, 
physically measurable pulse statistics are contained in the 
nth-order moments given in Eq. (2.11) of Paper I, viz., 

E {ill Ur(~p,z,tp; a)} 
= _1_ ( dw ( dX' E{G(n)(x,x',z,w; a)} F~n)(w) 

(211')" JR" - JR'" - - - - -

Xt/t~")(!',~) exp ttl (- l)5p [wptp - k (Wp)z]}. 

(5.1) 

Here, U (x,z,t; a) is a real field of radiation (acoustic or elec
tromag~etic) whose time Fourier transform Ur(~,z,w; a) is 
linked to the wavefunction t/t(x,z,w; a) [cf. Eq. (1.1)] by the 
relation U (x,z,w; a) = t/t(x,z,w; a) exp[ik (w)z); further
more, F~n)(w) = F~(W2)F),Wl) .. ·F~(wn)Fr(wn -I ), where 
Fr(w) is the temporal spectrum-usually a bandpass func
tion of w-----characterizing the receiver at range z, and 

t/t~")(! ',~) = t/t~(~2,W2)t/tO~I,WJ) 
· .. I/It(~n ,w" )t/to(~" _ I ,w" _ I ), where "'o(~,w) is the initial dis
tribution associated with the stochastic parabolic equation 
(1.1). 

It was demonstrated in Paper I that under very restric
tive assumptions (g = 0, a broadband receiver, i.e., 
F~2)(W)~ 1, and an impulsive planar source intensity), (5.1), 
with n = 2 and X 2 = Xl' can be evaluated exactly. If these 
conditions are relaxed, however, the nth-order moments 
shown in (5.1) can be computed only asymptotically (e.g., by 
the method of steepest descent), or numerically. 
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The standard mapping results from a study of nonlinear forced oscillations of a gas in a closed 
tube. On interpreting stochastic transition as the breaking of all waves during a round trip in the 
tube, an estimate for the critical value of the relevant parameter is simply derived. The estimate 
agrees very well with the result of a more elaborate analysis of Greene. 

1. INTRODUCTION 

The study of a measure-preserving mapping of a plane 
onto itself arises in a number of problems in nonlinear dyna
mics. I

-
3 While these mappings appear simple and determin

istic, their solutions may be either ordered or chaotic, de
pending on the parameters of the system. The standard 
mapping. 

F(TJ) = F(s) + Asin(21TTJ), TJ = s + F(s), (1) 

is a mapping which has received particular attention. It has 
been used to describe the motion of a particle in a "magnetic 
bottle," the oscillations of a pendulum with two degrees of 
freedom, and the motion of a particle constrained to move on 
the surface of non symmetrical bowl (see Greene 1 and Chiri
kov2

). These papers derive the mapping (1) from appropriate 
Hamiltonian systems and suggest that many other dynami
cal systems can be approximated by the same mapping, 
hence the term standard mapping. One objective in studying 
this mapping has been to determine the maximum value of 
A = Ac at which the transition from an ordered to a chaotic 

t 
f<"l) 

~ 
.c 
" = 

Q 

:: 

o 1 X 

FIG. 1. 

motion occurs. 1.2 The most recent estimate of Ac seems to 
bel 

(2) 

The standard mapping has also arisen in nonlinear 
acoustics, in the study of the nonlinear oscillatory motion of 
a gas in a closed tube which is driven by a reciprocating 
piston, see Seymour and Mortell,4.5 and Mortell and Sey
mour.6.7 It is the aim of this paper to give a brief derivation of 
the standard mapping in the context of nonlinear acoustics 
and to show that, from the vantage point of this physical 
model, we can very simply obtain the approximation 

Ac = (21T) - I . (3) 

This is close to the value ofEq. (2), which is found by a more 
elaborate analysis, and better than values in Ref. 2. The re
sult (3) has been given as an aside in Mortell and Seymour,7 
but it is worthwhile to derive it here in the context ofstochas
tic transition. 

2. HEURISTIC DERIVATION OF THE STANDARD 
MAPPING 

A careful derivation of the standard mapping as it arises 
in nonlinear acoustics has been given previously,4.7 so here 
we sketch a derivation which is intuitively appealing. A col
umn of gas is contained in a tube, one end of which is closed 
(x = 0), while at the other end (x = 1 in normalized Lagran
gian coordinates) there is an oscillating piston. Figure 1 de
picts the (t-x) space for the tube. The velocity of the piston at 
x = 1 is specified by u = h (wt ), where the period of h, in the 
variable wt, has been normalized to unity, and Ih 1< 1. The 
dimensionless piston frequency is w . 

The Riemann representation for the particle velocity is 

u =/«(3) -g(a), (4) 

where/, g are Riemann invariants; a(x,t) and (3 (x,t) are the 
left-traveling and right-traveling nonlinear characteristics. 
We consider a wave with amplitude/(s) which leaves the 
piston at x = 1 at time t = w- I s. From the representation (4) 
and the condition u(O,t) = 0, this wave is reflected from the 
end x = 0 with amplitude g(r) = /(s), at time t = w- I r. It ar
rives back at x = 1 at time t = w-ITJ. Having received the 
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input h (,,) from the piston at x = 1, it leaves with amplitude 
/(,,). Thus, from Eq. (4), 

/(,,) =/(s) + h (,,). (5) 

To complete the determination of/we need an expression for 
the travel time, (U-l(" - s). According to small amplitude 
nonlinear theory (i.e., 1/1 < 1 in the characteristic equations) 
the travel time is 

(U-l(" - s) = 2 +2M/(s), (6) 

where M = !(r + 1) and r is the ratio of specific heats for the 
gas. In Eq. (6), the term 2 is the linear contribution to the 
travel time, while the term 2M/(s) is the first nonlinear cor
rection. It is typical in such nonlinear problems that the trav
el time of a wave depends on the amplitude carried, which 
produces a distortion of the wave as it propagates. The re
sults (5) and (6) may also be derived on the basis that the 
disturbance in the gas is the superposition of two small am
plitude simple waves.4 

The standard mapping (1) now results, on seeking/ 
with unit period, by introducing 

F(,,) = 2uJM/(,,) +.1, H (,,) = 2uJMh (,,) = Asin21T", (7) 

where.1 = 2«(U - (Un) and (Un = !n, n = 1,2,3,· .. , are the lin
ear resonant/requencies . .1 is a measure of the detuning and, 
as/is required to have zero mean value ifit is periodic, Eq. 
(7) implies 

fF(S)dS=.1. (8) 

The acceleration and frequency parameters A and.1, 
are determined from experimental conditions. 

In the context of nonlinear acoustics Eq. (1) can be con
sidered as the product, T 2 T 1, of two mappings 

T 1 :(s,F (s»-(",F (,,», (9) 

where F(,,) = F(s(,,», " = s + F(s), can be regarded as a 
"simple-wave mapping". The function F(,,) represents the 
distorted signal returning to the piston after reflection from 
x = 0, but before it has been reinforced by the piston motion. 

(10) 

whereF(,,) = F(,,) + H (,,), then represents the action ofthe 
piston on F (,,). To be an acceptable physical solution, Fmust 
not only map onto itself under T2T 1, but must also satisfy 
the mean condition (8). 

The mapping (1) has also been written in the discrete 
form7 

Fn+1 =Fn +H(xn+I ), xn+1 =Xn +Fn' (11) 

which is equivalent to 

Fn+1 =Fn -H(xn), x n+1 =xn +Fn+I' (12) 

the form used by Greene. I 

3. STOCHASTIC TRANSITION 

Rather than using Eq. (1) in the form (11) to map dis
crete points, it is more natural in nonlinear acoustics to use it 
to map curves. Thus if F(s) is the signal which leaves the 
boundary x = 1, its image in the next cycle of the motion is 
F(,,) given by (1). If F(s) is singlevalued, but its imageF (,,) is 
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multivalued, we say that the wave has "broken" during its 
round trip in the tube. In general, a wave will "break" at 
some point" = ,,* if 

1 + F'(s*) = 0, ,,* = s* + F(s*). (13) 

In the context of nonlinear acoustics, this corresponds to 
shock waves occurring in the flow. Such multi valued solu
tions ofEq. (1) are constructed in Ref. 5, where it is shown 
that each will contain an infinite number of multivalued 
loops. For a given value of A less than some value A c ' both 
continuous and multivalued solutions are possible depend
ing on the specified value of .:i. The continuous solutions are 
known as invariant curves and correspond, in the context of 
periodic orbits of a nonlinear oscillator, to KAM (Kolmo
gorov, Arnol'd, and Moser) surfaces. For A >Ac the solu
tions are multivalued for all values of .:i. ThusA = Ac corre
sponds to the disappearance of KAM surfaces and hence to 
stochastic transition. The chaotic solutions of Greene I occur 
for those values of A and.1 at which the acoustic signal will 
break in a traversal of the tube. The minimum signal ampli
tude which will arise for a given H (,,) is when the frequency 
is not in the neighborhood of a linear resonant frequency 
(.1 = 0), and hence the signal leaving the piston is never sig
nificantly reinforced. The condition that this signal, H (,,), 
breaks in one cycle is, by Eq. (13), 

max [-H'(,,)]>l. (14) 
'I 

When H (,,) = Asin(21T,,), condition (14) becomes the fol
lowing: The wave will break in one cycle for all values of.1 if 
A>Ac' where 

(15) 

This result was derived in Mortell and Seymour7 in the 
context of nonlinear acoustics, where it was shown to be 
consistent with a numerical investigation of the transition 
curve in the (A -.1 ) plane bounding the region of continuous 
periodic solutions. Several exact continuous solutions for a 
piecewise linear piston velocity H (,,) have also been con
structed6 .

8 in the vicinity of.1 = 0 and.1 = !. In Ref. 5 the 
concept of a discontinuous invariant is introduced when the 
"equal area rule" is added to Eqs. (1) and (8). These curves 
describe the discontinuous motions in the various resonance 
regions. Theoretically, resonance regions occur for.1 in the 
neighborhood of each rational (min) (m < n), but the width 
of the region in theA-.1 plane decreases as m and n increase. 
Consequently, their detection depends on the sophistication 
of the numerical scheme used. A small amount of damping 
in the system will eliminate most of the higher order reson
ances in many practical situations, and indeed only the re
sonances near.1 = 0 and.1 = ! have been observed experi
mentally in the context of nonlinear acoustics.7 
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In this work we develop the canonical formalism for constrained systems with a finite number of 
degrees offreedom by making use of the Poincare-Cartan integral invariant method. A set of 
variables suitable for the reduction to the physical ones can be obtained by means of a canonical 
transformation. From the invariance of the Poincare-Cartan integral under canonical 
transformations we get the form of the equations of motion for the physical variables of the 
system. 

1. INTRODUCTION 

It is known that many interesting physical systems are 
described by singular Lagrangian. Some examples are pro
vided by the electromagnetic, the gravitational, the Yang
Mills fields, and some relativistic models. 1 Features of all 
these theories are the in variance under certain transforma
tions and the presence of relations (constraints) among the 
canonical variables, which restrict the motion to a hypersur
face of the phase space. 

A method for developing the canonical formalism and 
the quantization of constrained systems was proposed by 
Dirac. 2 The constraints are classified into two groups (first
class and second-class), depending on their algebraic proper
ties with respect to Poisson brackets. The dynamics of the 
system is generated by an extended Hamiltonian, obtained 
by adding a linear combination of first-class constraints to 
the canonical one. One must take into account the presence 
of second-class constraints by working with generalized 
Poisson brackets (Dirac brackets). The problem of the quan
tization is complicated by the search for a set of variables 
independent and canonical with respect to Dirac brackets. 
Instead of following the Dirac technique, these variables can 
be directly obtained, as suggested by Shanmugadhasan,3 as a 
subset of the variables of a canonical transformation, whose 
existence is based on some theorems on involutory sys
tems.4

,5 and function groupS.6 We want to stress that this 
method, as well as the Dirac brackets technique, is a local 
one; in fact the existence of the canonical transformation is 
only locally guaranteed.4 

In this work we pursue the study of the extension of the 
formalism of the Poincare-Cartan integral invariant to con
strained systems with a finite number of degrees of freedom, 
which one of us began in Ref. 7, and making use of the fnvari
ance of the Poincare-Cartan integral under canonical trans
formations, the equations of motion for a set of variables free 
with respect to second-class constraints are easily obtained. 
Furthermore, working in this reduced space of the variables 
independent with respect to second-class constraints, a ca
nonical transformation which isolates the gauge-indepen-

dent variables from the gauge-dependent ones is performed. 
This is the great advantage of this technique with respect to 
the Dirac one. An interesting result is that, for Lagrangians 
homogeneous of first-degree in the velocities, this procedure 
corresponds to the Hamilton-Jacobi method. 

In Sec. 2 we review and extend the Poincare-Cartan 
integral formalism for constrained systems. Section 3 is de
voted to the introduction of the concept of canonical trans
formation and to the proof ofthe invariance of the Poincare
Cartan integral under canonical transformations. In Sec. 4 
we perform the canonical transformation extended to the 
second-class constraints and the Hamilton equations for the 
new variables are obtained. In Sec. 5 the Hamilton equations 
for the set of variables free with respect to first- and second
class constraints are obtained. 

2. POINCARE-CARTAN INTEGRAL INVARIANT FOR 
CONSTRAINED SYSTEMS 

The Poincare-Cartan integral invariant plays a funda
mental role in standard classical mechanics since, from its 
invariance, it follows that the equations of motion of the 
dynamical system are Hamilton canonical equations.8 

In Ref. 7 this result was generalized to systems de
scribed by singular Lagrangians. 

Let us now review the essential points ofthis generaliza
tion. Let us consider a dynamical system described by a sin
gular Lagrangian 

L = L (q"q,,(), (s = t, ... ,n). (2.1) 

Due to the singularity of the Lagrangian, the motion of 
the system is restricted to a hypersurface of the phase space, 
determined by a set of constraints. Let 

fla(q"p,) = 0, (a = 1, ... ,T - W), 

be first-class constraints and 

(2.2) 

fl{3(q"p,) = 0, ({3 = T - W + 1, .. "T) (2,3) 

be second-class. 
Making a general variation of the action 
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f
l' 

w= dtL, 
I" 

it is possible to show that the integral 

1= £ (PsDqs - HcDt), 

(2.4) 

(2.5) 

calculated along an arbitrarty closed contour lying on the 
hypersurface S ofthe extended phase space (q"Ps,t), de
fined by Eqs. (2.2) and (2.3), is invariant under an arbitrary 
displacement (with deformation) ofthe contour along any 
tube of dynamical trajectories. Hc is the canonical Hamil
tonian of the system. I is called the Poincar~artan integral 
invariant. 

Let us now review the proof of the following theorem 
with some details. 

Theorem 1: Let us suppose to have a dynamical system, 
constrained by Eqs. (2.2) and (2.3), whose trajectories satisfy 
a system of first order differential equations involving arbi
trary functions fa (a = 1, ... ,T - W) 

d d 
dt qszls(qs,Ps,t·,la) dtPsZgs(qs,Ps,t,fs), (2.6) 

where the sign z (weak equality) means equality on the 
hypersurface S [defined by Eqs. (2.2) and (2.3)]. Let He be a 
function with the property 

(2.7) 

Then, the necessary and sufficient for Eqs. (2.6) be 
Hamilton equations is that the Poincare-Cartan integral 
(2.5) be invariant. 

Proof Firstly, see that the in variance of the Poincare
Cartan integral is a sufficient condition. 

Following the book of Gantmacher, we introduce an 
auxiliary variableI', supplementing Eq. (2.6) with one more 
equation 

dql = ... = dqn = dpl = ... = dPn = dt = rrdl" (2.8) 
II !" gl gn 

rr being an arbitrary function in the extended phase space. 
For each determination of the fa's we find, integrating Eqs. 
(2.8), 

{

q, = qJ.fl;q~, p~,tQ) 

p, = pJ.fl;q~, p~,to) , 

t = t (p;q~, p~,to) 

(2.9) 

whereq~,p?, to are the initial values, corresponding tOI' = 0, 
which lie on the hypersurface S. In order to obtain a tube of 
dynamical trajectories (2.9), we choose the initial points on a 
closed curve, parametrized by means of a, contained in S. 

The parametric equations for the dynamical paths that 
form the tube are 

qs = q,(p,a), Ps = ps(p,a), t = t(p,a) (O<a</). 
(2.10) 

The value of a isolates a generatrix of the tube while Jl 
fixes a definite point on this generatrix. AssumingI' = const, 
Eqs. (2.10) define a closed curve embracing the tube; by cal
culating the integral along it, we get I = I (P). 
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If we agree that d means differentiation with respect to 
I' and D with respect to a, by invariance we have 

dI = f [dPsDqs + PsdDqs - dHcDt - Hc dDt ] = O. (2.11) 

Integrating by parts, dividing by dl' = dt Irr and using Eqs. 
(2.6) we get 

f {(gs + ~:c )Dqs + ( -Is + ~:c )8Ps 

( 
dHc aHc ) ~ } + - --+ -- ut rr=O. 
dt at 

(2.12) 

Since rr is an arbitrary factor we obtain 

( 
aHc ~ ( aHc ) gs + a qs + -Is + ~Ps 

qs 'Ps 

( 
dHc aHc ) + --+ - DtzO. 
dt at 

(2.13) 

The Dqs and the Dps are not independent, since C must 
belong to S. So they must satisfy 

(2.14) 
anf3 anf3 
-Dqs + -Dps =0. 
aqs aps 

Introducing a set of Lagrangian multipliers la' If3 
(a = 1, ... ,T- W,/3= T- W + 1, ... ,T), from Eqs. (2.13) 
and (2.14) we deduce 

(2.15) 

aHc ana anf3 
Is z - + la - + lf3 - . 

aps aps ap, 

By requiring that the hypersurface be stationary, the 
ff3's can be determined 

lf3 zCf3f3 ' I n f3 , ,He J, 
where 

Cf3f3 , I n f3 , ,flf3" ) ZDf3f3 " . 

The Eqs. (2.6) can be written in the form 

with 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

By following an analogous reasoning and starting from 
Eqs. (2.18) and (2.19), it is possible to show the in variance of 
the Poincare-Cartan integral (2.5). Thus the proof of the 
theorem is complete. 

D. Dominici and J. Gomis 2125 



                                                                                                                                    

3. CANONICAL TRNASFORMATIONS AND POINCARE:
CARTAN INTEGRAL INVARIANT 

Let us now extend the concept of canonical transforma
tion to constrained systems, by introducing, as in standard 
classical mechanics, the following 

Definition: Given a dynamical system, constrained by 
Eqs. (2.2) and (2.3), whose equations of motion are given by 
Eq. (2.18), a transformation 

Qs = Qs(q,p,t), Ps =Ps(q,p,t) (s= l, ... ,n), (3.1) 

is called canonical if a function Kc exists so that Eqs. (2.18) 
become 

. aK . aK 
Qs::::: ap = {Qs,x J, P;::::: - - = {Ps,x I, (3.2) 

s aQs 

with 

and 

CPP ' {.tip".tir], J = 8pp •. 

The .tia (Q,P,t) and .tip (Q,P,t ) appearing in Eq. (3.3) 
are obtained from Eqs. (2.2) and (2.3) by substitution ofvar
iables. The structure of K is suggested by Theorem I and 
guarantees the stationarity of the hypersurface of the con
straints. The extra term a.tiplat is due to the explicit depen
dence on t of the canonical transformation. 

Following the usual procedure of standard classical me
chanics we will prove the following theorem: 

Theorem 2: Let Eq. (2.18) be the equations of motion of 
a dynamical system; a transformation 

Qs = Qs(q,p,t), Ps = p.(q,p,t), (3.4) 

for which two functions Kc and F exist so that 

Ps8qs - Hc8t = Ps8Qs - Kc8t - 8F 

is canonical. 
Proof From Eq. (3.5) we have 

(3.5) 

£ [Ps8q, - Hc8t - (P,8Qs - Kc8t)] = 0, (3.6) 

where C is an arbitrary closed contour in the extended phase 
space, that we will take lying on S. Let C be the contour 
obtained from Cby means of the transformation (3.4). Then 
the Poincare-Cartan integral is invariant under the consid
ered transformation. In fact, from Eq. (3.6) we get 

The left-hand side ofEq. (3.7) is invariant under dis
placement of the contour along the tube of the dynamical 
trajectories, solutions ofEq. (2.18) and lying on S. The right
hand side will be invariant under displacement of the con
tour C along the tube obtained by means of the transforma
tion (3.4) from the proceeding. On the other hand, the trans
formed trajectories obey a system of first order differential 
equations. Thus, by repeating the proof of Theorem I and by 
taking into account the explicit dependence of the con
straints on the time, we get 
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Q
. aK p __ aK 
s::::: aps ' s - aQs' (3.8) 

with K given by Eq. (3.3), and therefore the transformation 
is canonical. 

4. A SET OF CANONICAL VARIABLES INDEPENDENT 
WITH RESPECT TO THE SECOND-CLASS 
CONSTRAINTS 

In Ref. 7, as we have reviewed in Sec. 2, the Hamilton 
equations for a constrained system have been obtained [Eq. 
(2.18)]. The variables qs andps are not independent, since 
they must satisfy Eqs. (2.2) and (2.3). A suitable method for 
isolating the true independent variables has been developed 
by Shanmugadhasan.3 His theory is based on two theorems 
on function groups6.9 and involutory systems4

.
5 that we re

can without giving proofs. 
Theorem 3: A noncommutative function group G of 

rank r is a subgroup of a group of rank 2n whose basis 
(tP., .. ·,tPn ,tP., .. ·,tPn) can be chosen so that 

I tP"tPj J = I tPi'tPj J = 0, {'h,tP! J = 8ij' (iJ = l, ... ,n). 
(4.1) 

Theorem 4: A system of 2m + q independent equations 
(defining a surface SD of dimension D = 2n - 2m - q) 

nr = ° (1' = 1, ... ,2m + q), (4.2) 

such that 

rank II { no-,na' J II = 2m, (u,u' = 1, ... ,2m + q), (4.3) 

can be substituted by a locally equivalent system 

tP). = ° (A. = l, ... ,m + q), 

tPa = ° (a = l, ... ,m), 

for which the relations 

ItP).,tPl" I = {tPa,tPpJ =0, 

I tPa,tP). J = 8a). 
hold locally in the phase space. 

(4.4) 

(4.5) 

First let us apply the last theorem to the set of second
class constraints lO [Eqs. (2.3)]. Let 

Qf = 0, Pf = 0, (f= n2 + l, ... ,n), (4.6) 

(n2 = n - W 12) be the locally equivalent system such that 

Wf'PI' J =8Jf , Wf,Qr 1= {PPPI' J =0. (4.7) 

The set G = {Qf,Pf ,/ = n2 + 1, ... ,n J now forms a noncom
mutative function group. Theorem 3 enables us to find a 2n
dimensional function group which contains G. Let 

I Q ;,P ;;s = I, ... ,n J 

=={ Q;,P ;,QpPf ;} = 1, ... ,n2,/= n2 + I, ... ,n j (4.8) 

denote this function group. Due to the equations 

{Q;,P ;.j = 8ss" W ;,Q;. J = [P;,P;. J = 0, (4.9) 

and denoting the new Hamitonian by Kc and the generating 
function by F, we will have, in the usual way,S 
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We can now apply Theorem 2 and deduce that the 
transformation 

(4.11) 

is canonical. The equations of motion (3.2) become 

Q;:::::{Qj,K}, Pj:::::{Pj,K} (j=I, ... ,n1) (4.12) 

Qf:::::{Qf,K}, Pf:::::{Pf,K} (f=n2 +1, ... ,n), 
(4.13) 

with 

- - _ [ - alip. ] 
K = Kc + lana - npcpp' (np',Kc I + -at ' (4.14) 

where 

lia,p(Q;,P;,t) = na.tJ [qs(Q;P;t),Ps(Q;P;t)] (4.15) 

are the expressions of the constraints in the new variables. 
The term alip/at in the Hamiltonian (4.14) can be re

moved as a consequence of the stationarity of the 
hypersurface. 

In fact, since when Qf = Pf = 0 we have lip = 0, we 
can develop lip in a power series of Qf and PI' i.e., 

lip(Q ;,P ;,t) 

= a£(Qj,Pj,t)Qf + b £(Qj,Pj,t)Pf + higher orders. 
(4.16) 

If we introduce, following Sudarshan and Mukunda,2 the 
notation of "strong" equality (=), we can rewrite Eq. (4.16) 
as 

lip(Q ;,P ;,t)=a£(Qj,Pj,t)Qf + b £(Qj,Pj,t)Pf . (4.17) 

From Eq. (4.17) we can also locally get the inverse relations 

{ 
Q f==C'j(Q j ,P j ,t )lip 

(4.18) 
Pf=d 1(Q) ,P;,t )Ii'p' 

and in terms of the old variables 

{ 
Qiqs' Ps,t )==c'j(qs, p"t )np(q" Ps) 

(4.19) 
Piqs' Ps,t )==d1(qs,Ps,t )np(q"ps)' 

By taking the partial derivative with respect to t of Eqs. 
(4.19) we get 

aQf -0 aPf -0 ( at _. at - . 4.20) 

On the other hand, if we take the total derivative with respect 
to t ofEq. (4.19) and use the stationarity ofthenp's we have 

d d 
- Qf:::::O, -Pf:::::O, (4.21) 
dt dt 

and finally from Eq. (4.17), 

a --n(3:::::o. 
at 

(4.22) 

Thus the last term of the Hamiltonian can be dropped, 
because it is strongly equal to zero. Then Eqs. (4.12) and 
(4.13) become 

{ ~!: {Q!,Kc + la~a - ~p~pp, {~f3',Kc lJ, (4,23) 
P j - (Pj,Kc + lana - npcpp ' {np',Kc}}' 

and 
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(j = 1, ... ,n2)' (4.25) 

(4.26) 

where the last eqUalities of Eq. (4.25) define K, 
Ifwe denote the set of variables which are independent 

with respect to second-class constraints by R 

(4.27) 

the equations of motion, in this reduced phase space, can be 
rewritten as 

{ ~~:{Q!'~}R~{Q/'~IR , 
P j - {PjX JR - {Pj,K lR' 

(4.28) 

where I , } R are the Poisson brackets defined in the space R 
and 

R=~+~~, ~~ 
with Kc and lia obtained by setting to zero the variables Qf 
andPf inKe andlia • The "weak" equalities ofEq. (4.28) are 
equalities on the surface determined by 

lia(Q;,P;) = O. (4,30) 

Let us observe that, since na are first-class, we have 
also 

llia,lia,} :::::0, 

{lia,np J :::::0. 

From Eqs. (4.18) and (4.32) we get 

alia - alia -
ap = {Qf,na 1:::::0, aQ = - {Pf,na 1:::::0. 

f f 

Therefore, by defining 

- - - -' (ali an, Ina,fla.jR = (fla,fl
a

, J __ a _a_ 
aQf aPf 

- ~~; ~~~ ), 
and using Eqs. (4.33) and (4,31), we have 

Ilia ,lia, J R :::::0, 

which also implies 
Ina,na , JR :::::0. 

(4.31) 

(4.32) 

(4.33) 

(4,34) 

(4.35) 

(4.36) 

Finally let us prove that the hypersurface determined 
by Eq. (4.30) is stationary. 

In fact, 

d - - - --
dt na::::: {na,K JR::::: {fla,Kc JR 

::::: {lia,Kc JR::::: (lia,Kc J, (4.37) 

where use was made of Eqs. (4.33) and (4.36). On the other 
hand, due to the canonical character of the transformation 
(4.11), Eqs. (2.7) imply 

{liaXe J :::::0, (4.38) 
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and thus 

d - --
-fla;::: !fla,Kc JR ;:::0. 
dt 

(4.39) 

Summing up, we have shown that it is possible, by mak
ing use of a canonical transformation, to write the equations 
of motion for a set of variables which are independent with 
respect to second-class constraints. As shown in Ref. 3, we 
have the following relation between Dirac brackets and Pois
son brackets defined in the reduced space R: 

! , }* = I , JR . 
Therefore the variables which are canonical with respect to 
Dirac brackets are directly obtained by means of this canoni
cal transformation. 

5. EQUATIONS OF MOTION FOR A SET OF 
UNCONSTRAINED VARIABLES 

A further step can be done by extending the transforma
tion to include first-class constraints too. 

In fact, Theorem 4 guarantees that it is always possible, 
at least locally, to replace the lia by an equivalent set 

Pe = 0, (e = n. + l, ... ,nz), (5.1) 

(n i = n - T + W 12), such that the equations 

[Pe,Pe,j =0 (5.2) 

are identically satisfied and not by virtue of Eqs. (5.1) them
selves. The same theorem shows that the Pe can be obtained 
by solving Eq. (4.30) for n2 - n. of the momentaP; in terms 
of the remaining momenta and of the coordinates Q;. We 
can, by renumbering the variables if necessary, assume that 
Eq. (4.30) can be solved for the last nz - n. P; in terms ofthe 
first n.P; and all the Q;, i.e., 

Pc =P; -/e(Q;,Qk,PD (k= 1, ... ,n.) 

(e = n l + l, ... ,nz). (5.3) 

We observe, from Eq. (5.3), the local character of this 
technique. Thus, in general, we will have to repeat the proce
dure we wiIl develop in thefollowing, for the different sheets 
of the hypersurface (4.30). 

. Let us notice that from Eqs. (4.9) and (5.3) we have 

I Q ;,Pe' I R = Dee , (5.4) 

or, following the terminology of the function groups, Q; 
(that from now on we wiIl call Q.) and Pe form a noncommu
tative function group of dimension 2(nz - nl)' By applying 
again Theorem 3 we can construct a canonical 
transformation 

Qj,Pj,l-Qk,Pk>Qe'P, (k = l, ... ,n.),(e = n l + I, ... ,nz), 
(5.5) 

with 

(5.6) 

and the other Poisson brackets vanishing. 
If we denote the new canonical Hamiltonian by Kc ' and 

if we write the constraints (4.30) in terms of the new varia
bles as 
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n (Qk,Pk,Q.,Pe) 

= lia (Q;(Qk,Pk,Q.,p.),P ;(Qk,Pk,Q.,Pe» = 0, (5.7) 

the new equations of motion can be obtained by applying 
Theorem 2 in the reduced phase space R: 

{ 
~k;::: {Qk>~C + la~a JR , (5.8) 
Pk;:::{Pk.Kc +laflaIR' 

and 

{ 
~e;::: !Qe,~c + la~a I R , 

p.;::: !PoKe + lafla JR . 
(5.9) 

On the other hand, due to the fact that whenP. = O,n" 
= 0, we can write, as for the second-class constraints [Eqs. 

(4.17)], 

(5.10) 

Thus substituting Eq. (5.10) in Eq. (5.8) and (5.9), we get 

{ 
~k;::: !Qk,~e + A.,Pe, JR;:::! Qk'~c JR , (5.11) 

Pk;:::!Pk,Kc +Ae,P.,JR;:::!Pk.KcJR' 

{ ~e;:::\Q.,~c +A •. Pe'h;:::\Q .. ~clR +Ae, (5.12) 

Pe;::: IPe,Ke + A.,Pe, IR;::: IP.,Ke lR , 

where Ae = l"g: are arbitrary functions of t. 

Let us finally show that this sheet of hypersurface is 
stationary. By differentiating Eq. (4.30) with respect to any 
variable u (Q; or Pi) and using Eq. (5.3) we get 

alia alia a Ie alia aPe 

au 
Therefore 

- - ali -
[fla,KeIR = _a [Pe,Kcl R , 

ap; 

and using Eq. (4.39) and the fact that we locally have 

I 
alia I det -- #0, 
ap; 

we get 

[Pe,Ke lR ;:::0, 

and after the canonical transformation (5.5) 

afe ~ 
- = IKe,Pe JR ;:::0, 
aQe 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

which ensures the hypersurface be stationary. In addition 
Eq. (5.17) state that the variables Qe are ignorable variables 
on the hypersurface. 3 

Thus we have the following equations of motion: 

Qe;::: l Qe,Ke J + Ae p. ;:::0, 

where Ae are arbitrary functions. 

(5.18) 

We can finally consider a reduced space of uncon
strained variables [Qk, Pk and Qe ], which are the intrinisic 
coordinates of the hypersurface of the motion: 

(5.19) 
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Their evolution equations are 

. aXe I . aXe I 
Qk = -- ,Pk = - -- , 

aPk P.=O aQk p.=O 

. aXe I Q.= - +A •. 
ape p.=o 

Ifwe put 

%e(Qk,Pk,t) = Xe(Qk,Pk,Q.,p.,t) \ P,=o , 

Eqs. (5.20) can be rewritten as 

. a%e 
Qk = --(Qk,Pk,t), 

aPk 

. a%e 1) Pk = - --(Qk,Pk,t) (k= , ... ,n 1 , 
aQk 

(S.20) 

(5.21) 

(5.22) 

(5.23) 

whereas Eqs. (5.21) are left unchanged since the two oper
ations of setting p. = 0 and differentiating with respect to p. 
do not commute. 

As shown by Eqs. (5.20) and (5.21) this method allows 
to isolate the gauge independent variables Qk' Pk (physical 
variables) from the gauge dependent Q., whose evolution is 
determined only when the arbitrary functions are given. 

We point out that when He = 0, that is when, if a la
grangian formulation exists, the action is parameter-invar
iant,11 we have Xc = 0 and Eqs. (5.20) and (5.21) become 

Qk = 0, i\ = 0, (5.24) 

Qe = Ae . (5.25) 

Thus, for what concerns the physical variables, the pro-
cedure is equivalent to the Hamilton-Jacobi method. 

Let us finally observe that we can choose anyone of the 
coordinates Q., 12 for example Q. (n 1 < e<,n2), as evolution 
parameter and rewrite Eqs. (5.24) and (5.25) as 

dPk 
-=0 
dQe ' 

(5.26) 

dQr =.,1, /.,1,- (r=n l +1, ... e-l,e+l, ... n2) (5.27) 
dQ. r e 

Q" =Ae · (S.28) 

Thus in order to get the relation between Qr and Q. we must 
give the ratio of the arbitrary functions .,1,,/ Ae as a function of 
Qe and if we are interested in the relation between Q" and the 
unphysical parameter t we must give Ae as a function of t. 

Therefore, with this procedure we get a reduced class of 
gauge (we can only choose one of the coordinates Qe as evo
lution parameter). This a consequence of the definition of Pe 

[Eqs. (5.3)]. On the other hand, different classes of gauges 
can be obtained by solving Eq. (4.30) to a different set of 
momenta. 

CONCLUSIONS 

Making use of the Poincare-Cartan integral for con
strained systems, we have shown that the invariance of this 
integral enables us to write the equations of motion for a 
dynamical system as Hamilton equations. We want to ob
serve that with this procedure, all the first-class constraints 

2129 J. Math. Phys .• Vol. 21, No.8, August 1980 

appear in the Hamiltonian, because we cannot introduce any 
distinction between them. Recent papers, by Cawley l3 and 
Frenkel, 14 have shown, with some examples, that not all the 
first-class secondary cqnstraints generate gauge transforma
tions and therefore not all the first-class constraints appear 
in the Hamiltonian. 15 Thus we are investigating an algebraic 
procedure in order to take into account this result. 

Furthermore, we have introduced a definition of ca
nonical transformation, which is the trivial generalization of 
the usual one, and shown that the Poincare-Cartan integral 
is invariant under this transformation. Then, following 
Shanmugadhasan,3 we have performed a canonical transfor
mation such that a subset of the new variables is equivalent 
to the second-class constraints. The reduced set of variables, 
independent with respect to second-class constraints, is 
nothing but the set of variables which are canonical with 
respect to Dirac brackets. 

A further step is done by performing a new canonical 
transformation in the reduced phase space which isolates the 
variables corresponding to first-class constraints. This trans
formation is very useful because it isolates also the gauge 
independent variables from the gauge dependent ones. The 
evolution of these gauge dependent variables, contrary to the 
result of Shanmugadhasan, consistently depends on arbi
trary functions. 

When" He = 0 this technique becomes equivalent to the 
Hamilton-Jacobi method. Explicit examples (the free rela
tivistic point and a model of two interacting relativistic parti
cles) have been already studied 16; presently we are investi
gating the possibility of extending this technique to 
continuous systems, studying the relativistic string model 
(see Nambu and Scherk in Ref. 1). 
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Formu1as for the cross-correlation and spectral density fUnctions of the scalar wave field radiated 
by a random point source in a weakly inhomogeneous three-dimensional time-dependwt random 
medium are derived. The meoium is assumed \0 be statistically hl>mogeneou,> and isotropi[; and to 
be statisticaUy independent of the source. 'the analysis is based on a modification of the smoothing 
method. An approximate expression for the power spectrum of the wave as a function of the 
source-field point distance (or propagation distance) is obtained for the ca~ in which the 
characteri:s(,~ frequency Qf (he rource is m~~h gr~ter than that of the me~ium. This expr~sion 
snows that the wave spectrum approaches a limiting fonn, which is referred 10 here as the fully 
developed spe[;trum, with increasing propaga~;on distance. 11 is also found that the total signal 
power is conserved as the spectrum evolves. RI!~ults obtained for the case of a narrow-band source 
indicate that th<: spectral bandwidth increas~ initially as the square root of the propagation 
distance, but Chat at larger di~(ances it appr<Ja<:hes a limiting value. Numerkal results obta.'ned for 
the narrow-band case show a progressive broadening of the wave spectrum with increasing 
propagation dIstance and/or WIth increasing strength of the randomness of the medium, in 
agreement with observations. 

INTRODUCT10N 

Broadening of the frequency spectrum of an initially 
narrow-band wave field is a phenomenon which is chara.~ter
istic of wave propagation in a time-dependent medium, and 
is a t'e5u\t of amplitude and frequency modulation <If the 
spectra) I: l>mponents of, he wave by th~ \;me variations lJ) the 
propertIes of the medium. Of particular practical interest is 
the effect of random fluctuations of thelUedium, and indeed 
spectral broadening du<: to propagation through turbulence 
has ~~en observed in the case ofbQth acoustic and electro
magnetic waves. t

:
2 The present investigation was undertak

en with the purpose of s~udying this eJfeet, Le., spectral 
broadening <lrising from the presence of random, time-de
pendent tluctuations of the medium, fr<lm a rather general 

point <If view. 
Previous theoretical investigations of s.pectral broaden

ing ofwi)ves in random media include lhose of Howc/ 
Fante,4 5 and Woo et aL6 Howe derived a kinetic equation 
and used i( to study the ~tfect of the ran<iom velocity fi.;:i<l on 
the fr~<luency spectrum of an acoustic wave propagating in a 
t\lr~ulent fluid. Fante used transport theory to study fre
quency ,>J>ectra of beamed waves proJ>;tgating in a turbulent 
atmosphere. The analysis of Woo elof. (see also Ref. 7, p. 
422) is ba~ed on the paratlolic approximation. Howe treated 
the cast! of an isotropic time-dependent turbulence field, 
whereas both Fante and Woo et al. assumed that the time 
varia\il>~s l>f the med~l)'In were the Tt!>'\),1 l>f a steady m~i!an 
wind convecting a "frozen" turbulence field in a directIOn 
perpendicular to the direction of propagation. 

The authors ment'~med above ba~(:d their analy~~~ on 
different mathematical models and/or calculated ditr~rent 

·)Pr~ent addn~ss: Naval Ocean Re5earch and Development Activity, COOe 
340, NSTL Sl.lltion, MissiSSippi 39529. 
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statistical properties of the wave field than those considered 
in the present invesHgation (e.g., Woo et a1. c()nsidered the 
spectrum of the complex wave amplitude, whereas the pre
sent investigation deals with the entire wavefunction; which 
is a real quantity), and hence their results do no~ agree in all 
respects with those obtained here. The results of both Howe 
and Fante indicate that, over a sUllably restricted J>rDpaga
tion path and for high-frequency waves, the characteristic 
width of the wave spe~trum increas~s as some pow<r of the 
propagation distan~e. The results <If Woo et al. ar~ given in a 
mQre complicate" form, hut seem to show a similar effect. 
The~e results agree generally with ,hose obtained hert; for 
small propagation distances. At large distances, however, 
the pre:lent results indicate that the ~~ctral width ap
proa~hes a limiting value, which i:i not predicted by any of 
the theories mentioned above. 

The ?roblem of spectral broaden\ng has also been treat
ed m a recent par>er by Kuznetsova and Chernov.s Their 
analysis, like that of Woo et aI., is ba1ied on the parabolic 
appr<lximation with 3. frozen turbulence model. Their results 
als<I mdicate an in~rease of the spe~tral width as some power 
of the propagation distance for small propagation distances. 
HDwever, since thelf expression fOT the wave ~}>eclIllm is 
given in the form of a power series in the propagation dis
tance, the behavior of the spectrum for large propagation 
dis(ances, as predkced by their theory, is not clear 

Spectral ~roadening in a random medium has also been 
diSCI~m;d from a thel>retical view}>oint by Adom;anl>~ how
ever, that author did Dot <lbtain an explicit analytical e,.pres
sion for the wave spectrum. Related work, concerned mainly 
with spectra of scat~ered waves (in contrast to the present 
investigation. whkh deals with the spectrum of the total 
wave field) and with !>J>ectra of amplitude and phase ftuctu
ations of waves propagating in random media, can be found 
in Refs. 10-16. 

~ \ 980 American Institute of Phy .. ic1; 2131 



                                                                                                                                    

I. GENERAL ANALYSIS 

The starting point of the analysis is the scalar wave 
equation 

(c - za; - V2)U = f, (1) 

where u is the wavefunction,fis the source term, and c is the 
local propagation speed of small disturbances of the medi
um. All quantities are assumed to be real functions of t and x, 
where t is time and x [= (X1,x2,x3») is a three-dimensional 
spatial coordinate. 

The propagation speed c is assumed to be random; i.e., c 
is assumed to depend on a parameter a which is an element of 
a sample spaceA. The space A, together with a u-algebra of 
subsets and a probability measure, forms a probability space. 
The source termfis also random; howeverfis assumed to be 
statistically independent of c. Thus,fmay be regarded as 
being dependent on a parameter b ranging over a different 
sample space B which, together with its own u-algebra of 
subsets and probability measure, also forms a probability 
space. 

It is clear that the solution u ofEq. (1), as well as func
tions of it, will depend on both a and b. (The dependence on 
the parameters a and b of the various quantities appearing in 
the analysis will not, in general, be explicitly indicated.) It 
will be necessary, therefore, in what follows to distinguish 
between ensemble averages over the space A, which will be 
denoted by ( > A' and averages over B, denoted by ( > B' An 
average over both A and B (i.e., an ensemble average over the 
product sample space A X B) will be denoted simply by ( >. 
We note that generally ( ) =« > A ) B = « ) B ) A • 

In most cases involving wave propagation in real media 
such as the atmosphere or ocean the fluctuations in the medi
um properties can be regarded as small. Thus it is realistic, as 
well as mathematically convenient, to write c in the form 

c(t,x) = co(1 + EIl(t,x»). (2) 

Here E is a small parameter which is a measure of the magni
tude of the fluctuations of the medium, and Il is a random 
function with zero mean and unit variance; i.e., (Il) A = 0, 
<Il2

) A = 1. The quantity co' theaverageofc, is assumed to be 
a constant. 

Writing c as in Eq. (2) allows the problem to be solved 
by a perturbation technique. To begin, we substitute the ex
pression for c given by Eq. (2) into Eq. (1) and expand in 
powers of E. This yields 

(Lo + ELI + E2Lz + ···)u =f, (3) 

where the operators L o' L I, and L2 are given by 

Lo = co-2a~ - V 2
, 

LI = _2Co-2Ila~, 

(4) 

(5) 

L Z = 3Co-2IlZa~. (6) 

From Eq. (3), approximate equations, valid when E is small, 
can be obtained for u and ii, where u_(u) A and 
ii=u - (u) A' The procedure is entirely analogous to that 
described by Keller l7 (see also Ref. 18). It is only necessary 
to keep in mind that sincefis independent of a it is unaffected 
by averaging over A. When (L I ) A = 0, which is usually the 
case in practice, these equations reduce to 
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Mu=j, 

ii = - EL 0- I L I U, 

where the operator M is defined by 

M=Lo+EZ«Lz)A - (LILo1L1)A)' 

(7) 

(8) 

(9) 

Terms of order ~ have been dropped from Eq. (7); terms of 
order c have been dropped from Eq. (8). 

In the special case in whichfis determinate (i.e., non
random) the quantities u (which is then also determinate) 
and ii correspond respectively to the mean and fluctuating 
fields. In that context the type of approach leading to Eqs. 
(7) and (8), which involves obtaining separate equations for 
the mean and fluctuating fields, is referred to as the smooth
ing method by Frisch. IS 

We shall be concerned in the remainder of this paper 
only with random processes which are stationary in time. 
(By stationary we mean stationary in the wide sense, i.e., that 
correlation functions of the form given by Eq. (19) are inde
pendent of t.) In order to ensure that u(t,x) is stationar~ in 
time we shall assume that bothll(t,x) andf(t,x) are statIOn
ary in time. That these assumptions are sufficient for our 
purposes will become clear as the analysis proceeds. In addi
tion, we shall assume for convenience that ll(t,X) is statisti
cally homogeneous and isotropic in space, and that (f) B 

=0. 
We introduce next the Green's functions Go(t,x) and 

G (t,x), which are solutions of the equations 

LoGo(t,x) = D(t )D(x), (to) 

MG(t,x) = D(t )D(x), (11) 

and which satisfy the initial conditions Go = G = 0 for t < O. 
(No boundary conditions need be imposed on Go or G since 
we are considering only free-space propagation.) Then L 0- t 

can be written in the form 

L 0 IW(t,X) = J J Go(t - t ',x - x')w(t ',x') dt' dx', 

(12) 

where w(t,x) is any function for which the integral exists. 
(Here, and henceforth, an integral sign without limits de
notes an integral from - 00 to + 00.) Similarly, the solu
tion of Eq. (7) can be expressed as 

u(t,x) = J J G (t - t ',x - x')f(t ',x') dt' dx'. (13) 

By making a change of integration variable we can write Eqs. 
(12) and (13) in the form 

L 0- I w(t,x) = J J Go{t' ,x')w(t - t ' ,x - x') dt ' dx', 

(14) 

u(t,x) = J f G (t ',x')f(t - t ',x - x') dt' dx'. (15) 

It should be pointed out that, as a consequence of the 
assumption that Il(t,x) is stationary in t and x, the operator 
M commutes with both time and space translations. This 
allows the Green's function Gin Eq. (13) to be written as a 
function of the differences t - t' and x - x', instead of as a 
function oft,t ',x, and x' separately. Since the operator Lo has 
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constant coefficients, it also commutes with both time and 
space translations, and hence the Green's function Go in Eq. 
(12) can also be written as a function oft - t' and x - x'. 
That Go and G can be written as functions of t - t I in Eqs. 
(12) and (13) is necessary for the stationarity of u. Note also 
that both Go and G are determinate functions. 

Operating with LIon ii, as given by Eq. (13), yields 

L,ii(t,x) = - 2cO-
2 J J /-l(t,x) 

X G,,(t - t ',x - x')f(t ',x') dt' dx'. 
(16) 

(The subscripts on G denote derivatives.) By making a 
change of integration variable we can write Eq. (16) in the 
form 

Ljii(t,x) = -2cO-
2 f f /l(t,x)G,,(t',x') 

Xf(t-t',x-x')dt'dx'. (17) 

Operating on Eq. (17) with L 0- j , as given by Eq. (14), and 
substituting the result into Eq. (8) yields 

ii(t,x) = 2ECo-
2 f ... f Go(t ',x')Gt/(t ",x") 

X/l(t - t',x - x')f(t - t' - t ",x - x' - x") 

Xdt'dx' dt "dx". (18) 

The cross-correlation function R (r,x,y) is defined by 

R (r,x,y) = (u(t,x)u(t - r,y». (19) 

Upon writing u as the sum u = ii + ii in Eq. (19) we obtain 

R (r,x,y) = (ii(t,x)ii(t - T,y» + (ii(t,x)ii(t - r,y» 

+ (u(t,x)ii(t - r,y» + (ii(t,x)ii(t - T,y». (20) 

The two cross terms on the right-hand side of Eq. (20), i.e., 
the terms involving products of ii and ii, vanish. This follows 
from the fact that ii is independent of a and that (ii) A = O. 
Thus, for the first cross term, we can write 

(ii(t,x)ii(t - r,y» = «ii(t,x)u(t - r,y» A) B 

= (ii(t,x)(u(t - r,y» A) B = 0 

(since (ii(t - r,y» A = 0), and similarly for the second cross 
term. Expressions for the remaining two terms on the right
hand side ofEq. (20) can be obtained with the aid ofEqs. (15) 
and (18), after which Eq. (19) can be written 

R (T,X,y) = R (r,x,y) + R (r,x,y), (21) 

where 

R(r,x,y) = (ii(t,x)ii(t - T,y» 

= f .. · f G(t',x')G(s',y') 

XRQ(r - t' + s',x - x',y - y')dt' dx' ds'dy', 

if (T,X,y) 
(22) 

= (ii(t,x)ii(t - T,y» = 4E2Co-
4 

X f ... f Go(t'x')Go(s',y')G,,(t " ,x")G,,(s",y") 
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Xr(r - t' +s',y - x + x' - y') 

XRo(r- t' +s' - t" +s",x - x' - x",y - y' - y") 

xdt' dx' ds' dy' dt" dx" ds" dy". (23) 

The correlation functions rand Ro are defined by 

r (T,~) = (JL(t,x),u(t - r,x + ~» A' (24) 

Ro(r,x,y) = (f(t,x)f(t - r,y» B' (25) 

In deriving Eqs. (22) and (23) use has been made of the fact 
that /l is independent of b and that/is independent of a. 

Note that u(t,x), as calculated here, is indeed stationary 
in time, as can be seen by referring to Eq. (19) and Eqs. (21)
(23). 

The spectral density function S (w,x,y) is defined by 

S(w,x,y) = f R (r,x,y)ei
(;)7 dr. (26) 

With the aid of Eq. (21) we can write 

S(w,x,y) = S(w,x,y) + S(w,x,y), 

where 

S(w,x,y) = f R(T,x,y)eic
;)7 dr, 

S(w,x,y) = f R (r,x,y)eiWT dr. 

(27) 

(28) 

(29) 

To calculate S we insert into Eq. (28) the expression for R 
given by Eq. (22) and carry out the integration overr, t', and 
S'. The result is 

S (w,x,y) = f f H (w,x')H *(w,y') 

XSo(w,x - x',y - y') dx' dy', (30) 

where we have defined 

H (w,x) = I G (t,x)e iwt dt, (31) 

So(w,x,y) = f Ro(r,x,y)ei,;)r dr, (32) 

and the symbol ( ~ denotes a complex conjugate. Similarly, 
an expression for S is obtained by substituting the formula 
for if given by Eq. (23) into Eq. (29) and carrying out the 
integration over T, t " s', t " , and s". This procedure yields 

S(w,x,y) 

= (2E2/1TC~) f··· f Ho(w,x')H~(w,y') 
X [2 (w,y - x + x' - y')*w4H (w,x")H *(w,y") 

XSo(w;x - x' - x" ,y - y' - y")] 

Xdx' dy' dx" dy", 

where Ho and Z are defined by 

Ho(w,x) = f Go(t,x)eiwt dt, 

Z (w,;) = f r (T,;)eiW
1" dT. 
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The notation ( )*( ) in Eq, (33) denotes a convolution with 
respect to UJ; i.e., 

f*g(w) = J f(UJ - UJ')g(UJ') dUJ', 

(Whenever the convolution symbol appears inside brackets, 
as in Eq. (33), it is to be understood that only the terms inside 
the brackets are involved in the con vol ution.) In deriving Eq. 
(33) we have made use of some known results relating the 
Fourier transform ofa product of two functions to the con
volution of tbe transformed functions. 

The forrnulas for Rand S given above are accurate to 
order €2; i.e., the error in them is of order C . This is a conse
quence of the dropping of terms of order c in Eq. (7) and €2 

in Eq. (8) (note that ii is of order E), and the vanishing of the 
cross terms in Eq. (20). 

For practical purposes it is usually convenient to as
surne that all processes under consideration are ergodic, as 
well as stationary, in time, in which case the average denoted 
by ( ) can be regarded as a time average, 

The analysis given above can be generalized; i.e., in
stead of starting with Eq. (1) we can start with Eq, (3) and 
assume that the operator Lo is determinate with a known 
inverse and that the operators L I • L 2• etc., are random with 
known statistics. The operators Lo, L I , L 2• etc., need not be 
otherwise specified. Formulas for the correlation and spec
tral density functions, analogous to Eqs. (21)-(23), (27), 
(30), and (33), can then be derived for various cases, depend
ing on the additional assumptions made regarding the opera
tors L o, L I' L 2 , etc. A general analysis of this type has been 
carried out and is available in report form,19 

In order to proceed further it is necessary to calculate 
the Green's functions Go and G and the transforms Ho and 
H. The function Go. which corresponds to a spherical pulsed 
wave propagating in a uniform medium, is obtained by solv
ing Eq. (10), with Lo given by Eq. (4), subject to the initial 
condition Go = 0 for t < O. This yields the familiar waveform 
given by 

Go(t,x.) = (41TX) -18(t - CO-IX). (36) 

By inserting the expression for Go given by Eq. (36) into Eq, 
(14), carrying out the integration over t " and changing the 
spatial integration variable, we can express the operator 
L 0- I in the form 

L 0- IW(t,X) = (41T) - 1 f t -lW(t - cO' It,x +~) d S, 
(37) 

The function Ho(UJ,x) is easily obtained by transforming Eq. 
(36) according to Eq. (34). The result is 

(38) 

where k = w/co' 
The function G (f,x) is determined by Eq. (11), where 

the operator M is given by Eq. (9). With the aid of these 
equations, along with Eqs, (4), (5), (6), and (37), we can write 
the equation for G in the form 

(cola; - V2)G(t,X) + c[ 3co-2G" (t,x) - (1TC~)-1 
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x f t -I [r(co-1t,S)G,ttr(t- co-It,x + s) 
- 2r

T
(co-

l t,S)Gttr {t - colt,x + s) 
+ Fn (CO-

1 t,f,)G,,(t - co- I ;,x + s) J dt } 

= (j(t )8(x), (39) 

where the letter subscripts denote derivatives. The initial 
condition for G is that G = 0 for t < O. 

The procedure by which Eq. (39) is solved for G (I,x) is 
described in Appendix A. Since we wish only to calculate the 
function S, we need only the transform H (UJ,x) of G (t,x), as 
defined by Eq. (31). For the case in which the medium is 
isotropiC [Le., when r (r,S) = r (r,s)J this quantity is given 
by 

H(UJ,x) = C(k)(41Tx)-le iKX
, 

where 

(40) 

K=k [I +!€2(3+4k -11= eikSX(k,S)sinktdt)) , (41) 

X(k'5) = k 2 F (co- '5,t) - 2ikco- , r,,(co- ! 5,5) 

- co-2rrr(co-It,g), (42) 

C(k) = 1 + 2c2tfJ(k), (43) 

and 

tfJ(k) = i oc 

e'ktx(k,t)( cosk; - s~;t) t dt. (44) 

In deriving Eqs, (40)-(44) higher-order terms in € have been 
dropped. 

The source termfis assumed to represent a point source 
in space but one which is random in time. Accordingly we 
write 

f(t,X) = get )(j(x), (45) 

where g(t) is a stationary random function with zero mean. 
Equation (25) then yields 

Ro(r,x,y) = Po(r)<5(x)(j(y), (46) 

where Po(r) is defined by 

poeT) = (g(t)g(t - T»B' (47) 

Upon transforming Eq. (46) according to Eq. (32) we obtain 

So(UJ,x,y) = Qo(UJ)<5(x)8(y), (48) 

where Qo is the transform of Po; i.e., 

(49) 

Expressions for .f and Scan now be obtained by substi
tuting the formula for So given by Eq. (48) into Eqs. (30) and 
(33) and carrying out the integration over x' and y' in Eq. 
(30) and over x" and y" in Eq. (33). The result is 

S(UJ,x,y) = QoCw)H (UJ,x)H *(UJ,y), (50) 

S(w,x,y) = (2c2I1TC;) f f Ho(UJ,x')H'!;(UJ,y') 

X IZ (UJ,y - x + x' - y')*UJ4 Qo(UJ)H (UJ,x - x') 

XH*(UJ,y - y')] dx' dy'. (51) 
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The spectral density functionS (m,x,y) can now be calculated 
in terms of known functions with the aid of Eqs. (27), (50), 
(51), (38), and (40). 

II. HIGH-FREQUENCY WAVES 

The expressions for Sand S given by Eqs. (50) and (51) 
can be considerably simplified in the case of high-frequency 
waves; i.e., when the characteristic frequency of the source is 
much greater than that of the medium. In considering this 
case we shall restrict our attention to the power spectrum 
Q (m,x), which is defined by 

Q (m,x) = S (m,x,x). (52) 

From Eq. (27) we have 

Q (m,x) = Q (m,x) + 0 (m,x), (53) 

where 

Q (m,x)=S(m,x,x), (54) 

O(m,x)=S(m,x,x). (55) 

Eqs. (50) and (51) yield 

Q(m,x) = Qo(m)IH(m,xW, (56) 

O(m,x) = (2~hTcci) I I Ho(m,x')H~(m,y') 
X [Z (m,x' - y')*m4Qo(m)H (m,x - x') 

XH*(m,x - y')] dx' dy'. (57) 

After changing the integration variables in Eq. (57) we can 
write 

O(m,x) = (2~/1Tcci) I I Ho(m,x - x')H~(m,x - x") 

X [Z (m,x" - x')*m4Qo(m) 
xH (m,x')H *(m,x")] dx' dx". (58) 

The first step in the high-frequency analysis is to obtain 
an asymptotic expansion, valid for large k, for the quantity K. 

This is easily accomplished by integrating by parts in Eq. 
(41), after substituting for X from Eq. (42). This yields the 
approximation 

K-::::::.k + ia, 
where 

a = ~k2/. 

(59) 

(60) 

The quantity 1 is a characteristic length scale associated with 
the medium, and is defined by 

1= Sa'" r(co-
ts,5) ds· (61) 

With the aid ofEqs. (38), (40), and (59) we can write Eqs. 
(56) and (58) in the form . 

Q(m,x) = Qo(m)IC(kW(41TX)-2e -2ax, (62) 

Q(m,x)=--
- 2~ If eik(lx-x'I-lx-x"l) 

17"(41T)4 Ix - x'lx' Ix - x"lx" 

X [Z(m,x" - x')*k 4IC(kWQo(m) 

X eik (x' - X")e - a(x' + x")] dx' dx", (63) 

where, from Eq. (43), 

IC(kW = 1 +~ RetP(k). (64) 
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[In deriving Eq. (64) terms of order £4 were dropped.] 
The integral over x' and x" in Eq. (63) has been evaluat

ed using the forward-scatter approximation. The details of 
that calculation are given in Appendix B. The resulting ap
proximate expression for 0 (m,x) can be written 

O(m,x) = (41TX) -2 [W(m)* IC (k)l2(1 - e -2ax)Qo(m)], 
(65) 

where W is defined by 

'" W(m) = (41T/) -tz (m,k), (66) 

and 

Z (m, v) = 2 Sa'" Z (m,s) cosvs ds· (67) 

An expression for Q (m,x) can now be obtained by sub
stituting the formulas for Q (m,x) and 0 (m,x) given by Eqs. 
(62) and (65) into Eq. (53). In so doing we simplify matters 
slightly by making the approximation I C (k W = 1. After di
viding through by the spherical-spreading term (41TX) -2 we 
obtain finally 

(41Tx)2Q(m,x) = e- 2axQo(m) + W(m)*(1- e- 2aX)Qo(m). 
(68) 

It should be pointed out here that, although the error in 
the general formulas for Rand S given by Eqs. (21), (22), 
(23), (27), (30), and (33) is of order~, the error in Eq. (68) is 
of order ~. This is because some terms of order ~ were 
dropped in the derivation of this equation. 

Equation (68) is the main result ofthe high-frequency 
analysis. It shows that, as ax-o, 

(41TX)2Q (m,x)-CMm). 

Thus, as £ and/or x (the source-field point distance) goes to 
zero, the wave spectrum (with the spherical-spreading term 
factored out) approaches the source spectrum, as we would 
expect. In the opposite limit, i.e., as ax---+ 00, Eq. (68) shows 
that 

(41Tx )2Q (m,x)-W *Qo(m). 

We see therefore that the wave spectrum (again apart from 
the spherical-spreading term) tends to a limiting form as 
x---+ 00. This limiting form, which is given by the convolution 
of W with Qo, is referred to here as the fully-developed 
spectrum. 

It may be verified by direct integration of Eq. (68) that 

(41TX)2 f Q(m,x) dm = f Qo(m) dm. (69) 

In the derivation ofEq. (69) we have used the fact that 

f W(m) dm = 1. 

Equation (69) shows that the total signal power; i.e., the area 
under the spectral curve, normalized by the spherical
spreading term, is conserved. 

A. Narrow-band source 

We can simplify Eq. (68) further by assuming a narrow
band source, i.e., by assuming that the characteristic width 
of the source spectrum Qo(m) is much less than that of the 
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function W (liJ). Then, insofar as the convolution integral is 
concerned, QiliJ) can be regarded as a delta function. Ac
cordingly, we replace Qo(liJ) in the convolution term by 

Ao{8(liJ - liJo) + 8(liJ + liJ()] 

(since Qo must be an even function), where liJo > ° (liJo is 
called the carrier frequency) and Ao> O. We can also write, 
in this case, 

e - 2axQo(liJ}:::::=.e -2u.XQO(liJ), 

where ao = €2k & I and ko = liJo/ co. Then Eq. (68) becomes 

(41TX)2Q (liJ,x) = e - za,,xQo(liJ) + (1 - e - 2a,,x)Q,,, (liJ), 

(70) 
where 

Qoo (liJ) = Ao[ W(liJ - liJo) + W(liJ + wo)1. (71) 

Equation (70) shows that, in the narrow-band case, the wave 
spectrum broadens with increasing propagation distance, 
with increasing strength of the randomness of the medium, 
and with increasing carrier frequency. 

By introducing a "broadening parameter" /3, defined by 
f3 = 1 - e- 2a,,x, (72) 

we can write Eq. (70) in the form 

(41TX)2Q (liJ,x) = (1 - /3 )Qo(liJ) + /3Q", (liJ). (73) 

Thus we see that the wave spectrum (with the spherical
spreading term factored out) can be regarded in this case as a 
linear (in /3) interpolation between the source spectrum 
Qo(liJ) and the fully-developed spectrum Qoo (liJ). 

We define the bandwidth fl of the wave spectrum for 
the narrow-band case by writing 

fl (x) = [f" (liJ - liJofQ (liJ,x) dliJ / l= Q (liJ,x) dliJ] lI2. 

(74) 
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DIMENSIONLESS FREQUENCY 

FIG. I. Dimensionless wave spectrum (with the spherical-spreading term 
factored out) vs dimensionless frequency for various values of the broaden
ing parameter p. The calculati~ns are based on Eq. (73). The mark on the 
horizon tal scale corresponds to the carrier frequency lUn. The function W (lU) 
has a maximum at lU =' O. 
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DIMENSIONLESS FREQUENCY 

FIG. 2. Same as Fig. I, except that the function W(lU) has a maximum at a 
nonzero value of lU. 

By substituting the expression for Q given by Eq. (73) into 
Eq. (74) we obtain 

fl(x) = [(l-/3)fl~ +/3fl~ ]1/2, (75) 

where flo is the bandwidth of the source spectrum and fl = is 
the bandwidth of the fully-developed spectrum; i.e., 

flo = [L'" (liJ - liJo)2Qo(liJ) dliJ / L= Qo(liJ) dliJ J 112, 

(76) 

fl", = [1= (liJ - liJO)2Q= (liJ) dliJ / fO Q= (liJ) dliJ r/2
. (77) 

Equation (75) shows that fl (x) increases monotonically with 
/3 from the value flo at /3 = 0, and that it approaches fl '" as 
/3-1. 

If we assume that flo=O, which is consistent with the 
assumption of a narrow-band source, then Eq. (75) yields 

fl (x)-:::::=.{3 It2n oc • (78) 

When aoX<1 we have, from Eq. (72), /3=2aoX = 2ck ~lx, 
and hence, from Eq. (78), 

(79) 

Equation (79) is valid when Eko(21x)I/2<1, i.e., when 
fl<floo . This equation shows that, when the propagation 
distance is small, the spectral bandwidth increases as the 
square root of the propagation distance, and is also linear in 
the carrier frequency in this range. 

In order to show the broadening phenomenon graphi
cally, numerical calculations ofthe quantity (41TX fQ (liJ,x) as 
a function of liJ have been made for various values of /3 using 
Eq. (73). For this purpose the source spectrum Qo(liJ) was 
chosen to be a narrow-band Gaussian function, centered at 
liJ = liJo and reflected about the liJ = ° axis (since Qo must be 
an even function). The function W (liJ) was also chosen to be a 
reflected Gaussian, with a maximum in the first instance at 
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w = 0 and in the second at a frequency WI for which 

O<wl<WO' 

The results of these calculations are plotted (in dimen

sionless coordinates) in Figs. 1 and 2. All of the curves in 
each figure are plotted on the same scale. Note that in each 
figure the curve labeled fJ = 0 corresponds to tht; source 
spectrum, the curve labeled fJ = 1 corresponds to the fully
developed spectrum, and those labeled with values of fJ be
tween zero and one correspond to intermediate stages in the 
broadening process. Both sets of curves show clearly the 
broadening of the wave spectrum with increasingfJ. The two 
sets differ, however, in one respect. The results shown in Fig. 
2, for which the function W (w) has a maximum at a nonzero 
value of w, are marked by the appearance of side bands on 
the broadened spectrum. In Fig. 1, by contrast, for which the 
maximum of W (w) occurs at w = 0, no such side bands 
appear. 

The results obtained here appear generally to be in 
qualitative agreement with observations, as can be seen by, 
for example, comparing Fig. 1 with Fig. 11 of Ref. 1 or Fig. 3 
of Ref. 2. Note, moreover, that the observations reported in 
Refs. 1 and 2 indicate conservation of total signal power, 
which is also consistent with the present results [cf. Eq. (69)]. 
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A'PPENDIX A: CALCULATION OF G([,x) AND H(w,x) 

The function G (t,x) is determined by Eq. (39), together 
with the initial condition G = 0 for t < O. An equation for the 
transform H (w,x) of G (t,x), as defined by Eq. (31), is ob
tained by transforming both sides of Eq. (39). The result is 

[V2 + (1 + 3c)k 2 ]H(w,x) + (ck 211r) I t - leiks 

xx(k,~)H (w,x + ~) d ~ = - 8(x), (A 1) 

where the function X (k,~) is defined by 

X (k,~) = k 2r(co-IS,~) -2ikco-lrT(CO-IS,~) 

(A2) 

In order to sol~ Eq. (AI) we introduce the spatial 
Fourier transform H (w,rn) ofB (w,x), defined by 

Ii (w,m) = I H (w,x)e - im·x dx, (A3) 

wherem.x==l:i~ I mixi . Transforming both sides ofEq. (AI) 
accoJ:ding to the prescription given by Eq. (A3) and solving 
for Hyields 

Ii (w,m) = [D (k,m)] -1, (A4) 

where we have defined 

D(k,m) = m2 - (1 + 3c)k 2--:- (ck2I1r) f S -Ieiks 

Xx(k,s)e im
.§ d S. (AS) 
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With the aid of Eq. (A4) we can now express H (w,x) as an 
inverse transform, i.e., we write 

H (w,x) = (8ff3) - I f [D (k,m)] - I eim
.
x dm. (A6) 

In order to proceed further we assume that the medium 
is statistically isotropic, so that we can write r (T,~) 
= r(T,S). Then, in view ofEq. (A2); we can also write 

X (k,~) = X (k,S)' The angular integration in Eq. (AS) can 
now be carried out, yielding 

D(k,m) = m2 - (1 +3c)k2 -4ck 2 m- I 

X fa'" eikSX(k,S) sinmS ds. (A7) 

Upon substituting the expression for D given by Eq. (A7) 
into Eq. (A6) and carrying out the angular integration we 
find that 

H(w,x) = (2~x) -\ LX> [D(k,m)] -1m sinmx dm. 

(A8) 

The integral in Eq. (A8) can be evaluated by means of con
tour integration, after which the expression for H can be 
written 

(A9) 

Here D m denotes the derivative of D (k,m) with respect to m 
(regarded now as a complex variable), andKis the root of the 
dispersion equation D (k,K) = 0 which has the property that 
K-+k as E-+O. This root is given, to lowest order in E, by Eq. 
(41). Upon substituting the expression for K given by Eq. (41) 
into Eq. (A9), after calculating D musing Eq. (A 7), we obtain 
the expression for H given by Eq. (40). 

The function G (t,x) can now be obtained by applying 
the inverse Fourier transform to Eq. (40). We shall not carry 
out that calculation here, however, since we need only the 
function H (w,x). That calculation was carried out in Ref. 20 
for the case of a time-independent medium. 

APPENDIX B: CALCULATION OF QUSING THE 
FORWARD-SCATTER APPROXIMATION 

By making explict the w' integration in Eq. (63) and 
changing the order of integration we can write the expres
sion for Q in the form 

Q (w,x) = [2c 111'( 41Tt] 

X f k,41,C(k'WQo(w')I(w,x;w')dw', (Bl) 

where the integral I is defined by 

II 
eik'(lx-x'I-lx-x"l) 

I (w,x;w')= Z(w-w',x" -x') 
Ix - x'lx'lx - x" Ix" 

X e ik '(x' - x")e - a'(x' + x") dx' dx". (B2) 

Here k' = w' /Co and a' = ck '2/; Eq. (B2) can be written in 
the alternate form 

f J 
eik '(Ix - x'i + x') e, - ik '(Ix - x"1 + x") 

I (w,x;w') = 
Ix - x'lx' Ix - x" Ix" 
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xZ (ill - ill',X" _ x')ei(k - k ')Ix - x'i 

Xe -ilk -k')lx -x"le-a'(x' +x") dx' dx", (B3) 

which is more convenient for the application of the forward
scatter approximation. 

We begin the analysis by substituting for Z in terms of r 
in Eq. (B3) with the aid ofEq. (35). By changing the order of 
integration in the resulting expression for I we get 

J

. 'JJeik'(IX-X'I+X') e-ik'(lx-x"l+x') 
1= e'l'" -w) 

Ix - x'lx' Ix - x"lx" 
Xr(r,x" - x')ei(k - k')I" - x'ie - ilk - k')I" - x-I 

Xe-a'(x'+x")dx' dx" dr. (B4) 

Next we use Eq. (24) to substitute for r in terms of p in Eq. 
(B4) , Upon reversing the order of the averaging and integra
tion (over x' and x") processes, we note that the double spa
tial integral can be split into a product of two integrals. 
Equation (B4) can then be written 

1= J ei(w - W')T( J > A dr, (B5) 

where 

(B6) 

J 
eik '(Ix - x'i + x') 

J + - p(t x') 
- Ix-x'lx' ' 

X ei(k - k ')Ix - x'ie - a'x' dx', (B7) 

and 

J J 
e-ik'(lx-x"l+x'} 

= H(! - rx") 
I "I" r- , x-x x 

Xe - irk - k')lx - x"le - a'x' dx". (BS) 

We can now apply the forward-scatter approximation, as 
discussed in Ref. 21, to the integrals J + and J _ ' This yields 

J + = (21ri/k 'x)eik'X f p(t,O,O,x') 

Xei(k - k 'lex - x')e - a'x' dx' + 0 (k ,-2), (B9) 

J _ = - (2m'lk 'x)e - ik 'x f p(t - r,O,O,x") 

Xe - irk - k')(x - x')e - a'x" dx" + 0 (k ,-2). (BlO) 

In the derivation of Eqs. (B9) and (B 10) we have set 
x = (O,O,x). This entails no loss of generality since the medi
um has been assumed statistically isotropic. 

Conditions for the validity of the forward-scatter ap
proximation are given in Ref. 21. In the present context these 
conditions take the form 

k I-I <x<klf2, (Bll) 

where k I is a characteristic wave number associated with the 
wave field. 

By substituting the expressions for J + and J _ given by 
Eqs. (B9) and (BI0) into Eq. (B6), dropping terms of order 
k ' - 3, and averaging, we obtain 

(J) A = (4ff2/k 12XZ) f f r(r,x" - x') 
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X ei(k - k 'lex' - "")e - a'(x" + x') dx' dx". (Bt2) 

The double integral in Eq. (Bt2) can be partially evaluated 
with the aid of the coordinate transformation 5 = x" - x', 
'TJ = x" + x'. The result is 

(J)A = (4r/a'k'2x2) IX r(r,s) 

x(r a's - e- 2a'xea's) cos[(k - k ')51 ds. (B13) 

In deriving Eq. (B 13) we have made use of the fact that 
r (r,S) is even in S. 

We can now get a series expansion for < J > A in powers 
of a' (which is equivalent to an expansion in powers of «:2) by 
expanding the terms exp(a'S) and exp( - a'S) in Eq. (B13) 
and integrating term by term. This yields 

(J)A = (4r/a'k'2x2) ! (_1)" 
n=O 

xl1_(_1)ne- Za'X](a ln/n!) 

X LX snr(r,s) cos[(k - k ')S] ds. (BI4) 

When x>! the integration in Eq. (B14) can be extended to 
+ OCI without introducing significant error into the integral. 
Upon dropping all but the first term of the resulting expan
sion we obtain 

( J)A~(4r/a'k'2x2)(1-e-2a'X) 

X 1"" r(r,S) cos[(k - k ')s 1 ds. (BlS) 

An approximate expression for the integral I can now 
be obtained by substituting the result for < J ) A given by Eq. 
(BlS) into Eq. (B5) and carrying out the integration over r. 
This yields 

1= (2r/a'k 12X2)(l - e -2a'X)Z (ill - ill',k - k '), (B16) 
/'. 

where Z is defined by Eq. (67). Upon combining Eqs. (Bl) 
and (B16) we obtain the expression for Q given by Eq. (65). 
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We consider the image problem for domains with plane boundaries. We list all three and two 
dimensional domains for which the image method yields solutions ofthe potential problem, and 
we describe the image arrays generated by these domains in familiar crystallographic terms. One 
obtains from the grout>-theoretic description of images two representations for the Dirichlet 
Green's functions for V2

• The first is obtained by summing the unrestricted Green's function over 
the crystal image structures, and the second is obtained in terms of an eigenfunction expansion 
using solutions of V2¢ = J.¢ which vanish on the plane boundaries. 

I. INTRODUCTION 

If a point charge q is at some distance d from a grounded 
conducting plane, the boundary condition imposed by the 
plane on the resulting potential may be satisfied by replacing 
the plane with an "image charge" - q located at a position 
which is the mirror image location of q. This type of solution 
was called the "method of images" by its inventor, Sir Wil
liam Thomson,l and is illustrated in Fig. 1. 

We have studied the general problem of a solution by 
images for a point charge in a domain bounded by several 
grounded conducting planes, with the unexpected result that 
we are able to list all such domains for which the image 
solution exists. The possible comers are limited to intersec
tions of three planes and are well known in the theory of 
regular polyhedra. In each case, the set of image charges at 
such a comer forms a representation of a finite point group. 
Additional planes result in an infinite crystal structure of 
image charges in which the unit cell is the finite group of 
images at a comer. There are no domains whose boundary 
consists of more than six planes. 

The existence of the group structure yields the surprise 
that one can determine complete systems of fundamental 
eigenfunctions of the Laplace operator V2

, i.e., solutions of 
V2¢ = J.¢ which vanish on the boundaries. Moreover, the 
only classical cases are the eigenfunctions for the box, the 
square, and the three types of Lame eigenfunctions.2 

Given one of our domains there are two ways to repre
sent a Green's function for it, i.e., the potential for a unit 
charge. One is a direct sum of multi poles determined by a 
unit cell of images, and the other is an eigenfunction 
expansion. 

In Sec. II we deduce the allowed domains with plane 
boundaries. In Sec. III we summarize the group theory ap
propriate to the problem, and we show that reflections in a 
plane not containing the comer vertex generate an infinite 
crystal structure. In Sec. IV we show that the existence of the 
image solution for potentials and Green's functions follows 
directly from the group structure of the array of image 

charges. In Sec. V we calculate the image arrays for cylinders 
and prisms formed by terminating a cylinder with planes 
normal to the cylinder axis. In Sec. VI we consider the tetra
hedral domains, which make essential demands on our 
group theoretic formalisms. In Sec. VII we consider the ico
sahedral Mobius comer. In Sec. VIII we display a general 
formula for eigenfunctions of image domains and we devise a 
completeness proof. In Sec. IX, X, and XI we display explicit 
eigenfunctions as well as the Green's function expansions for 
the more interesting image domains. 

In an earlier pUblication3 we illustrated the details of 
some constructions and announced some of our principal 
results. 

II. IMAGE DOMAINS WITH PLANE BOUNDARIES 

The image solution exists if the potential of the original 
charge and its images vanishes on each conducting boundary 
plane, and no proper image lies in the domain bounded by 
the conducting planes. We first consider the wedge formed 
by two intersecting planes, where it is well known that the 
necessary and sufficient condition for existence of an image 
solution is that the wedge angle is tT/n, with n an integer 
greater than 1. For a domain bounded by more than two 
planes, it remains a necessary condition that each pair of 
intersecting planes meets at tT/n. We proceed to find all do
mains bounded by planes which satisfy this necessary con
straint. In succeeding sections we show that this necessary 
condition is sufficient by constructing the space group that 
generates the image charge array. This group determines the 
images completely. Thus existence of the domains we seek 

eQ 
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FIG.!. Single Plane. Light and dark 
circles are charges of opposite sign. 
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FIG. 2. The 1T/3-Wedge. The array generated is represented by dark and 
light circles (charges of opposite sign). 

will fol1ow from the group structure of the image array. A 
general domain for which the image method works is called 
an image domain. 

A. Intersection of Two Planes 

Many texts4 apply the method of images to a point 
charge placed between a pair of intersecting planes, where it 
is easy to show that the image solution exists if and only if the 
angle between the planes in rrln, with n an integer greater 
than 1. If n is an integer, there are 2n -1 image charges as 
shown in Fig. 2. If n is not an integer, the successive reflec
tions needed to satisfy the boundary condition V = 0 pro
duce images which lie in the domain O<,()<,rrln. We refer to 
the domain bounded by planes at an angle rrln as a rrln 
wedge. The case of two paral1el planes may be considered as 
the limit n_ 00, in which case the number of image charges is 
infinite.5 A single plane may be considered as the special case 
n = 1. 

B. Open Cylinders 

Since the interior angles of a polygon with n sides add 
up to (n -2)rr, the only possible cylindrical cross sections 
are triangles with angles (rr/3Irr/3Irr/3), (rr/2Irr/4Irr/4), 
(rr!2lrr/3Irr/6), the rectangle (rr/2Irr/2Irr/2Irr/2), and an 
open figure (rr/2Irr/210), in which two sides meet at infinity. 
The cylinders are shown in Fig. 4. 

C. Corners 

If a comer of n planes has its apex at the center of a 
sphere, the intersection angles between planes are seen to be 
the interior angles at the comers of a spherical polygon. For 
a spherical polygon, the sum ~ of the interior angles satisfies 
(n - 2)rr < ~ < (n + 2)rr. Simple enumeration shows that 
the only possible comers have three planes with angles 
(rr/2Irr/2Irr/n), (rr/2Irr/3Irr/3), (rr/2Irr/3Irr/4), 
(rr!2lrr/3Irr/S). The spherical triangles associated with such 
comers are known in the theory of regular polyhedra as the 
Mobius triangles. We shall call such comers Mobius corners. 

We also note that since the interior angles of an n-sided 
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(0 ) (b) 

FIG. 3. Angles. Angles of intersection for the admissible bounded four sided 
image domains. With terminology from VI one has; (a) primitive octahedral 
domain, (b) centered octahedral domain, and (c) large tetrahedral domain. 

plane polygon add up to (n -2)rr, the faces of a closed do
main with the above comers must be triangles or rectangles. 

D. Other Open Domains 

With the limitation to comers listed in (C), the only 
other open domains are cylinders from (B) terminated at one 
end by a plane perpendicular to the cylinder axis, and a 
wedge of two planes at an angle rr/n intersected by two paral
lel planes having the rrln intersection as a normal. We find 
these by the enumeration described in part (E). 

E. Closed Domains-4 Faces 

Four planes intersect in six lines, each of which is 
shared by two faces. The only domains are thus tetrahedra 
with triangular faces. We find the allowed domains by a sim
ple enumeration which consists of taking each comer from 
(C), intersecting the surfaces with a plane which makes one 
allowed comer, and then testing the remaining comers. Only 
three basic tetrahedra emerge. They are described in Fig. 3 
by the topology of the comer angles. Fig. S shows their con-

(0) 

(c) 

I 
I 
I 
I 
I 
I /' 
l.::~ __ _ 

(b) 

(d) 

FIG. 4. Geometric Types. The bounded prismatic image domains are; (a) 
rectangular orthohombic domain, (b) (1T/2 I 1T/4 I 1T/4)-triangular domain, 
(c) (1T/311T/311T/3}--triangular domain, and (d) (1T/211T/311T/6)-triangular 
domain. 
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(b 1 (el 

FIG. 5. Geometric Types. Cubic constructions show the relationship be
tween the three distinct types of bounded four-sided image domains. De
picted are: (a) primitive octahedral domain, (b) centered octahedral do
main, and (c) large tetrahedral domain. 

struction by sectioning a cube. We can also arrive at these 
domains using Descartes' theorem in part (G). 

F. Closed Domalns-5 Faces 

There are no five-sided domains in which each face in
tersects all the other faces. This would produce 10 lines of 
intersection; since the number of comers is integer and 2/3 
the number of lines, this is impossible. If two planes do not 
intersect in the surface, this gives 9 lines of intersection 
which must be the edges of two triangles and three rectan
gles. The only such domains are the triangular cylinders of 
part (B) intersected by a pair of parallel planes normal to the 
cylinder axis. See Fig. 4. 

G. Closed Domains-6 or More Faces 

Since all planes meet at angles less than 1T, they form 
only convex polyhedra. If 

C = number of comers, 

E = number of edges, 

F = number of faces, 

Euler's theorem states 

C+F-E=2. 

Since all comers are formed from 3 edges, it follows that 
2E = 3C. Hence 

C=2F-4. 

Thus, a figure of 6 faces has 8 comers. The sum of the plane 
angles at a comer is less than 21T. The difference is called the 
angular defect; the comer (1T12l1T12l1T/2) has the smallest 
angular defect, which is 1T12. A theorem of Decartes which 
can easily be derived from Euler's theorem,3.6 states that the 
angular defects sum to 41T for the comers of a convex polyhe
dron. Hence, we have C<8, or from Euler's theorem F<6. 
For F = 6, all corners must be (1T12l1T12l1T12) and the figure 
is a rectangular parallelipeped. Descartes' theorem, with the 
condition that an edge angle is shared by two adjacent cor
ners, may be used to derive the results of parts (E) and (F). 

The above domains were found by imposing the neces
sary condition that the angle between any two intersecting 
planes is 1Tln. We need to show that the image arrays created 
by our admissible domains do not contain additional image 
points which lie inside these domains. We also need to dem
onstrate that the potential and Green's functions that arise 
vanish on all the boundaries. As is shown in the following 
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sections, each of the above domains satisfies these condi
tions. Our necessary condition for a region to be an image 
domain is thus also sufficient. 

III. GROUP THEORY 
In order to describe the crystal structures of images, we 

are fortunate in having at our disposal the language of 
groups as they occur in solid-state theory and crystallogra
phy. In this section we shall recall and elaborate on the nec
essary group-theoretical formalisms, but for a detailed ele
mentary description of groups we shall refer the reader 
elsewhere. 7

•
8

.
9 

If G is a group and Hand K are subgroups, then one 
defines HK = !Jul IJtEH, A.EK l. If G = HK and the sub
groups Hand K have only the identity element in common 
the G = HK will be called a product decomposition. If 
G = HK is a product decomposition and JtA. = A.Jt for all 
JtEH and all A.EK, then G = HK will be called a direct prod
uct decomposition. 

In general, for arbitrary subroups Hand K ofG, the set 
S = HK will not be a subgroup of G. One says that H is 
normal (or invariant) with respect to K if X-I Hx C H for all 
xEK. If Hand K are subgroups of G and if H is normal with 
respect to K then S = HK = KH is a subgroup of G. The 
normality condition is useful for constructing groups, but it 
should be noted that S = HK can be a group without the 
normality condition. A necessary and sufficient condition 
for S = HK to be a group is that HK = KH. For a finite 
group H, the number of elements of in H, denoted by nH , is 
called the order ofH. IfS = HK is a product decomposition 
then ns = nHnK· 

Let E be a vector space with inner product (xly). A 
reflection with respect to a plane through the origin is given 
by the formula 

AX = x -2a(xla)/(ala) (aEE,xEE). (1) 

The vector a is said to be normal to the plane which deter
minesA. 

In three dimensions one has the matrix representation 

[

1 -2a2 -2ab -2ac 1 
A. = - 2ab 1 - 2b 2 - 2bc 

- 2ac - 2bc 1 - 2c2 
(2) 

when the normal (a,b,c) satisfies a2 + b 2 + c2 = 1. 
For any reflection A. one has the determinant relation 

det(A. ) = -1. The orthogonal group O(n) for the vector 
space E is defined to be the set of all linear transformations (7 

on E which leave the inner product invariant, i.e., 
(ux/oy) = (x/y) for all x,yEE. It follows that every group 
generated by reflections in planes through the origin is a 
subgroup of O(n). 

Two reflectionsA.x = x -2a(xla)/(ala) and 
Jtx = x -2b(xlb)/(b/b) commute if and only if (alb) = 0 
or a X b = O. One infers this from the commutator relation 

(A.Jt - JtA.)x = 4(alb)(xX(aXb». (3) 

Two reflection A andJt are perpendicular if (alb) = 0 
holds for their normals. We have shown a reflection com
mutes with any perpendicular reflection and itself. 
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The Mobius corner (1T/2 117/21 1Tln). For such a Mobius 
corner one reflection A is perpendicular to the other two. IfD 
is the order-two group generated by A, and H is the group 
generated by the other two reflections, then perpendicularity 
implies that S = DH is a group and a direct product. In the 
Schoenflies notation the group S is called a dihedral group 
and is denoted by the symbol Dnh • 

Generation o/space groups. A set L in a vector space E is 
a lattice if L contains a set of linearly independent vectors 
such that every element of L can be expressed as an integral 
combination of these elements. The basis vectors will be 
called primitive translation vectors. The parallelepiped 
spanned by a set of such vectors is called a primitive cell. 

The group of integers Z is a one-dimensional lattice in 
the space of real numbers. Henceforth, the space E will be a 
real three-dimensional space, even though this assumption is 
not formally necessary in this section. 

Let S be a finite group generated by reflections with 
respect to planes containing the origin. If we adjoin to S a 
number of reflections with respect to planes not containing 
the origin, then the group thus generated will be called a 
space group. While the images of a point under S will be 
restricted to the surface of a sphere, the images under the 
space group can lie infinitely far from the origin. 

Hypothesis I. We shall not add to S an arbitrary reflec
tion. It is assumed that 5 is a reflection and that the related 
transformation AX = 5x - 50, which defines a reflection A 
with respect to a plane containing the origin, is an element of 
the group S. 

Given this hypothesis about 5, one writes a = 50 and 
thus 5 is expressible in the form 5x = AX + a with Aa = - a. 
Given a point X we are now interested in determing all im
ages of X under the space group G generated by the finite 
group S. 

Given lTES we now consider a transformation 
f.l = lT5AlT -I. One has f.lX = x + ua and thus f.l acts as a 
raising operator. Clearly f.l is an element of the space group 
G. One hasf.l -I x = X - lTa and thusf.l-I acts as a lowering 
operator. It follows that f.l"x = x + kua is an image of x for 
any integer kEZ. Let L be the integral span of ! lTa lUES}. 

The pair (S,L) can now be given a group structure by 
defining (IT,D)E(S,L) to be a transformation with action 

~~~=~+a ~ 

The multiplication in (S,L) is defined by composition of 
transformations and has the formula 

(A,D)(J.t,m) = (Af.l,A.m + D), (5) 

and in the context of lattices is called Seitz mUltiplication 
It may now be observed that L is invariant under Sand 

5. It follows that all images ofx under the space group G are 
of the form (IT,D)X = ux + D with OES and DEL. Indeed, G 
and (S,L) can be isomorphically identified by assigning 5 to 
(A,a) and lTES to (IT,O). 

Our notation would suggest that L always has the struc
ture of a lattice, but this need not be the case. For example, it 
is easy to see that the set of real numbers !ny2 + mln,mEZ} 
can not be expressed in terms of integral multiples of a single 
generator. 
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Hypothesis II. The second hypothesis is that! ualUES I 
contains independent vectors such that every other vector in 
I ua llTES J can be expressed as an integral combination of 
these vectors. 

Under the second hypothesis the set L is a lattice. 
In order to adjoin to S simulataneously two reflections 

5 and 5 I, it will be assumed that both satisfy Hypothesis I. 
One sets a = 50 and a ' = 5 '0 and one defines L to be the 
integral span of the sets I uailTES Ju( ua'llTES}. If this larger 
integral span satisfies Hypothesis II then L is a lattice and 
(S,L) is the space group generated by (S, 5, 5 ']. In this man
ner, any number of suitable reflections can be adjoined to s. 

On the assumption that the space group (S,L) is deter
mined by a lattice, our group (S,L) will be a space group in 
the crystalographic sense. 7 The only situation of interest in 
our theory and in electrostatics is the case where L is a Bra
vais lattice. 

IV. IMAGE CRYSTAL STRUCTURES 

The images of a point in suitable domains formed from 
planes form crystal structures in the abstract sense. We shall 
give an overview of this approach. 

Space groups/or image domains. One associates a space 
group to any domain V formed by plane surfaces by consid
ering the group G generated by reflections with respect to the 
bounding planes. 

If for every gEG distinct from the identity and for every 
XEV the image gx lies outside of V, then V is an image do
main. The group theory section shows that one should be 
able to represent the space group G in the form (S,L), where 
S is a finite group of reflections and L is the lattice which 
arises through the extension process. However, the fact that 
L is a lattice does not follow from general considerations and 
needs to be verified through explicit computation. More
over, it turns out that the proper corner to choose for the 
generation of S is the sharpest corner of the domain. The 
resulting accounting of images will allow one to deduce that 
all the domains described in the first section are image 
domains. 

Potentials/or image domains. Let V be a corner domain 
or a wedge domain. Let S be the associated group of reflec
tions. If a unit charge is placed at XEV then the potential is 
given by 

¢ (u) = 2: det(lT)llux - ull- I . 
aES 

Let V be a general image domain with space group 
(S,L). The potential for V is then given by 

<P (u) = L ¢ (D + u), 
nEL 

(6) 

(7) 

where¢ (u) is thecornerpotential defined by (6). It is aconse
quence of Seitz mUltiplication (5) that the sign of the image 
charge at (IT,D)X is specified by the determinant of IT. When 
the monopole, dipole or quadrupole moments of the charge 
distribution I det( IT ),ux lUES J vanish, then ¢ (u) tends to zero 
rapidly as u gets large. This circumstance allows one to as
sert that (7) converges absolutely. The explicit determina-
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tions of (S,L) will allow one to see this with complete rigor. 
The potential satisfies the transformation property 

<P «u,n)u) = det(u)<P (u) (8) 

for an arbitrary (u,n)E(S,L). 
Vanishing of the potential. One has that <P (u) = 0 when 

u lies on the boundary of V. 
The assertion is easily proved. When u lies on the 

boundary of V then (u,n)u = u, for (u,n) the reflection with 
respect to the boundary plane containing u. For a reflection 
one has det(u) = -1. One now computes that 
<P (u) = <P «u,n)u) = - <P (u). Thus <P (u) = O. 

Interchange of sum mati on and differentiation. One can 
prove mathematically that ifD is any differential operator 
with respect to u then 

D<P(u) = L D<p (n + u) (9) 
nEL 

and the derived series converges absolutely. 
The differentiation interchange implies that <P (u) satis

fies the Laplace equation 

V2 <p (u) = -4m5 (x - u), (10) 

where {j is the Dirac delta function and V2 is the Laplace 
operator with respect to u. 

Interchange of summation and integration. This inter
change is not always valid. It is worthwhile recalling the 
hypotheses for integration and summation interchange. If 
for a convergent series ~<Pn of integrable functions the series 
~ S l<Pn I converges, then the interchange S ~ <Pn = ~ S <Pn 
is valid. The example we mention is a rare instance where 
this interchange is not possible and where the problem arises 
in a natural context. 

We shall consider the potential for parallel plates. The 
function II(x - u,Y - V,z - W)II-I is the unrestricted poten

tial for all space. The difference 

<P (u,v,w) = II(x - u,Y - V,z - w)II-1 
- II( - x - u,Y - V,z - w)1I - I 

is a special case of the group sum (7). The lattice sum 

<P (u,v,w) = L <P (2n + u,v,w) (11) 
nEZ 

is an absolutely convergent series and represents the poten
tial due to a unit charge at (x,y,z) between two conducting 
parallel plates at x = 0 and x = 1. The derived series 

a<p = L a<p 
au nEZ au 

is also seen to be absolutely convergent. However, if one now 
considers the surface integral over the whole infinite plane at 
x = 0, then term by term integration (up to factor of21T) 
yields 

2(1 - x) = ... + ( -1 + 1) + (1 + 1) + (1 -1) + ... = 2, 
(12) 

where the left-hand side is obtained from the correct total 
charge computation of Zahn,5 Schockley,1O and Kittel and 
Fong. II Despite assertions to the contrary by Pleines and 
Mahajan, 12 there exists no physically meaningful rearrange-
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ment of parentheses which will make (12) an identity. In this 
regard we also note the discussion of Epstein and Smith. 13 In 
Terras l4 the "method of theta functions" is applied to the 
parallel plate problem. 

V. CYLINDERS AND PRISMS 

In this section we will derive the space groups for the 
admissible cylinders and prisms. This computation will 
demonstrate that these figures are indeed image domains. If 
S = UK is a product decomposition of a point group then 

L det(u)f(ux) = L det(A) L det(jL)f(jLAx). (13) 
aES AEH I'EK 

This decomposition of a group sum underlies our for
mulas for normal modes. Use of this method to construct 
efficient codings for potentials is illustrated by (31) and (36). 
It is for these reasons that in our listings we give point groups 
in product form, but we also identify these groups with the 
point groups of crystallography in Schoenflies notation. 7 

• 0 • 0 

0 • 0 • 

• 0 • 0 

0 • 0 • 

• 0 • 0 

0 • 0 • 
(a) 

(b) 
FIG. 6. Crystal Structure. (a) A charge in the dark rectangle generates a 
cluster which is replicated by a rectangular Bravais lattice; (b) a charge in a 
(1T12i1T/4i1T/4}-triangle generates a cluster which is also replicated by a 
rectangular Bravais lattice. 
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FIG. 7. Crystal Structure. (a) A charge in the dark (17/3 [1T13 [1T13)-triangie 
leads to a hexagonal Bravais lattice; (b) a charge in a (1T/2[1T13[1T16)-trian
gle also leads to a hexagonal Bravais lattice. 

A. Rectangular and (1T1411T1411T/2) triangular cross 
sections 

The following notation for matrix generators of reflec
tion groups will be used in this section: 

h n ~ ~l p ~ [~ -:1 ~l 
(14) 

TJ=[~ ~ ~ 1 v=[~ 0 ~l· 
o 0 -1 0 0 1 
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1. The open rectangular cylinder V = {(x,y,z)/O.;x.;a, 
O.;y.;bj. 

The bounding planes through the origin determine re
flections A and Il, and generate the point group 

S = !1.A H I,ll J = 11.A,Il.A1l J, (Schoenflies C2J (15) 

which we term the square corner group. The cylinder is then 
seen to have space group (S,L), where 

L = ! (2am,2bn,O)lm,nEZJ, (16) 

which is a rectangular Bravais lattice. The crystal structure 
generated by this space group is depicted in Fig. 6(a). 

In terms of the unrestricted potential, formula (6) trans
lates into the formulas 

¢J (u,v,w) = ~ det(CT)IIa(x,y,z) - (u,v,w)lf- 1 

= II(x,y,z) - (u,v,w)II-1 - II( -:- x,y,z) - (u,v,w)11 - I. 

+ lIe - x, - y,z) -. (u,V,W)II-1 

- II(x, - y,z) - (u,v,w)ll- I. (17) 

It is easy to see that this is the potential due to a quadru
pole and goes to zero as II(u,v,w)II- 3

• It follows that 

(/> (u,v,w) =2: 2: ¢J (2am + u,2bn + v,w) 
mEZ nEZ 

converges absolutely. Such a verification would have to be 
made for every explicit realization of (6) in order to substan
tiate our claim regarding absolute convergence, but we will 
leave the remailling verifications for the reader. It is worth 
noting that we had good success in computer evaluation of 
this and other lattice sums due to additional cancellation 
which OCcurs when summation is carried out over blocks of 
indices that are invariant under the point group action. 

We tabularize the remaining space groups with sparse 
detail. The data presented is needed to parametrize the nor
mal modes discussed in Sec. VIII. The computations need to 
be performed in order to finish the formal proof that our 
admissible regions are indeed image domains as defined in 
Sec. I. 

One should note that the domains are all oriented in 
such a manner that the sharpest corner is at the origin. The 
generators of the point groups are the reflections in the 
bounding planes through the origin. The lattice is generated 
by the adjoining to the point group the remaining reflections 
in the bounding planes, through the group extension process 
described in Sec. III. The geometric constructions of image 
arrays in Figs. 6 and 7 may be used to good advantage in 
checking our data. 

2. The closed cylinder V = [ (x,y,z)jO.;x.;a, O.;y.;b, O.;zj. 

Generators: A, Il, TJ; 

S = 11.A· J{ 1,J.l J P, TJ J (Schoenfiies D 2h ), 

(18) 
L = t (2am,2bn,O)lm,nEZ J [see Fig. 6(a)]. 

We shall refer to the frequently occurring point group S 
as the cube corner group. 
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3. The rectangular box V = ((x,y,z)jO<x<a, O<y<b, 
O<z<cj. 

Generators: A, fl, 1]; 

L = (2ak,2bm.2cn)lk,m,nEZI. 

4. The (1T12/1T14/rrI4) cylinder V = ((x,y,z)jO<y<x<aj. 

Generators: fl, v; Relations: A = VflV 

S = {l,;{ j( l,fl If l,vl (Schoenflies C4u ), 

L = (2am,2an,0)lm,nEZl (see Fig. 6(b). 

5. The closed (1T12/1T14/1T14) cylinder 
V= ((x,y,z)jO<y..;x<a, O<zJ. 

Generators: fl, v, 1]; Relations: A = VflV; 

S = (I,;{ J( I.fl I (l,v I (1,1] I (Schoenflies D4h ), 

L = (2am,2an,0)lm,nEZI. 

(19) 

(20) 

(21) 

6. The (1T12/1T14/1T14)prism V = ((x,y,z)/O<y<x<a, O<z<cj. 

Generators: fl, v, 1] Relations: A = vflv; 

S = (I,;{ I (l,fll (l,vl (1,1]1, 
(22) 

L = (2ak,2am,2cn)lk,m,nEZI· 

B. Triangular (1T/311T/311T/3) and (1T/211T/311T/6) cylinders 
and prisms 

We shall consider the additional matrix generators: 

K ~ H~2 ~F~ ~] y +~F~ ~~~2 ~] 

1. The open 1T13 cylinder V = ((x,y,z)/O<yIV3<x, 
y«a -x)V3J. 

Generators: fl. Y; 

S = (l,f.ty,Yfl I ( l,fl I (Schoenflies C3J, 

L = (3a(n + m)/2,y3a(n - m)/2,0)Ik,m,nEZ I 

(23) 

(24) 

[see Fig. 7(a)]. 

2. The closed 1T13 cylinder V = ((x,y,z)jO<yIV3<x, 
y«a - x)V3, O..;zj. 

(26) 
L = (3a(n + m)/2,y3a(n - m)/2,2kc)lk,m,nEZI. 

4. The open 1T16 cylinder 
V= ((x,y,z)/O..;V3y..;x,y«a -x)V3j. 

Generators: K, fl; Relations: Y = KflK, A = KflKflK; 

S = ( 1 ".q,Yfl I ( I,fl I ( 1,;{ I (Schoenflies C6J, 
(27) 

L = (3a(n + m)/2,y3a(n - m)/2,0)lm,nEZl [see 
Fig.7(b)J. 

5. The closed 1T16 cylinder V = ((x,y,z)jO..;J/3y,.;,x, 
y..;(a - x)V3, O<zj. 

Generators: K, fl, 1]; Relations: Y = KflK, A = KflKfJX; 

S = ( l,flY,Yfl I ( 1,fl I ( I,;{ j { 1,1] j (Scheonflies D6h ), 

(28) 
L = (3a(n + m),y3a(n - m)/2,0)lm,nEZj 

6. Theprism V = ((x,y,z)/O<J/3y<x,y«a - x)V3, O<z<cj. 

Generators: K, fl, 1]; Relations: Y = KflK, A = KflKflK; 

S = (l,flY,Yfl j{ 1,fl J (l,;{ 1(1,1] J, 
(29) 

L = (3a(n + m)/2,y3a(n - m)/2,2kc)lk,m,nEZ1. 

VI. THE BOUNDED FOUR-SIDED DOMAINS 

Analysis of these domanisn requires more use of group 
theory and less reliance on geometrical construction. These 
bounded domains are all tetrahedra, but will be distin
guished according to the space groups associated with them. 
Our three tetrahedra will thus be termed the large tetrahe
dral domain, the centered octahedral domain, and the primi
tive octahedral domain. 

A. The large tetrahedral domain 

The representation considered is V = (x,y,z)lx<y, 
z..;,;x, - z..;,;x, x + y..;,;2a I, and is depicted in Fig. 5(c). 

The Mobius corner (1T12,1T13,1T13). This corner gener
ates the tetrahedral group. The planes of V which pass 
through the origin generate the reflections 

A=[~ ~ ~]'fl=[~ ~ ~], 
10000 1 

[ 0 ° -1] 
v= 0 O. 

-I 0 0 

(30) 

Generators: fl, Y, 1]; One finds that A v(x,y,z) = ( - x,y, - z) and 

S = (l,flY,Yfl I {I,fl j (1,1] I (Schoenflies D 3h ), flAVfl(X,y,z) = (x, - y, - z). The elements AV andflAvfl gen-
(25) erate the diagonal group D of order four, the matrices of 

L = (3a(n + m )/2, Y 3a(n - m )/2,0) I m,nEZ}. determinant unity with diagonal entries plus or minus unity. 

3. The prism V = ! (x,y,z)jO<ylJ/3<x, y«a - x)V3, 
O<z<cj. 

Generators: fl, y, 1]; 
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The effect of D on (x,y,z) is to generate the images 

{(x,y,z), (x, - y, - z), ( - x, - y,z), ( - x,y, - z) I· 
On the other hand, A and fl generate the permutation 
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(b) 

FIG. 8. Symmetric Cell. (a) Under the action of the tetrahedral group Th the 
large tetrahedral domain generates a Wigner-Seitz cell (a rhombic dodeca
hedron) for the associated cubic F-lattice; (b) the Wigner-Seitz cells stack 
to fill all space without gaps. 

group P on three letters. The effect ofP on (x,y,z) is to gener
ate the images 

I (x,y,z), (z,y,x), (y,x,z), (z,x,y), (x,z,y), (y,z,x)] 

The group D is normal with respect to P. It follows that 
S = DP is a group and has order 24. In Schoenflies notation 
the groupS is denoted by T h • 

The corner potential. Use of (13) withf(x,y,z) 
= II(x - u,y - v,z - w)II- ' allows one to write the poten

tial (6) with the help of a simple sequence of auxiliary func
tions. One has 

g(u,v,w) = f(u,v,w) + f( - u, - v,w) 

+ f(u, - v, - w) + f( - u,V, - w), 

h (u,u,w) = g(u,u,w) + g(v,w,u) + g(w,u,u), 

¢J (u,v,w) = h (u,u,w) - h (v,u,w). 

(31) 

In the manipulations of these formulas we made free use of 
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the duality property 

I det(u)lIax - ull- I = I det(u)lIx - uull - 1 • 
<YES <YES 

The space group. Reflection across the plane x + y = 20 
has the formula S (x,y,z) = ( - y, - x,z) + 20(1, 1,0). It is 
this reflection which needs to be adjoined to S. One has 
(vA. )/l(VA. )(x,y,z) = ( - y, - x,z) and thus Hypothesis I for 
space group generation is satisfied. One now needs to exam
ine all the images of S (0,0,0) = 2a( 1,1,0) under the action of 
the tetrahedral group. A glance at our decomposition result 
S = DP shows that the listing of the twelve elements 
2a( =1= 1, =1= 1,0), 20(0, =1= 1, =1= 1), 2a( =1= 1,0, =1= 1) yields all 
possible images. Thus Hypothesis II is also satisfied. Let 

L = {2a(i + k,i + j,j + k )li,j,kEZ]. (32) 

This is aface-centered cubic Bravais lattice. The space group 
for V is thus seen to be (S,L). 

The different images of the domain V produced by the 
action of the tetrahedral group S are disjoint and do not 
overlap except at the boundaries. The solid region represent
ed by the union V s = u I uV I UES] appears in Fig. 8(a), and is 
called a Wigner-Seitz cell for the cubic F-Lattice L. The 
effect of the lattice L is to fill all three dimensional space with 
copies ofthis cell is a non-overlapping manner as in Fig. 8(b). 
One thus deduces that the tetrahedral domain V is an image 
domain. 

The potential/unction. If ¢J (u,v,w) is the potential (31) 
for the corner region, then the lattice sum 

<P (u,v,w) = I ¢J «u,v,w) + 2a(i + k,i + j,j + k» 
i.j.kEZ 

(33) 

is an absolutely convergent series for the Green's function 
for the image domain V. 

B. Centered Octahedral Domain 

A representation of this octahedral domain is 
V = I (x,y,z)lx<,y, O<Z<X, x + y<2a]. The orientation of 
this domain is depicted in Fig. 5(b). 

The Mobius corner (1T/2,1T/3,1T/4). This corner gener
ates the octahedral group. The planes passing through the 
origin generate reflections A. (x,y,z) = (z,y,x), /l(x,y,z) 
= (y,x,z) as in (30), and the reflection 1J(x,y,z) = (x,y, - z), 

which is not an element of the tetrahedral group. One con
structs diagonal elements by noting that 
A.1JA. (x,y,z) = ( - x,y,z) and 
(A./lA. )1J(A./lA. )(x,y,z) = (x, - y,z). The elements 1J, A.1JA., and 
(A/lA. )1J(A/lA. ) are mutually orthogonal and generate the cube 
corner group D, which is a diagonal group of order eight. 
The elements A. and /l generate the same permutation group 
P as occurred in the tetrahedral case. Since D is normal with 
respect to P it follows that S = DP is a group of order forty
eight. 

The space group. One has to add the reflection 
S (x,y,z) = ( - y, - x,z) + 20(1,1,0) to the octahedral group 
in order to generate the space group. The product decompo
sition S = DP shows that hypothesis I is satisfied. The de
composition also shows that the images of 
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5" (0,0,0) = 2a(1, 1 ,0) under the octahedral group are the 
same as under the tetrahedral group. Thus Hypothesis II is 
also satisfied and it follows that the space group is given by 
(S,L), where S is the currently discussed octahedral group 
and L is the previously defined face-centered cubic lattice 
(32). 

The Wigner-Seitz cell V s = ! UVICTES] is the same as 
the one that occurred in the tetrahedral case. It follows that 
V is an image domain. 

C. Primitive Octahedral Domain 

This region has the representation V = ! (x,y,z)lx<y, 
O..;;z..;;x, y..;;a]. The orientation of the figure is as in Fig. 5(a). 
The Mobius corner at the origin generates the octahedral 
group. The reflection to adjoin is 5" (x,y,z) = (x, - y,z) 
+ 2a(0, 1,0). One sees that Hypothesis I is satisfied. The im

ages of 5" (0,0,0) = 2a(0, 1 ,0) under the octahedral group are 
just the eight vectors! ± 2a(1,0,0), ± 2a(0,1,0), 
± 2a(0,0, 1)]. It follows that Hypothesis II is satisfied. We 
now define 

L = l2a(i,j,k)li,j,kEZ], (34) 

which is aprimitive cubic lattice. The space group for V is 
thus (S,L), where S is the octahedral group, and L is the 
currently defined lattice (34). 

The Wigner-Seitzcell Vs = u! UVICTES] is just the cube 
! (x,y,z) I - a..;;x,y,z..;;a] and is formed as a union of domains 
which do not overlap. Moreover, under the action of the 
lattice L all space is filled in a non--overlapping manner with 
these cubes. It follows that V is an image domain. 

VII. THE ICOSAHEDRAL POTENTIAL 

The Mobius corner (1T/2,1T/3,1T/5). The reflection group 
generated by this corner is called the icosahedral group Y h . 

This group does not manifest itself as a crystallographic 
point group. Nevertheless, the unit cell of some intermetallic 
compounds, such as MoAl12 contains an icosahedral struc
ture. 15

•
16 The group is best known from the theory of regular 

polyhedra and was discussed by Mobius 17 and more recently 
by Coxeter. 6 

We shall obtain an explicit representation by exploiting 
the relation cos(1T/5) = (V5 +1)/4. Set l' = (V5 +1)/2. 
One notes that 1'-1 = (V5 -1)/2. One now considers the 
sector! (x,y,z) Iz..;; l' - 1 X - 1'Y, y;>O, z;>O]. The sector is de
picted in Fig. 9. The reflections associated to the corner have 
matrix representations f.l and 71 as in (14) and 

A=~( ~ 
2 -I 

l' -1' 

l' _I] 
-1' . 

1 

The elements K = 11,f.lA,Af.l,ApAf.l, f.lAf.lA ] form a cy
clic group of order five and represent rotations through 0, 
21T/5, 81T15, 41T15, 61T/5 radians. The matrix elements for the 
non-identity rotations are 

2148 

f.lA = ~ (~1 
2 -I 

l' -1" 

l' _I] 
l' , 

1 
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x 

Z 
I 

I 

y 

FIG. 9. Reflection Planes. Geodesics in the sphere are used to represent the 
reflection planes in the first octant generated by the icosahedral Mobius 
corner outlined in the lower left. 

A"~~[ ~ 
-1 r-'] l' -I -1' , 

2 -I 
l' 1 l' 

pApA ~+ (-;-' l' -I ; l -1' (35) 

-1 _1'-1 

ApA"~+«' 
_1'-1 

~I 1 -1' 

_1'-1 

A calculation yie1dspf.l71 p2(X,y,z) = (- x,y, - z), 
wherep = (Af.lAf.l)7J(Af.lA )(71A71), for which one has 
p(x,y,z) = (z,x,y). The element p generates the cyclic group 
of order three P = ! 1, p, p2]. The diagonal elements f.l, f.l71, 
pf.l71 p2 generate the cube corner group D, which has order 
eight. The product S = DPK can be shown to be a group, 
and is the icosahedral group that we have been seeking to 
define. 

The potential for the icosahedral corner is now easy to 
obtain by using (13). Letf(u,v,w) = II(x - u,y - v, 
z - w)II-I. Define 
g(u,v,w) = f(u,v,w) + f( - u, - v,w) 

+ f(u, - v, - w) + f( - U,v, - w), 

h (u,v,w) =f(u,v,w) + g(v,w,u) + g(w,u,v), 

k (u,v,w) = h (u,v,w) - h (u, - v,w), 

rP (u,v,w) = I k (u(u,v,w». 
aEK 

(36) 

The formidable problem of coding a matrix sum with 
120 terms has thus been reduced to the problem of coding a 
matrix sum with 5 terms. The necessary elements of K were 
listed in (35). 
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VIII. EIGENFUNCTION EXPANSIONS 

In this section we shall discuss normal modes for image 
domains. We also consider the abstract aspects of Green's 
function expansions in normal modes for the cylindrical im
age domains and the bounded image domains. We omit the 
famous parallel plate problem which was considered by 
Fong 11 and Jackson. 18 

The principal problem is to parametrize complete sys
tems of normal modes. Because normal modes occur in the 
description of waveguides and cavity resonators, this aspect 
of the problem is useful for its own sake. The Dirichlet nor
mal modes for the plane (1T/3 11T/3/1T/3) and (1T/2/1T/311T/6) 
triangles appeared already in the treatise of Lame,2 which, 
however, contained no proof of completeness. After years of 
controversy the completeness problem was settled by C. G. 
Nooney. 19 Our own completeness proof is based on group
theoretic methods and is short and novel and applies to the 
Lame normal modes as well as our own varieties and is by far 
the most significant contribution of this section. 

Normal Modes. We shall consider image domains in 
two or three dimensions, but most arguments are formal and 
apply quite generally. Let V be an image domain with space 
group (S,L). Let 

<,b,(u) = 2: det(o-)e- 21Ti (,lau), (37) 
aES 

where u and v are elements of the same underlying vector 
space E. 

We shall call <,b, (u) a Dirichlet normal mode for E. 
It is easy to see that 

V2<,b,(u) = -4r( vjv)<,b, (u), (38) 

where V2 is the Laplace operator with respect to u. It follows 
that our terminology is appropriate. 

We shall consider the symmetric cell V S = U [ oV I O'ES J. 
One sees from the preceding sections that in every instance 
E = [Vs + ninELl and that this union is formed in a non
overlapping manner. It follows that an arbitrary function 
J(u) on V can be extended to a function on all space by 
J(uu + n) = det(o-)J(u)foruEV. This extension ofJ(u) to all 
space is called the alternating extension. IfJ(u) is continuous 
and vanishes on the boundary of V then the alternating ex
tension is a continuous function on all space. 

The lattice L need not have the same dimension as E. 
We thus consider the space F spanned by L in E. The dual of 
L is defined to be a lattice in F defined by 

L' = [mEFI (mln)EZ, for all nEL J. 
When nEL and mEL' then one has 

<,b(a.R)m (u) = <,bm «O',n)u) = det(O')<,bm (u). 

(39) 

(40) 

These relations show that <,bm (u) = 0 when either U or m lies 
on the boundary of V. 

Any L-periodic functiong(u) on F can be expanded as a 
Fourier series20 through 

g(U) = _1_ 2: g(m)e2 ,,-i(m IU), 

v(R) mEL' 

where 
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(41) 

g(m) = i g(U)e- 2tri
(mlu) du, 

and where v(R) is the volume of a primitive cell R in L, and 
where the integration du is carried out in F. 

Bounded Image Domains. Let V be a bounded image 
domain with space group (S,L) and let g(u) be a function 
which is continuous on V and "anishes on the boundary ofV. 
If we now consider the alternating extension of g( u) to E then 
(41) yields 

g(u) = _1_ 2:g(m) 2:det(O')e2tri(mlau), 
n sv(R) mEL' OES 

which in terms of (37) becomes 

1 
g(u) = -- L g(m)<,b: (u). 

nsv(R) mEL' 

If mEL' then one has 

f g(u)<,bm (u)du = f g(u)e - 2tri(mlu) du 
Jv Ju!oYlaesl 

= 1 g(u)e- 2tri(m IU) du, 

(42) 

(43) 

where R is a primitive cell in L. The change in the domain of 
integration from u I O'V I OES J is permissible in every one of 
our explicit constructions. 

Define en] = [un/O'ES J. Two classes en] and em) have 
either no elements in common or are the same. Let L(S) 
denote a selection of parameter elements in the dual L' ob
tained by choosing one element from each maximal equiv
alence class. In actual fact, L(S) may be obtained by choos
ing those elements ofL' which lie properly in the interior of 
the sector that defines S, as illustrated in Fig. 10. 

For n, mEL(S) one has that 

I <,bm(U)<,b :(u) du = e(R) 
[nJ-:f [mJ 

[nJ = [mJ. 

The normal mode expansion is thus summarized by 

g(u) = (RI) L g(m)<,b : (u), 
v mELtS) 

n 
" 

/ 
/ 

{a} 

where 

MIS} 

/ 
/ 

/ 

/ 
/ 

m 

/ 
I 

/ 

/ 
/ 

/ 
/ , 

(44) 

FIG. 10. Index Sets. (a) The standard index set, the sector M(S), parametri
zies the normal modes, for the (1T/3117'/311T/3}--triangle; (b) the natural pa
rameterset L(S) is a sector with a simple relationship to the (1T/311T/311T/3)
domain. 
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g(m) = Iv g(U~m (U) duo (45) 

Since g(u) was an arbitrary function on V with the ho
mogeneous boundary condition g(u) = 0, the above demon
strates completness of the Dirichlet normal modes. Neu
mann normal modes can be defined by the symmetric sums 
f/ly (u) = ~oeS e -21T i(ylou). A demonstration of completeness 
can be obtained through the use of symmetric extensions of a 
function on V. 

Green's Functionsfor Bounded Image Domains. Let V 
be a bounded image domain with space group (S,L). Let 
(/) (u) = G (x,u) be the Green's function for V, i.e., the poten
tial for a unit charge at x.. Computing as in Jackson 18 one 
obtains the eigenfunction expansion. One has 

(/)(u) = [1TV(R)]-1 L (mlm)-I¢m(x)¢m(u).(46) 
mEL(S) 

Set am (u) = [¢m (u) + ¢ _ m (u)]l2 and Pm (u) = [¢m 
(u) - ¢ _ m (u)]/2i. One has V2a m (u) = -4~(mlm)am (u) 
and V2Pm(u) = -4~(mlm)Pm(u). Thus an(u) and P n (u) 
are real eigenfunctions of the Laplace operator, which van
ish on the boundary of V, and will be called the real Dirichlet 
normal modes for V. One sees that 

(/) (u) = [1TV(R)] -I L [am (x)am(u) + Pm (x) Pm(u)] . 
mEL(S) <mlm) 

(47) 

It follows that {am(u)lmeL(S)}u{ Pm(u)lmeL(S)} 
forms a complete set, but it should be pointed out that this 
listing may contain duplications due to additional relations. 

We will now explain why most three-dimensional Dir
ichlet normal modes are purely imaginary for three-dimen
sional image domains. One has the relations am (au) 
= det(u)am (u) and Pm (au) = det(u) Pm (u) for ueS. If in

version is an element ofS, i.e., if - n can be obtained from n 
by a group operation in S, then a _ n (u) = - am (u). Howev
er, the defining condition implies that am (u) = a _ m (u). It 
follows that am (u) = ° whenever inversion is an element of 
S. 

Lattices of the form Z, ZXZ, ZXZXZ, ... are called 
standard lattices. In practice it is desirable to index the eigen
functions on a standard lattice. Let M be a standard lattice. 
Let T be an invertible linear map which transforms Minto 
L'. One sets 

(48) 

Our explicit expansions adhere to this notation. The param
eter set for the real and imaginary parts am (u) and Pm (u) 
then is M(S) = {meM IT(m)EL(S)}. The relationship be
tween M(S) and L(S) for the (1T 13117"1311T 13) cylinder is illus
trated in Fig. to. 

Green's Functions for Cylinder Domains. Let {¢. (u,v) 
I aeI} be a complete set of orthonormal Dirichlet normal 
modes with respect to the Laplace operator a 21 Ju2 + a 21 av2 

on a bounded plane domain D. With respect to such a system 
any continuous function/(u,v) on D which vanishes on the 
boundary has the expansion 

f(u,v) = L](a~. (u,v), (49) 
BEl 
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where 

](8) = If(U,V)¢a(U,V) du dv. 

Let (/) (u,v,w) = G (x,y,zlu,v,w) be the Green's function 
for a perpendicular cylinder with cross section D. Comput
ing as in Jackson l8 one obtains the expansion 

exp( - A. !l2lz - wI) • 
(/) (u,v,w) = 21T L 112 ¢. (x,y~ • (u,v), 

aEI A. a 

where the eigenvalue A.a corresponds to V2 ¢. (u,v) 
= - A.. ¢.(u,v). 

IX. FORMULAS FOR CYLINDERS 

(50) 

The case of the rectangular cylinder is a well-known 
classical case,21 but the remaining formulas are expressed in 
terms of our versions of the Lame normal modes. 

A. The Rectangular Cylinder V = {(x,y,z)/O .. x<a, 
O<y<bj 

1 00 00 

(/)(u,v,w) = - L L 
2ab m= I n= I 

X exp{ - 1T[(mla)2 + (nib )2] 1/21z - wi) 
[(nla)2 + (nib )2] 1/2 

xam •n (x,y)a m •n (u,v), (51) 

where 

am,n(u,v) = 4 sin(1Tmula) sin(1Tnvlb). (52) 

With the parameter set M(S) = {(m,n)lm> 1, n> I) one has 
a complete set of Dirichlet normal modes for the square 
{(x,y)I0..;x..;a, O..;y..;b ). 

B. The 1T/4-Triangular Cylinder V = ((x,y,z)/O<y<x<a j 

1 00 n-I 
(/)(u,v,w) = - I I 

2a n=2m=1 

where 

exp[ - 1Ta -1(m2 + n2y/21z - wi] 
X~~----~~-7~--~--~ 

(m 2 + n2)1/2 

xam•n (x,y)am.n(U,V), 

( ) 
_ ISin(1TmUla) sin(1Tmvla)I 

am n U,V - 4 . . ( ). . sm(1Tnula) sm 1Tnvla 

(53) 

(54) 

With the parameter set M(S) = {(m,n)IO < m < n I these 
Dirichlet normal modes form a complete set. 21 

C. The 1T16-Cyllnder 
V = {(x,y,z)I0..;v3y..;x,y..;(a - x)V3} 

1 00 n-l 

<P (u,v,w) = -- L L 
y3a n = 3 m = /nl2/ + I 

exp[ - (41T/3a)lz - wl(n2 - mn + m2)1/2] 
X~~~~-7~~~~~~--~~ 

(n2 _ mn + m 2)1/2 
xam •n (x,y)a m •n (u,v), (55) 

where [x] denotes the greatest integer less than or equal to x, 
and where 

Riho Terras and Robert Swanson 2150 



                                                                                                                                    

am,,, (U,V) = 4[sin(21T(n + m)u/3a) sin(21T(n -m)v/v3a) 

- sin(21T(2n - m)u/3a) sin(21Tmv/v3a) 

- sin(21T(n - 2m)u/3a) sin(21Tnv/V3a)]. (56) 

With the parameter set M(S) = {(m,n)/O<m <n <2m} one 
has a complete set of Dirichlet normal modes. 

D. The 1T13-Cyllnder V = {(x,y,zJ/O<y<v3x, 
y«a-x)v3j 

1 "" n-I 

rp (u,v,w) = -- L L 
v3a n=2",=1 

where (Am.n) = am,n + i Pm.", and where 

am,n(U'v) = 2 [sin(21T(n + m)u/3a) sin(21T(n - m)v/v3a) 

- sin(21T(2n - m)u/3a) sin(21Tmv/v3a) 

- sin(21T(n -2m)u/3a) sin(21Tnv/v3a)1, 
(58) 

Pm,,, (u,v) = 2 [sin(21T(n + m)u/3a) cos(21T(n - m)v/v3a) 

- sin(21T(2n - m)u/3a) cos(21Tmv/v3a) 

- sin{21T(n -2m)u/3a) cos(21Tnv/V3a)]. 

With the parameter set M(S) = [(m,n)/O<m <n, m,neZJ 
the complex functions ¢(m,n) form a complete set of Dirichlet 
normal modes. The relationship between L(S) and M(S) is 
depicted in Fig. 10, which also allows one to infer the addi
tional relations in the real modes. One may thus write 

2 w l (41Tn ) rp (u,v,w) = - L - exp - --Iz - wi 
3a n=1 n av3 

X13n,2n (x,y) 13n,2n (u,v) 

2 00 n-I 

+-L L v3a n = 3 m = [n/2) + I 

x (am,n (x,y)am,n (u,v) + 13m ,n (x,y)13m,n (U,V») . 

(59) 

X. FORMULAS FOR PRISMS 

A. The Rectangular Box 
V = [(x,y,z)/O,x,a,O,y,b,O,z,Cj 

1 "" '" "" rp(u,v,w)=-- L I I 
21Tabc k = I m = I n = I 

where 

x P",m,,,(X,y,z)Pk,m,,,(U,v,w) 

(k /a)2 + (m/b? + (n/ci ' 
(60) 

13k,m,n (u,v,w) = - 8sin(1Tku/a) sin(1Tmv/b) sin(1Tnw/c). 
(61) 

With the parameter set M(S) = {(k,m,n)lk-, I, m-, I, n-, I, 
k,m,neZ 1, one has a complete set of Dirichlet normal modes 
for the box. It should be noted that the expansion reported in 
Courant and Hilbert22 is flawed, but the formula is very clas
sical and appears in Jackson. 18 

B. The 11'/4 Prism V = (x,y,z)/O<y<x<a, O<z<bj 

1 "" "" k-l 
rp (u,v,w) = --2 L L L 

21Ta b ,,= 1 k = 2 m = 1 

where 

X 13k,m.n (x,y,z) 13k,m,n (u,v,w) 

(k /af + (m/a)2 + (n/b i ' 

13k,m.n (u,v,w) 

(62) 

8 
\ 
sin(1Tku/a) sin(1Tkv/a) I . ( b) (63) = -. . sm 1Tnw/ . 
sm(1Tmu/a) slD(1Tmv/a) 

With the parameter set M(S) = {(k,m,n)/I<m<k -I, 
1 <n) one has a complete listing for these normal modes. 

C. The 1T16 Prism V = {(x,y,z)/O<v3y<x, y«a - x)v3, 
O<z<cj 

1 "" "" ,,= I 

rp(u,v,w) = 2 L L L 
12v31Ta C k = In = 2 m = [n/2) + I 

X 13k,m,n (X,y,z) 13k,m,n (U,V,W) 
[(m 2 _ mn + n2)/(3a)2] + Ik2/(4c)2] , 

(64) 

where{Jk,m.1t (U,V,W) = lam." (U,V) sin(1Tkw/c), with a m.n (u,v) 
defined by (56). One obtains a complete set of real Dirichlet 
normal modes with the parameter set 
M(S) = {(k,m,n)!k> 1, O<m <n <2m J. 

D. The 11'/3 Prism V = {(x,y,z)/O<y<v3x, y«a - x)v3, 
O<z<cj 

_ 1 ~ ~ a",m,2m(X,y,z)ak,m,2m(U,V,w) 1. ~ ~ n~l 

- 12v31Ta2c k~1 m~l [n2/3a2] + [k 2/(AA)2] + 6-/3 2 "'" "'" "'" 
(65) 

"t(i V 1TaCk=ln=2m=[n/2)+1 

[
ak,m." (X,y,z)ak,m.n (U,V,W) + {Jk,m,n (X,y,z) Pk,m,n (U,V,W)] 

[(n2 
_ mn + m2)/(3a)2] + [k2/(4c)2] , 
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wh~re ¢(k,m,n) = ~k,m,n + i Pk,m,n and.where a k.m.n (U,V,W) = 2 Pm.n (u,v) sin(1Tkw/c), and Pk.m.n (u,v,w) = lam.n (u,v) 
X s1O(17"kw/c), with a m.n and Pm.n as 10 (58). The parameter set M(S) = (k,m,n)lk> 1,0 < m < n J determines a complete 
orthogonal set of the complex modes. 

XI. FORMULAS FOR THE TETRAHEDRA 

Our most novel formulas appear in this section. The derivation of the normal modes for these domains makes essential 
use of o~r group-the~retic approach. In these cases it is even hard to depict and generate the image crystal structures through 
geometnc constructions. 

A. Primitive Octahedral Domain V = {(x,y,z)/x<y, O<z<x, y<aj. 

CP(u v w) = _1_ ~ m~1 kf:IPk,m,n(X,y,z)Pk,m,n(U,v,w) 
, , 2 £.. £.. £.. (k 2 2 2 ' 1Ta m=3 k=2 n=1 +m +n) 

(66) 

where 

sin(1Tku/a) sin(1Tkv/a) sin(1Tkw/a) 

(:Jk.m,n )(u,v,w) = - 8 sin(1Tmu/a) sin(1Tmv/a) sin(1Tmw/a) (67) 

sin(1Tnu/a) sin(1Tnv/a) sin(1Tnw/a) 

The above Dirichlet normal modes form a complete set with the parameter set M(S) = {(k,m,n)IO < n < k < m J. 

B. Centered Octahedral Domain V = {(x.y,z)/x<y, O<z<x, x + y<2aj 

cP (u,v,w) = _1_ ! k~1 nfl 2 (:Jk,~,n(X~,z) (:Jk,m,n (U,V,W) 
1Ta k=4n={(H3)/2Jm=k-n+13(k +m +n )-2(km+kn+mn) 

where 
sin(1Tu(k + m - n)/2a) sin(1TV(k + m - n)/2a) 

(:Jk,m,n )(U,V,W) = - 8 sin(1Tu(k - m + n)/2a) sin(1TV(k - m + n)/2a) 

sin(1Tu( - k + m + n)/2a) sin(1TV( - k + !1l + n)/2a) 

One obtains a complete orthogonal set with M(S) = ((k,m,n) 11.;;;m < n < k < m + n J ' 

sin(1TW(k + m - n)/2a) 
sin(1Tw(k - m + n)/2a) 

sin(1TW( - k + m + n)/2a) 

C. Large Tetrahedral Domain V = {(x,y,z)/x<y, - x<z<x, x + y<2aj 

CP( ) = _1_ ~ kf:1 nf:1 ¢(k,m,n) (x,y,z) ¢ tk,m,n) (u,v,w) 
U,v,w £.. £.. £.. 2 2 2 . . , 

1Ta k=3n=2m=13(k +m +n )-2(km+kn+mn) 

= _1_ ! nf am + n,m,n (x,y~)am: n,m,n (U,v,w) + ~ ! kf nf 
41Ta n = 2 m = I m + n 1Ta k = 4 n = {(k + 3)/2 J m = k - n + I 

X ak,m,n (X,y,z)ak,m,n (u,v,w) + (:Jk,m,n (x,y,z) Pk,m,n (U,V,W) 

3(k 2 + m2 + n2
) -2(km + kn + mn) , 

where 

cos(1Tu(k + m - n)/2a) 

ak,m,n(U'V'w) = 4 cos(1Tu(k - m + n)/2a) 
COS(1TU( - k + m + n)/2a) 

cos(1TV(k + m - n)/2a) 

cos(1TV(k - m + n)/2a) 

COS(1TV( - k + m + n)/2a) 

cos(1TW(k + m - n)/2a) 

cos(1TW(k - m + n)/2a) 
COS(1TW( - k + m + n)/2a) 

(68) 

(69) 

(70) 

(71) 

and (:J k,m,n (u,v,w) is as in (71), except that cos is replaced by the sin. A complete set of orthogonal complex modes ¢ k,m,n 
= ak,m,n + i{:Jk,m,n is obtained with M(S) = {(k,m,n) = 11.;;;m <n <k I, 

XII. SUMMARY 

We have determined all the domains bounded by linear 
planes for which the image method determines the solution 
of the potential problem, In the applications one considers 
such domains to have conducting walls. The domains are 
listed in Table I, together with the point group and lattice 
which determine the crystal structure of the images. The 
lattice parameters are given in the text, as are the Green's 
functions associated with each domain. Solutions for the 
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wedge and rectangular prism are in the existing litera-
ture. 4,18 For the Green's functions we have numerically eval
uated the Coulomb sums as well as the eigenfunction expan
sions, which required special summation methods, and we 
found numerical agreement. We found the partial Coulomb 
sums over invariant sets of indices to be rapidly convergent 
when three-dimensional lattices were involved, and to be 
moderately rapidly convergent for two-dimensional lattices, 
but we have refrained from including our mathematical esti-

Riho Terras and Robert Swanson 2152 



                                                                                                                                    

TABLE I. Image domains 

Domain 

Parallel Plates 
1Tln-Wedge 
(1T/2,1T12,1Tln}-Comer 
(1T12,1T13,1T13}-Comer 
(1T/2,1T13,1T14}-Corner 
(1T12,1T13,1T15}-Comer 
Open Channel 
Prismatic Wedge 

Open Rectangular Cylinder 
Closed Rectangular Cylinder 
Rectangular Prism 
Open 1T14-Triangular Cylinder 
Closed 1T14-Triangular Cylinder 
1T14-Triangular Prism 
Open 1T13-Triangular Cylinder 
Closed 1T13-Triangular Cylinder 
1T13-Triangular Prism 
Open 1T16--Triangular Cylinder 
Closed 1T16--Triangular Cylinder 
1T16--Triangular Prism 
Tetrahedral Domain 
Primitive Octahedral Domain 
Centered Octahedral Domain 

Schoenfties 
comer group 

mates on the rates of convergence of these sums in this paper. 
The eigenfunctions that we have displayed also arise in 

a number of other boundary value problems, such as those 
connected with cavity resonators and waveguides, but these 
problems also require the Neumann normal modes, which, 
as we indicated, can be defined with symmetric sums. 
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Con~idering the Lagrangian prop~~ed by Havas, that describes the classical damped motion of a 
particle, new mom~ntum and posItion are defined in order to write a Hamiltonian that is 
subseq~ently quantIzed and expressed in terms of non-Hermitian operators. Using the c-number 
formahsm ~roposed by Lax and Yuen, we associate to the quantum Liouville equation a Fokker
Planck o~e.lO terms of c-numbers. From the properties of this equation we obtain the mean values 
of.th~ posItion, momentum, and energy of a brownian particle and we also verify the uncertainty 
pnnclpl~. We o~se.rv~ that when the system is considered under the Markov hypothesis, the 
stochastic force IS lOtlmately related to the uncertainty principle and to the zero point energy. 

INTRODUCTION 

The approach to the energy loss problem of a particle in 
quantum mechanics is divided, essentially, into two lines. 
The first one is concerned with the brownian motion of a 
particle embedded in a heat bath (reservoir), considering this 
bath constituted by N independent harmonic oscillators 
(HO). The brownian particle is also assumed as an HO 
which is coupled to the reservoir oscillators. In the limit of 
N-+oo the motion of the particle is described by the Lange
vin equation or governed by a Fokker-Planck (F-P) equa
tion. In this line we emphasize the works ofFord et ai, 1 

Ullersma,2 and Louisell,3 in which the assumption of a Mar
kovian process is essential to guarantee the irreversibility of 
the phenomenon. 

The treatment in the second line consists in writing a 
one-body phenomenological Hamiltonian describing the 
quantum-mechanical dissipative process. Some Hamilto
nians can be obtained from the Lagrangian proposed by Ha
vas4

; we can cite Kanai's Hamiltonian,5 that depends explic
itly on time, and the nonlinear Kostin6 one (this last 
originally obtained7 from Heisenberg equations of motion). 
Another method to construct a Hamiltonian is the one of 
Albrecht8 and Hasse,9 who proposed a new class of non lin
ear friction operators under the condition that the corre
spondence principle be satisfied by requiring the Ehrenfest 
theorem to hold. 

In all these second-line methods the way to treat the 
quantum friction is to solve the Schrodinger equation and to 
analyze the wavefunction behavior or to construct wave 
packets (see, for instance, Refs. 10 and 11, respectively). 
However, inherent difficulties are present and these are, es
sentially, the violation of the uncertainty principle in the 
case of Kanai's Hamiltonian and in the case of Kostin's, the 
superposition principle; moreover, the Schrodinger equation 
admits, also, stationary solutions. More details can be found 
in Ref. 9. 

"'Work supported by FINEP. 

When one tries to write a one-body phenomenological 
Hamiltonian in order to describe quantum friction, the ef
fects of the medium, responsible for the energy loss, can be 
simulated by a term due to a force proportional to the veloc
ity of the partiCle plus a term responsible for the fluctuations 
(corresponding to a stochastic force), in accordance with the 
classical Langevin equation. 12 Originally, it was Senitzky13 

who pointed to the importance of the stochastic force in the 
quantum treatment. 

As far as we know, Svin'in 14 was the first author to give 
a more convenient treatment to the quantum friction with a 
phenomenological Hamiltonian, Kanai's, in which a sto
chastic force was included. Then assuming a wave packet as 
a solution of the Schrodinger equation, he constructed distri
bution functions for the position and momentum separately, 
combining two averages, a quantum one and a statistical 
one; thereby being able to compute quantum statistical mean 
values. Messer15 gave the same treatment, but with Kostin's 
Hamiltonian. 

What we propose in this work is another phenomeno
logical treatment, more suited to stochastic problems, mak
ing use of the quantum Liouville equation. Here the mean 
values of the quantities of interest are calculated in a more 
natural way through a distribution function which is the 
solution of a F-P equation. This treatment may be consid
ered as the quantum analogue of the classical one developed 
by Wang and Uhlenbeck16 for the F-P equation. 

The c-number formalism proposed by Lax and Yuen 17 

(L-Y) is exploited here, and for the Hamiltonian that we 
consider it permits us to associate to the quantum Liouville 
equation an F-P one in c-numbers. We treat the one-particle 
friction problem under the assumption of a Markov process 
and later we verify how the stochastic force affects the mean 
values of the relevant quantities. 

In Sec. 1 we obtain the classical Hamiltonian for the 
motion of a particle, which is subsequently quantized. In 
Sec. 2 the L-Y method is used to derive a c-number equation 
associated to the quantum Liouville one, for a more general 
Hamiltonian. In Sec. 3 we write the F-P equation under the 
Markov hypothesis, and finally, in Sec. 4 we consider the 
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relevant mean values such as position, momentum, and ener
gy, and we also verify the uncertainty principle. 

1. THE HAMILTONIAN OF THE SYSTEM 

The Lagrangian proposed by Havas4 to describe the 
motion of a classical particle subject to friction is written, in 
one dimension, as 

L (x,i,t) = (!mx 2 
- Vex) + xF(t »~t. (1.1) 

The first term corresponds to the kinetic energy, Vex) is the 
potential energy due to a conservative force, and F (t ) is a 
time-dependent external force; A is the friction constant. 
Considering F (t ) as a random force, the above Lagrangian 
yields the Langevin equation for a brownian particle under 
the condition that the average of F (t) over a statistical ensem
ble (or over time) be zero 

(F(t» = O. (1.2) 

Defining a new position coordinate 

X = x~t /2, (1.3) 

we are able to write a new Lagrangian in terms of X and X, 
2'(X.x,t) = ~mX2 + !mA 2X 2 - !mAXX 

- ~tV(Xe-At/2) + ~tI2XF(t). (1.4) 

The canonical momentum is readily obtained 

P a2'. -At 12 
= -. =m(X-0X )=pe , 

ax 
(1.5) 

where p = mx is the mechanical momentum and x is the 
actual position, while we will refer to X as the virtual posi
tion. Therefore, the Hamiltonian of the system is written as 

H(P,x,t) =PX - 2'(X,X,t) 

= _l_pz + ytXP+ ~tV(Xe-At/2) 
2m 
_~t/2XF(t). (1.6) 

H (P ,x,t ) does not represent the energy; it is the generator of 
the motion of an energy-dissipating open system. This dissi
pation is characterized by the linear term in P, which is also 
responsible for the violation of the time reversibility. The 
Hamiltonian can be quantized in the standard procedure un
der the requirement that it be Hermitian, 

if = _1_ p 2 + .3:.... (Pi + XP) + eAtV(e - At 12%) 
2m 4 
-eAt/ZiF(t), (1.7) 

with P = - ifz(a/aX); furthermore, we consider the force 
F(t) as a c-number. Assuming an HO potential 
V (x) = ~mliJ~x2 and writing the Hamiltonian in terms of the 
non-Hermitian bosonic operators 

a = (2fzuJotl/2(liJaX + iP), 

a + = (2fzuJotI/2(liJaX - iP), 

we obtain 

(1.8) 

fI = fzuJo(a + a + D + FlU (a +2 - a2) - (fz/2nJO)I/2~t/2 
XF(t )(a + + a), (1.9) 

2155 J. Math. Phys., Vol. 21 , No.8, August 1980 

where Wo is the HO classical frequency. Here we have con
sidered the particle mass m = 1. 

2. THE c-NUMBER PICTURE 

Lax and Yuen developed a formalism in which a c-num
ber is associated to every operator and a c-number function is 
associated to a function of operators, for a previously chosen 
ordering of these operators (see also Ref. 3). In this section 
our purpose is to obtain a c-number equation associated to 
the quantum Liouville one, 

'k. ap(t) _ [HA A] 
ITI-- - ,p, 

at 
(2.1) 

p(t) being the density operator. We only assume Hamilto
nians that can be written in the form of powers of a and a + , 

if = L h ~;)(t)a HaS, (2.2) 
1"sl 

where the sum runs over the set of numbers compatible with 
the nature of if, the h ~;)(t )'s are the coefficients for a normal 
ordering, being eventually time-dependent. 

First, we are going to associate a c-number a(a*) to the 
operator a(a+), and the distribution function P (a,a*,f) to the 
density operator, where by definition, 

P(a,a*,t) = Tr[p(t ~(a* - a+)b(a - a)J, (2.3) 

with the condition 

J P(a,a*,I)d 2a = l. (2.4) 

The function P (a,a*,t ) may be interpreted as a classical 
probability function because we compute quantum statisti
cal mean values as in the classical case, i.e., 

(a+'aS) = (a*'a s
) 

= f a*'aSP(a,a*,t) d 2a, (2.5) 

respecting the operator ordering adopted. The b-functions in 
(2.3) must be written in the chosen normal order and they 
are represented by 

b (a* - a+)b(a - a) = ~ f d 2$ e- is*(a* -a' )e-iS(a-a). 

(2.6) 

Then we can derive the equation of motion for the distribu
tion function; applying the time derivati ve operator ifz( a/at) 
to both sides of (2.3) and using Liouville equation (2.1) and 
the representation (2.6) for the b-functions, we obtain 

where 

I ( 5,$ *,1) = Tr! p(t) (eis *a ' eisa,if ] }. (2.8) 

In this last expression, substituting the Hamiltonian if from 
(2.2) in the comutator, the normal ordering happens to be 
destroyed, so the terms in the brackets must be rearranged in 
order to obtain a normal-ordered expression. Doing this and 
returning to (2.7), we obtain the following c-number equa-
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tion associated to the quantum Liouville (2.1) 

ifz ap(a,a*,t) I h ~;)(t ){(a* _ ~)r(aSP) 
at (r.sl aa 

- (a - a~* r(a*rp )} , (2.9) 

which is the equation of motion of P (a,a* ,t ) for the Hamil
tonian (2.2). 

3. THE FOKKER-PLANCK EQUATION 

Now, with the c-number picture, we are able to obtain 
the equation associated to the quantum Liouville one in the 
case of the Hamiltonian (1.9). Let's, initially, consider this 
Hamiltonian without the last term (containing the stochatic 
force), so Eq. (2.9) reduces to 

ap(a,a*,t) _ ~(A P)_ ~(A P) 
at aa I aa* 2 

with 

A (a2p a2p) 
+ 4 aa2 + aa*2 ' 

Al= -i{f)rP+yia*, 

A z = A r. 

(3.1) 

(3.2) 

Equation (3.1) is an (F-P) one, and is characteristic ofirre
versible processes; it can be written in the more familiar form 

ap a a 2 

at = - ~ aX j (AjP) + .t aXjaX
j 

(DijP), (3.3) 

where x J = a and X2 = a*, the A;'s are the drift coefficients 
and the Dij 's are the elements of the diffusion matrix 

D = ~(1 0). (3.4) 
401 

P (a,a* ,t ), the distribution function, is determined by solving 
the differential equation with given initial conditions. How
ever, we can obtain the mean values of the position, momen
tum, and energy without having to solve the F-P equation, it 

I 

being sufficient to use its properties, namely, the equations of 
motion for the first and second moments, (Xj) and (xjXj ), 
respectively 

d 
- (Xj) = (A), 
dt 

(3.5) 

d 
dt (xjXj ) = (xjAj ) + (xjA j) + (D jj +Djj ). (3.6) 

Considering the drift coefficients (3.2) and the diffusion ma
trix (3.4), we have 

!!... (a) = - i{f)o(a) +!A (a*), (3.7) 
dt 

(3.8) 

(3.9) 

and the complex conjugate equations follow immediately. 
Considering the complete Hamiltonian (1.9), the func

tion P (a,a*,t) represents the distribution of a and a* in a 
statistical ensemble in which (F (t » = O. The F-P equation 
will be modified only in the drift coefficients, which will con
tain an extra term (compare with 3.2), 

A; = - i{f)oa + yia* + i(2fzwotl/2e-<1 12 F (t ), 

(3.10) 

A; =A;*. 

The inclusion of the stochastic term does not affect the equa
tion of motion ofthe first moments (3.5) but it modifies the 
Eqs. (3.6) for the second moments. Now, using the hypoth
esis of a Markov process, we can introduce the effects of F (t ) 
in the diffusion matrix, modifying it and leaving the drift 
coefficients free of the last term in (3.10). To achieve this, 
let's consider the matrix whose elements are A 'j 

= (x j A; + Xj A ;) and in which the c-number formalism 
permits the substitution of aCt ) and a + (t ) for a and a*, re
spectively, in the mean values; now using Eqs. (A.l) and 
(A.6) from Appendix A, the matrix A can be written as 

(3.11 ) 

The comparison between the elements of this matrix with Eqs. (3.8) and (3.9) enables us to write a F-P equation with the drift 
coefficients given by (3.2) and with a new diffusion matrix containing an additional term (the effects of the fluctuations) 

. A (1 0) d,[1 ( - 1 
D' = 4 0 1 + 2fzwo e 1 (3.12) 

We observe that for the case in which the force is null, the 
constant d must be equal to zero and the diffusion matrix 
reduces to the original one (3.4). The constant d will be de
termined under the requirement that the system be in ther
mal equilibrium as t-->- 00 • 

4. MEAN VALUES AND UNCERTAINTY PRINCIPLE 

The equations of motion (3.5) and (3.6) are more easily 
solved using the method proposed by Wang and Uhlen-

2156 J. Math. Phys., Vol. 21, No.8, August 1980 

beck 16 (see Appendix B). The solutions of the equations of 
motion are determined for the underdamped case 
(A !2 < (f)o); for the first moment we have 

(a), = a o( COSUlt - i :: Sin{f)t) + 

= (a(t », 

A. * -- slll{f)tao 
2wo 

(4.1) 

and (a*), is its complex conjugate; (f) is the shifted frequen
cy, a o = (a) k 0' and a~ = (a*), = 0 are the initial values. 
For the second moments we obtain 
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(a*a), 

= (a*a)o( 1 + ::2 (1 - COS2tut)] + «a2)0 + (a*2)0) 

X ~ sin2tut - i«a2)0 - (a*2)0) A,w~ (1 - cos2tut) 
4w 4w 

d A,2 
+ --(e"'-l)+ -

Mwo 4w2 

x(J.. _ _ d_)(1 - cos2tut) (4.2) 
2 woA 

and (a*2), is the complex conjugate of (4. 3); (a2)0, (a*2)0, 
and (a*a)o correspond to the initial values. Now, with the 
expressions for the first and second moments we are able to 
evaluate the mean values of quantities of physical interest. 
The mean values for the position and momentum of the 
brownian particle are obtained from the first moments; from 
Sec. 1, the actual position and mec~anical momentum are 
respectively x = Xe - AI 12 and ft = Pe - AI 12. Therefore 

and 

(x) = (.i)e- AI12 = (a+a*)(~Jl/2e-At12 

= [xocoswt+w-I<!A,XO + Po) sinwt]e- AI/2 (4.4) 

(ft) = (P)e- AI12 = +(~o Y/\a_a*)e- AI/2 

= [Po coswt - w-I(ylpo + (V~xo) sinwt ]e - AI 12, 
(4.5) 

with Xo and Po the initial values of the mean position and 
momentum. We notice that these mean values evolve in time 
as the position and momentum of a classical damped har
monic oscillator. 

Now we going to compute the mean energy and in order 
to make the physics involved more transparent, we consider 
the case of small damping, A, /(Vo<,l. The energy operator is 
given by 

E = !ft2 + !W~X2 - xF(t) 

= GP2 + !(V6X2)e-AI -XF(t)e- AI/2 

= wo(a+a + De-AI - (~JI12(a+ + a) 

XF(t)e- AI12. (4.6) 

Taking the mean value we can see that the last terms vanish 
[see expression (A6) in Appendix A], thus 
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(E(t) = wo«a*a), + Dr AI 

= Eoe - AI + !!:.... (1 - e - AI), 
A, 

(4.7) 

where Eo = w o( (a*a) 0 + !) is the initial energy value. Re
quiring that the particle be in thermal equilibrium with the 
bath when t- 00, we must havel2 

. ~ ) d Wo Wo hm (E(t) = - = --coth--, 
r-", A, 2 2kT 

(4.8) 

corresponding to the energy of an HO in thermal equilibri
um at temperature T(k is the Boltzmann constant). Substi
tuting the value of d in (4.7) we have 

(E(t» = Eoe- AI + Wo coth Wo (1 - e -AI). (4.9) 
2 2kT 

Furthermore, the determination of the constant d veri
fies the fluctuation-dissipation theorem, 

A, = (wotl tanh( Wo) f'" (F (O)F (t » dt, (4.10) 
2kT _'" 

where relation (A4) has been used. 
The Heisenberg uncertainty principle can also be veri

fied, and this is achieved using the mean values of.i 2 and P 2, 

(.i 2(t» = ~ [«a*a), + D + !«a2), + (a*2),»), 
wo 

(4.11 ) 

(P 2(t» = wo[«a*a), + D - !«a2), + (a*2U], 
(4.12) 

together with the expressions (4.4) and (4.5); then we imme
diately evaluate the product .Jx.Jp 

.Jx.Jp = [«P 2(t» _ (P(t»2)«.i 2(t» _ (.i(t»2)] 1/2 

Xe- A1 , (4.13) 

which in the limit t-+ 00 reduces to 

fz w 
.Jx.Jp -+ - coth __ 0 , 

I~", 2 2kT 
(4.14) 

and we have .Jx.Jp;;;.fz!2 at any time and any temperature of 
the reservoir. 

Therefore our treatment describes the behavior of a 
quantum particle subject to friction, using a convenient for
malism in which we obtain an F-P equation in c-number 
similar to the classical one of Wang and Uhlenbeck in their 
treatment of the brownian particle. Furthermore, it can 
clearly be seen that the stochastic force is responsible for the 
preservation of the quantum effects, namely, the uncertainty 
principle and the zero point energy. Finally, we would like to 
mention that the equation of motion (2.9) enables us to con
sider systems with potentials other than the HO one here 
considered, that can be written in powers of the operators a 
and a + [see (2.2»). 
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APPENDIX A 

The Markov process is characterized by the conditions 

(a(t)F(t'» =0, 
(AI) 

(0 + (t )F(t '» = 0 
for t ' > t, with a(t ) expressed in the Heisenberg picture and 
satisfying the equation of motion 

do(t) = _ iW<fl(t) + A2 0 + (t) + i(2wot 1/le"'J/2F(t), 
dl 

(A2) 

obtained from 

if! do(!) = [0 if ] 
dt " 

(A3) 

with the Hamiltonian (1.9). The equation of motion for 
0+ (t ) is the self-adjoint of (A2). Another condition that 
charcterizes the Markov process is 

(F(t )F(t '» = 2d8(t - t '). (A4) 

Conditions (AI) imply the nonexistence of correlations be
tween the stochastic force and the system operators for t ' > t, 
meaning that F (t ) does not depend on the behavior of the 
system forintervals of time (t t - t) > Y c .18 Equation (A4) is 
the autocorrelation function of F (t) for a Markov process; 
the constant d is determined from the equilibrium condition 
of the system when t---+ 00. Now we can estimate the mean 
value (a(t)F(t», writing 

<a(t)F(t»~((a(to) + L d;;t,') dt)F(t»), (AS) 

with the condition tbatYe <t - to<A -I, In these intervals of 
time the operators remain practically constant while the 
force undergoes strong variations. From rdation (Al) we 
have (o(to)F (t » = 0; substituting (A2) in (AS) and making 
use of relation (A4), we obtain 

(a(t )F (t» = i(2flUJoY l/2de A' 12; (A6a) 

similarly we have 

(A6b) 

APPENDIX B 

Wang and Uhlenbeck presented a method to evaluate 
the first and second moments from the F-P equation 

ap(X I,X2, .. ·,t) = _ L ~ (A,P) + L ~ (DijP), 
at i aXi i.j axiaxj 

when the drift coefficients are of the form 

Ai = L CikXk· 
k 

In matrix form it is written as 

A=CX. 

Making a change of variables from the x,'s toy;'s 

Y = IBX, 
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(Bl) 

(B2) 

(B3) 

(B4) 

the matrix B being chosen so as to diagonalize C. Under the 
above transformation the F-P equation takes the form 

ape Y1> Y2'''''() 
at 

a a2 

= - I. nk a- (Yk P ) + I. -a a «(hiP), (B5) 
k Yk k,1 Yk Yl 

where the {} k 's are the eigenvalues of C and 

(T = BDlB J (B6) 

(the index t means transpose). The equations of motion for 
the first and second moments are therefore 

d 
dt (y;) = il" (B7) 

d 
dt (YiYj) =(ni + Ilj )(YiYj) + (aij + (Tji)' (B8) 

Considering the F-P equation for our specific problem, the 
matrices C and IB are 

= (-kuo A12) 
C ,1/2 iUJo ' 

(B9) 

(B10) 

and III = iw, (.0 2 =.a n W = (w6 - ~A 2)1/2 is the shifted 
frequency for the underdamped case, A /2 < Wo. Once the 
mean values (YI) I and (Yi Yj) I have been determined by 
solving Eqs. (B7) and (B8), the mean values (a) t> (a 2L and 
(a"a>, are obtained by the inverse transformation of (B4) 
(with XI = a and Xl = alit). 
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Utilizing the Green's function for a time dependent harmonic oscillator, we calculate the 
corresponding transition amplitudes. Particular examples of damped and runaway oscillators are 
discussed. 

I. INTRODUCTION 

In a previous paper,1 the exact quantum mechanical 
Green's function for an arbitrary time dependent harmonic 
oscillator was derived. Equivalent results have been ob
tained by other authors using different techniques. 2 In this 
paper, we use the Green's function to compute transition 
amplitudes. The derivation makes no assumption about the 
details of the amplitude or on the frequency spectrum of the 
time-dependent parameters. Therefore, the solution can be 
used for a wide variety of different problems: exponential 
coefficients, periodic coefficients, and/or stochastically 
varying coefficients. As an example of the method, we calcu
late transition amplitudes for exponential coefficients. The 
simplest case is the "damped" harmonic oscillator as origin
ally described by Kanai. 3 There are some papers that claim 
that the Kanai model is inappropriate4 and suggest using an 
approximate solution to a more complicated model describ
ing the coupling between a Iossless oscillator and the loss 
mechanisms. It is our view that there is validity in obtaining 
an exact solution to a simple model rather than an approxi
mate solution to a more complicated model. The resolution 
of this question requires computation of physically interest
ing parameters such as transition amplitudes. This paper is 
one step in that direction. 

II. CALCULATION OF THE TRANSITION AMPLITUDE 

The Hamiltonian H is expressed as l 

2 

H = I (t ) L + get )! M UI~X2. 
2M 

We set 

1(0) = g(O) = 1. 

(2.1) 

(2.2) 

The corresponding solutions for the operators x + (t) and 
p + (t) are expressible as 

x+ =a(t)x+b{t)p, (2.3) 

p + = e(t)x + d (t )p, 

where 

a(O) = d (0) = 1, 

b{O) = e(O) = O. 

The Hamilton equations imply 

. I a= -e 
M' 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

6= I d, 
M 

C = -gMUI~a, 

d= -gMUI~b. 
The condition 

[x+ ,p+ ] = [x,p], 

requires 

(2.8) 

(2.9) 

(2.W) 

(2.11) 

ad - be = 1. (2.12) 

From Eqs. (2.5)-{2.6), Eq. (2.12) is satisfied at t = O. Also, 
from Eqs. (2. 7)-{2.1 0), one obtains 

.!!. (ad - be) = 0, (2.13) 
dt 

and hence Eq. (2.12) is satisfied for all times. 
The corresponding Green's function obtained is 

G{x, x';t) = ( ! )112 exp[ip(dx2 + ax'2 -2xx')], 

(2.14) 

where 

1 p=-. 
2M 

(2.15) 

The wavefunction ,p(x,t) is obtainable from ,p(x' ,0) by the 
expression 

,p(x,t) = f_oo 00 G (x,x';t ),p(x',O) dx'. (2.16) 

Utilizing the above Green's function, we compute the 
transition amplitude anm for an oscillator from a state 1m) to 
a state In), where 1m) and In) are the usual harmonic oscil
lator eigenstates. Thus, 

anm = f~ 00 dx f~ 00 dx' Un (x)G (x, x';t )Um (x'), 

(2.17) 

U (x) = H (ax)e - (1/2)a " (
a )112 , , 

n 1T1/22nn! n , 
(2.18) 

a=VMUloI", (2.19) 

In Eq. (2.18), Hn (ax) is the nth order Hermite polynomial. 

We define the generating function A ss' as 

A S$' = f~ 00 dx f~ 00 dx'S(ax,s)e-('I2)a'''' 
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X G (x, x';t)S (ax' ,s')e.- (112)a'x" 

= fO 00 dx f: 00 dx' ,,~o H,,~~X) s" 

Xe-(lI2)a'X'G(x x,.t) ~ Hm(ax') s,me -(lI2)a'x" 

, '~, ' 
m=O m. 

where 
(2.20) 

00 H (z) 
S(z,s)=e-i'+2sZ= L -"-s". 

>1=0 n! 
(2.21) 

Hence, 

a = a (2"2mn!m!)-I!2[ a
n

+
m 

A 'J . nm ... / asnas,m ss s' = 0 
V ff s=O 

(2.22) 

Substituting the expression (2.14) for G (x, x';t), 

A ' = ( /3 ) 112 e - (i' + s") B 
S5. ss' 

Iff 
(2.23) 

Bss' = f: 00 dx f: 00 dx' e2a
(sx + s'x') 

X exp( -1) ( (~2 _ i/3d )X2 + 2i/3xx' + (~2 _ i/3a }'2]. 
Let 

x =qy + ry', 

x' = - ry + qy', 

and set 

q = sinO, 

r = cosO, 
1 

d-a 
-! tan20. 

Bss' is then expressed by 
B

ss
' = e(a'/y,)(qs - rS')'e(a'ly,)(rs + qs')' 

X f: 00 dye - y,[y - (aly,)(qs - rs')J' 

X f: 00 dy' e - y,(y' - (a/y,)(rs + qs')J' 

= ff exp{ ~ [(q2Y2 + rYl)S2 
VYIY2 YIY2 

- 2qr(Y2 - YI)SS' + (rY2 + q2Y1 )S'21 }, 

where 

YI = a 2/2 - i/3(dq2 + ar + 2qr), 

Y2 = a 2/2 - i/3 (dr + aq2 - 2qr). 

(2.24) 

. (2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

Using the above definitions for the respective param
eters and substituting in Eq. (2.23), one obtains 

Au' = ~ ( 2~ff y/2 T ss' . 

In the above expression, 

Tss' = exp[(1/.it )(p.*S2 -4iass' + f.1.S,2)], 

a = l/MUJob, 

fl = 1 + ia(a - d) - ~(1 - ad), 

.it = 1 - ia(a + d) + ~(1 - ad). 

From Eq. (2.22), 
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(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

. (2an!m! )1/2 

a = --- t 
>1m i.it 2n2m "m , 

where 

1 [an
+

m 
] t = -- ---T, nm. "a."a'm ss s'=O' n.m. S 'S s=O 

Using Eq. (2.21), we express Tss' as 

(2.38) 

(2.39) 

Tss' = ! ~ (_ i r;- )IS'IH1( ~s)e(}.tOIA)i'. (2.40) 
1=01. \j T ~ 

Defining 

T = _1 [~T'] 
ms m! as,m ss s'=o' 

(2.41) 

one obtains from Eq. (2.40) 

T - 1 ( ·ff)mH ( 2a ) (}.to/A)i' -- -I - --se ms, ~ m ... r.- . 
m. /L v.itf.1. 

(2.42) 

Equation (2.39) implies 

tnm = ~[~Tms] . 
n! as" . s=o 

(2.43) 

Hence, 

1 ( . r;-)m an 
tnm = n!m! - '\j 7 as" 

X [Hm( ~s)e(}.tO/A)i'] v;:; s=O 

(2.44) 

The differentiation in Eq. (2.44) is facilitated by the 
identity 

where C 7 is the binomial coefficient, i.e., 

I n! C7= ---
l!(n-I)! 

Also, 

{ 

/2 p! 

[ 
dPpesx'] = (;Y (p/2)! 
dx >:=0 0 

even p, 

odd p. 

The Hermite polynomials are expressible as5 

n' Hn(x) = ( _1)"/2 --' - v1(x) even n, 
(nI2)! 

(2.45) 

(2.46) 

(2.47) 

= ( _ l)(n -1)/2 2(n!) () odd (2.48) 
[en -1)/2]! V2 x n, 

where 

n/2 (2Y nIl 
( ) - 1 " ( l)P .. 2p VI X - + ~ - -- x , 

p=1 (2p)! (n-2p)!! 
(n -1)/2 (2Y 

v2(x) = x + L (-I)P -"'--'--
p= I (2p + I)! 

X (n-I)!! X 2P + I • 

(n -1 -2p)!! 

From Eqs. (2.40)-(2.50), one obtains for even n 

Landovitz, Levine and Schreiber 
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[ d: Hn(X)] 
dx x=O 

n' n' , = ( _ 1)(n +q)/2(2)q12 __ ._ .. 
(n/2)! (n - q) ! ! 

q<.n and even, 

= 0 otherwise, (2.51) 

and for odd n 

[ ~Hn(X)] dxq x=O 

= _ (_I)(n+ q)12(2)(q+I)12 n! 
[en -1)/2] ! 

X (n - 1) ! ! q<.n and odd, 
(n - q)!! 

= 0 otherwise. (2.52) 

After performing the indicated differentiation in Eq. (2.44) and substituting the resulting tnm in Eq. (2.38), one obtains 

_ 1 m( 2u )1/2 (m!n!)1/2 (.!!:... )m12( E... )n12 
( ) iA- (2ym + n)/2 A- A-

X ~ m~~~n) [I + ( - 1) m + 1 ]( - 1) 1 12(2)21 l! [(m _ 1 )/2 ~! [(n _ 1 )/2]! ( I; I )' even 1m - nl, 
(2.53) 

o odd 1m - nl. 

The transition probability Pnm is expressed by 

Pnm = lanm 12. (2.54) 

Hence from Eq. (2.53), 

(_I)m m!n! I 2u II.!!:...I m + n( J..) mi!.n) [1 + ( _1)m + 1][ 1 + ( _1)m + I'] 
(2)m+n A- A- 4 1.1'=0 

Pnm = X( 1)(1+1')12(2)2(1+1') 1 ( U )1+1' 
- /!I'![(m -/)/2]![(n -/)/2]![(m -1')/2]![(n -1')I2]! Vi even 1m - nl, 

o odd 1m - nl. 
(2.55) 

Since Un (x) is of even parity for even n and of odd parity for odd n, the fact that the transition amplitudes are nonzero only for 
even 1m - n I corresponds to conservation of parity. Also, Eqs. (2.53) and (2.55) imply that only even (/'/ ')'s in the sum 
contribute to the (m,n) even case and odd (/,/ ')'S to the (m.n) odd case. 

If one substitutes the identity5 

H () ( 1) n x' d n - x' 
X = - e-e 

n dxn 
(2.56) 

into Eq. (2.44), one can obtain the following equivalent expressions for anm and Pnm : 

a _ { ( - 1)"(i)m -112( :!! y12( ~ r + 1/21 ~ I (m - n)/2 

nm - XZ - n(1 _ Z2)(n - m)/4p(m - n)12(Z) even 1m - n I 
(m + n)!2 , 

o odd 1m - nl. 

(2.57) 

Pnm = {:!! (2 fn +1
1 : 1

2

"+11 ~ Im-nZ-2n(l_z2yn-m)/2[Pi:~~l~;(z)]2 
o odd 1m - nl. 

even 1m - nl, 
(2.58) 

In the above equations, 

z- 1 + - -_ ( 1 1 f-l 12) - 1/2 

4 u ' 
(2.59) 

and Pi: ~ ~~~;(z) is an associated legendre function of the first kind. 6 P~(z) has the series representation 

( I - Z2) [(p ~)/2[ (_ l)k(2n - 2k)1 
PZ(z)=(-I)q L 'Y' zP- q- 2k • 

(2Y k=O k!(p-k)l(p-q-2k)! 
(2.60) 

I 
III. PARTICULAR EXAMPLES 

We consider particular exponential choices of/(t) and 
get ) in the Hamiltonian (2.1). The corresponding expressions 

for a(t), b (t), e(t), and d (t) have been obtained previously. 1 

The first case corresponds to 

I(t)=g(t)=e- tlr
. (3.1) 
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This corresponds to a decaying oscillator whose w is also 
decaying with time according to the prescription 

(3.2) 

The second case corresponds to 

!(t)=e- th
, 

g(t)=eIIT
• 

(3.5) 

(3.6) 
The results obtained wereii( 0), b (0), c( 0), andd (0 ). The bar 
denotes the corresponding time-independent harmonic os
cillator expressions and t is replaced by 0, where 

and is the Kanai Hamiltonian.3 The corresponding expres
sions for a(t), b (t ), e(t ), and d (t ) are 

0=r(1-e- I/
'). (3.3) aCt) = r tl2T[coswt + (l/2w1") sinwt], (3.7) 

Substitution of these expressions into Eq. (2.55) yields 

(3.4) 

similar to the corresponding time-independent harmonic os
cillator expression. The runaway oscillator expressions cor
respond to positive exponents in Eqs. (3.1)-(3.3) and yield 
identical results for Pnm • 

b (t) = e - 1 I2T(l/Mw) sinwt, 

e(t) = - eII2TM(w~/w) sinwt, 

d (t) = et 12T[ coswt - (l/2w1") sinwt ]. 

In the above expressions, 

w = [w~ - (l/4r)] 1/2. 

(3.8) 

(3.9) 

(3.10) 

(3.11 ) 

Referring to the above equations and Eqs. (2.35)-(2.37), one obtains the following expressions for the parameters to be 
substituted in Eqs. (2.53) and (2.55): 

!!..- = ~{~ COSh( ~ ) sinwt - i[COSh( ~ ) coswt - _1_ sinh( ~ ) sinwt ]} - I, 
A 2 W 21" 21" 2w1" 21" 

{(walw) sinh(t /2r) sinwt + i[sinh(t /21") coswt - (1I2w1") cosh(t /21") sinwt ] I 
I (walw) cosh(t /21") sinwt + i[sinh(t /21") coswt - (l/2w1") cosh(t /21")sinwt] I 

~ = ~ { w~ sinh2( ~ ) sinZwt + [sinh( ~ ) coswt __ 1_ COSh( ~ )sinwt ] 2} - 112. 
l,u I 2 WZ 21" 21" 2W1" 21" 

Substituting the above expressions into Eq. (2.55), one obtains 

m'n' {w~ ( t ) [( t ) 1 ( t ) )2} -112 Pnm = (_l)m --' -'- --2 coshZ - sin2wt + cosh - coswt - -- sinh - sinwt 
(2)m + n W 21" 21" 2w1" 21" 

{ 
W2 ( t ) [( t ) 1 ( t ) )2} -(m + n)/2 

X w~ coshz 21" sinZwt + sinh 21" coswt - 2w1" cosh 21" sinwt 

min!,n) 1 
( 

1)(1 + 1')/2(2)1 + I' ________________ :-:-_-:-::-_:_:_ 

X - 1!/'![(m -/)/2)![(n -/)/2]![(m -l')/2)![(n -1')/2)! 
even (I, I') = 0 

{[Odd~/'I')=I] [ () 1 ( t ) ]2}[m+n-(l+I')]/2 
X ~ sinhZ

( ~ )sin2wt + sinh ..!..- coswt - -- cosh - sinwt , 
w2 21" 21' 2w1' 21' 

even (m,n) [odd (m,n»), 

Pnm =0 oddJm -nJ. 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The runaway oscillator is obtainable by the substitution 1'- - l' in the above expressions and yields the same expression for 

Pnm , 

We consider Pnm asymptotically as t approaches infinity. Then 

sinh( ..!..- )----+COSh( ~ )_ e
l 

lIT • 

21' 21" 2 
(3.17) 

Referring to Eq. (3.15), 

m'n' min"f,n) 1 P ....... ( 1)m . '-tl2r (_1)(1+1')I2(2)Z(/+I') __________ -=--__ ~:___:_:_:_:_-_:_::__=_:_:_ 
nm - (2)m + n - 1 e even(/,1 ') = 0 l!1 '! [(m - 1)/2)! [(n - 1)/2]! [(m - /')/2]! [(n - 1')/21! 

[add(l,1 ') = 1 [ 

{ 
W2 [ 1 ]z}[(m + n)/Z - (I-I')/Z -I] 

X e - (I + 1')1 I2T w~ sin2wt + coswt - 2w1" sinwt even(m,n) [odd(m,n) 1. (3,18) 

Becauseofthefactore - (I + 1')tl2r, the dominantterm corresponds tol = I' = o for even(m,n) and I = /' = 1 forodd(m,n). 

Hence, 
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_tl2-r2(m-l)!!(n-l)!! {(i)~ . 2 [ 1. ]2}I(m+n)I2-IJ 
P nm --I>l! -2 sm (i)t + cowt - -- sm(i)t 

m! In! ! (i) 2£iJr 
even(m,n), (3.19) 

Pnm ~-3tl2T(2)3 mn(m -2)1! (n -2)1! {(i)~ 2 [ 1. ]2}I(m+n)I2-2 J 
~ -:2 sin (i)t + COS£iJt - '" _ .".. SlD£iJt 

(m - I)! ! (n - 1)1 ! .... u.u, 
odd (m,n). (3.20) 

Thus, for t-+ 00 

Pnm-+O_e-tI2-r even (m,n), 

Pnm-+O_e-3tl2-r odd (m,n). 

(3.21) 

(3.22) 

Expressions (3.21) and (3.22) imply that the asymptotic 
transition probabilities for even (m,n) states and odd (m,n) 
states behave quantitatively different. 

IV. DISCUSSION 

In the above sections, the general expression for transi
tion amplitudes was presented as well as the specific expres
sions for exponential coefficients. The general expressions 
have been calculated with respect to harmonic oscillator 
states. Since these states are complete, corresponding formu
las for other states are readily obtainable. The results for the 
Kanai dampled oscillator are particularly interesting. If 
there is no dissipative mechanism, the transition probabil
ities are obviously zero. In the presence of a dissipating envi
ronment, the transitions are allowed. But the selection rules 
are that even (odd) states can decay into states ofthe same 
parity. Even more surprising is the different asymptotic be
havior of the even and odd states. The dispersion into odd 
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states from an odd state occurs faster than the corresponding 
dispersion for the even states. 

We could imagine preparing two separate systems each 
linked to the same dissipative environment, one system in an 
even state and the second in an odd state. Subsequent exami
nation of the system would find faster dispersion for the odd 
system than for the even system. The authors are currently 
investigating whether the same behavior would occur in ex
perimentally interesting atomic systems. 

A final point, adding linear terms to the Hamiltonian 
(2.1), i.e., terms proportional tox andp, would allow transi
tions from even to odd states. This case will be considered in 
a future paper. 
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Commuting physical occupation number operators for composite particles are constructed using 
projection operator techniques. The composite particle occupation number operators are 
constructed from creation and annihilation operators of the elementary particles which make up 
the many-body system. They appear as positive operators in any given second quantized theory 
and represent observables within the framework of that theory. Bose-type composites have 
number operators with eigenvalues 0,1,2, ... , and Fermi-type composites have number operators 
with eigenvalues 0,1. There does not arise here any problem having to do with exchange 
symmetry--exchange symmetry is exact, since the number operators act in the Fock space of the 
elementary particles. The composite particle number operators may be used in the construction of 
theories of composite particle reactions or eqUilibrium from a first principles standpoint. The 
construction used here not only establishes the existence of composite particle number operators 
but also provides some computational machinery which hopefully will aid in more practical 
applications. 

I. INTRODUCTION 

We consider a many-body system made up oflarge 
numbers of elementary particles which interact via a given 
nonrelativistic Hamiltonian. All observables can then be 
constructed from complete sets of annihilation and creation 
operators corresponding to elementary particles. The phys
ical states of the system range over enormous numbers of 
possibilities. In certain physical circumstances the system 
may appear as a collection of nuclei, electrons, atoms, 
and/or molecules, while under other circumstances it may 
appear to be nearly fully ionized, etc. If the physical condi
tions are such that the system is readily describable in terms 
of a collection of interacting composite particles, the ques
tion arises as to how to introduce many-body observables 
corresponding to composites from a first principles stand
point. For example, if it is physically meaningful to talk 
about the number of composites of a certain type, then we 
should be able to construct for that composite a number 
operator whose expectation values correspond to the mea
sured values of these quantities. 

The first problem to be solved is that of finding a suit
able description of a single composite particle in the many
body context. A hydrogen atom in a dense plasma may be 
quite distinct from a free hydrogen atom. This question has 
been studied by a number of investigators 1.3 and does not yet 
have a solution which is entirely satisfactory. We assume 
nevertheless that this part of the problem has been solved 
and that we have in our possession, for example, the wave
functions of the individual composites which we are going to 
use in our description. The precise nature of these single 
composite particle wavefunctions or states is not important 
as far as our construction is concerned. They are arbitrary, 

subject to very few conditions, so the theory is quite general. 
The construction of physical occupation numbers pre

sented here may be regarded as more in the nature of an 
existence theorem than as a practical tool for computation. 
However, it is hoped that the mathematical aids introduced 
in our construction will also provide leads for methods of 
computation. 

II. PHYSICAL PRELIMINARIES 

We consider a many-body system made up of elemen
tary particles of types a,b,c,···· Let a(/), a(/)*, b (;), b (;)*, 
c(k ), c(k )*, ... be complete sets of one-particle annihilation 
and creation operators for the elementary particles. The 
physical many-body state space Y is a separable Hilbert 
space built up from the normalized vacuum state 10)E Y, 
(010) = 1, by applications to 10) of the elementary particle 
creation operators. Let 

II)- (IN Na!Nb!Nc!'" )a(iI)*a(i2)*···b (jl)*b (j2)* 

···10), (2.1) 

where the index I includes the numbers N a, N b , Nc ,. .. of 
elementary particles, there being precisely Naa(i)·'s, 
Nbb (;)·'s, Ncc(k )·'s, .. ·. Then the vectors II) span .7 and 
the unit operator 1". is represented by the sum (strong limit) 

L II) <I I = I, . (2.2) 

The operators a(I), a(l)*,··· satisfy elementary fermion 
anticommutation relations or elementary boson commuta
tion relations, e.g., 

[a(/),a(I)·1 ± -a(I)' a(t)* ± a(i')*a(1) 
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{
I. i=i'. 

= b(i,i') = 0 
i=/=i', 

(2.3) 

when applied to the vectors II). The vectors II) may be con
sidered to be linearly independent in that if 

(2.4) 

and if the C1 are completely symmetric in boson indices and 
completely antisymmetric in fermion indices, then C1==-0. 
Any vector I if!)E Y may be expanded in terms of the II), 
since by Eq. (2.2), 

ItP) = L II) (I ItP)==- L II )¢(l), (2.5) 
I I 

and 

(tPltP)=lltPI1
2 

= L ItP(IW· (2.6) 
I 

We call ¢(l) the wavefunction corresponding to I tP)· 
Individual composite particles oftypesA,B,C, ... are in

troduced by specifying their wavefunctions tPa(l), tPp(I), 
tPy(l),···. We assume that the wavefunctions are orthonor
mal but not complete in the individual composite particle 
subspace of Y. That is, if la) represents the composite parti
cle of type A having the wavefunction tPa(l), 

then we assume that 

(ala') = 8(a,a'), 

(2.7) 

(2.8) 

but that the orthogonal projection operator (=projector) 
represented by 

(2.9) 
a 

is smaller than the projector corresponding to the complete 
subspace of Y spanned by states of the elementary particles 
comprising la). 

From the definition of II), we may express I a), I {3 ), 
Ir),.·· corresponding to the wavefunctions tPa(l), tPp(I). 
tP/l), as 

la) =A (a)*IO)==- L l1)tPa(l), 
I 

I {3) = B({3)*IO)= L l1)tPp(l), (2.10) 
I 

Ir) = C(r)*IO)==- L l1)tPy(l). 
I 

We observe that although the tP(I) are defined for all I. tP will 
be zero for all sets ofindices not corresponding to those indi
ces corresponding to the numbers of elementary particles 
making up the given composite. TheA *, B *, will usually be 

simple linear expressions in products of elementary particle 
creation operators. For example if tPa (ij) represents bound 
states of hydrogen 

(2.11) 
.,J 

where a{z)* creates a proton in the single elementary particle 
state Ii) and b (j)* creates an electron in the single elemen-
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tary particle state I j), The label a includes center of mass as 
well as internal degrees offreedom, and, as pointed out earli
er, the tP a do not span all possible proton-electron states. We 
take tP (l' tP (3. tP y'" to represent bound composites, Ions are 
not excluded from the theory, but they will be represented as 
distinct composite particles. As far as our theory is con
cerned. the states la), I {3 ), ... may be more general than 
those representing individual composite particles. For some 
theories other types of excitations may be used. 

The composite particle annihilation and creation oper
atorsA (a)=[A (a)*J*,A (a)*, B ({3), B ({3)*,." do not have 
simple commutation or anticommutation relations. 2 If over
lap between the single composite particle states could be ne
glected, then they would satisfy simple boson commutation 
or fermion anticommutation relations depending upon 
whether a given composite is a boson composite or a fermion 
composite. [A composite is called a boson composite if the 
number of elementary fermions making up the composite is 
even (including zero), and is called a fermion composite if 
the number of elementary fermions making up the compos
ite is odd.] If the composite particle operators did satisfy 
elementary type commutation relations, then the vectors 
IN) = IIN(a)],IN({3)],. .. ) 

[A (a)*]N(a) [B({3)*]N(p) - IT ... 10 ). (2.12) 
a,/3,Y,'" V N(a)! V N({3)! 

would represent a physical state of the many-body system in 
which there are N (a) com posi tes of type A in the single com

posite particle state la). N ({3) composites of type B in the 
single composite particle state I {3 ) ,. .. ap. r, = 1,2.3 ... ·. The 
operators in the product ofEq. (2,12) are ordered according 
to a = 1.2,3, ... , {3 = 1,2,3 .... , and N represents the sets 
IN(a)] IN({3)], .. ·a,{3 ... · = 1,2,3. The sums ~a(a) < 00, 

~/3N ({3) < 00 .... are finite but are otherwise unrestricted. 
We will use vectors of a more general type. but similar to IN) 
for our construction of number operators for composites. 
Let us define the vectors IN,!): 

IN.1)= IT [A (a)*]N(a) [B({3)*]N(f3) "'11). (2.13) 

a,p,··· V N(a)! V N({3)! 

The vectors given by Eq. (2.13) above are highly overcom
plete. Indeed. ifN = 0, 10,1) = II ),and [II)] already forms 
a complete set. If the product of composite particle operators 
in IN,!) is not zero, then. as II) varies over all I. the collec
tion of IN,!) for fixed N spans a subspace of Y which we 
describe as having N (a) or more composites of type A in the 
single composite particle state I a). N ({3) or more composites 
of type B in the single composite particle state I {3 ) ..... 
a = 1,2.3, ... ,{3 = 1,2.3, .... The vectors IN,!) will be used to 
construct orthogonal subspaces of Y, each subspace of 
which corresponds to having precisely N (a) composites of 
type A in the single composite particle state la). N ({3) in 
I {3 ), ... , a,{3, .. · = 1.2.3, .. ·. Actually we will construct orthog
onal projection operators (projectors) which act on Y to 
yield the desired subs paces. These projectors will then be 
used to construct a commuting set of composite particle oc
cupation number operators N (a), N ({3 ) ..... First, however, 
we develop some mathematical techniques for dealing with 
noncom muting (in general) collections of projectors. 
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III. MATHEMATICAL PRELIMINARIES-PROJECTORS 

A projector P on a Hilbert space Y is a self-adjoint 
operator for which 

p2 =p' (3.1) 

'" It is clear that P is a positive (nonnegative) operator, 
,/"'>.. A A A "'" A 

(t/JIPt/J) = (t/JIP*Pt/J) = (Pt/JIPt/J) = IIPt/JII 2 :;;.O, 
'" '" with operator norm 1 if P #- O. The result of applying P to Y 

'" yields a closed subspace P = PY, and, conversely, for every 
'" closed subspace PC Y there exists a unique projector P such 

A 

that P = PY. There is therefore a one-to-one correspon-
dence between closed subspaces of Y and projectors on Y. 
The collection of all projectors in Y is endowed with a par-

A ~ .A. ........ 

~~orde~~, <API <P2 if PI CP2· If PI <P2, then A. 

PIP~= P2PI = P)...anj! conversely. For every projector P, 
0< P < 1. (Note P < P, so our partial ordering symbol < 
could be written ".) 

A "" Two projectors PI' P2, are orthogonal to each other if 

~fiz = 0, (3.2) 

and the vectors in PI = fizy are orthogonal to those in 
'" P2 = P2Y. "'.A. .A. A A. A 

If P2>~' thenP2 - PI=Pis a projector and Pis or-
thogonal to PI' for 

.A. A .A. A.A. AA 

p 2 = P~ + pi -P2PI - PIP2 
A A A A .A. A A 

= P2 + PI - PI - PI = Pz - PI = P, 

and 
~ A A""""'" A.A. .A A A 

PPI = (P2 - PI)PI = P2PI - PI = PI - PI = O. 

We assume these and other elementary propeties of projec-

tors to be known. '" '" 
Given any two projectors PI' P2 then there exists a 

A A A A 

greater lower bound for PI> P2 designated 9Y PI /\ P2 a~ d.x.-
fined to be the supremum of all projectors P for which P < PI 

A. '" andP<P2, 
A A AA .A. A. A 

PI /\P2==sup{P;P<PI, P<P2 1· (3.3) 

The corresponding closed subspace P is the largest closed 
subspace which is contained in PI and also contained in P2• 

Hence 
(3.4) 

That is P is the intersection of the closed subspaces PI and , A A A A 

P . The classical construction of P = PI /\P2 in terms of PI 
2" 4 l' d andP2 isgivenbyvonNeumann. Theresu tlsexpresse asa 

strong operator limit: 
.A. '" A A .A. ) 

PI I\P2 = s-lim(PIP2PI)", (3.5 

which means that on any It/J)EY, 

A A. AA.A 

PI I\P2 1t/J) = lim (PIP2PIYIt/J), (3.6) 
"~'" 

with the right-hand side c9..v.x.r~ng in vector norm. The proof 
rests upon the fact that (PIP2PI ) n is a bounded monotone 
sequence of bounded positive operators, and therefore has a 
uni~e stron~)!!pj! which is again a bounded. positive opera
tor P. That (PIP2PI) " is a monotone decreaslOg sequence of 
positive operators means that 

O,,<t/Jl(~fiz~)" t/J)«t/JI(~p;~)m t/J),,(t/Jlt/J), for n:;;.m. 
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• AAA .A. 

It IS easy to show that the unique s-limn ~ (PIP P I)"-P has 
A A A ----".... C' ......... 

thepropertyp 2 =PandPIt/J) = It/J) iffPllt/J) =P2 1t/J) 
= I t/J). There are equivalent ways of expressing P: 

n __ OO .A. A "--00 A A 

= S (PIP2Y = s (P2Plt. 
lim lim 

......... A A A AA AA 

Clearly if PI and P2 commute PI I\P2 = PIP2 = P2PI. 

The concept of greatest lower bound can be extended to any 
A. A 

collection {Pa J aEA' A an index set, of projectors Pa: 
A. AA A A 

l\aPa = sup {P,P a projector, P<Pa,'o'aEA J, (3.7) 

with the correspo9,?ing closed subspace naEAPa. We have 
need only for /\ nP" where n goes over an enumerable set. 
The point of introducing a sketchy outline of von Neumanns 

A. /'0. 

construction of PI I\P2 was to show that it would be desir-
able to have a much simpler construction if we wish to use 

/'0. 

operators such as 1\;:'= I P n in computations. 

The other lattice operator V on)'r<)iec,!?rs ~ comple
mentary to 1\. Given two projectors PI' P2, PI V P2, the least 

'" '" A upper bound of PI and P2 is the smallest projector P for 
A .A ,......., A. 

which PI < P and P2 < P. The closed subspace P correspond-
A. '" ing to PI V P2 isjust the closure of the set of all linear combi-

nations of vectors Ix l ), IX2)' Ixl)EPI, Ix2 )EP2• We have 

.A. A A A 1 A A 

PIVP2=(PfI\P~) =1,7 -(1,y -PI)I\(ly -P2), 
(3.8) 

so that V can be expressed in terms of 1\ and vice versa. 
More generally, 

.A. A A A 

VnPn=(l\nP~)\ P 1=ly_P. (3.9) 
A A A A AA 

We note that PI V P2 = PI + P2 iff PeP2 = 0, and if 
.A.A AA "'" ..........: ~ /"'( /'.:.A 

PIP2 = P2PI, PI V P2 = PI + P2 - PIP2· 
Let {p,. J;:' = I be an en~erabl~set of pr<)iectors from 

which we wish to constructP== V nPn (or /\ nPn)' We define 
the positive operator g, by 

'" A 

g= L PJ2". (3.10) 
n=1 

The sum in Eq. (3.10) converges in operator norm (uniform
ly), since 

'" 
Ilgll< ! II

P
:II " ! ~ = I, 

n=12 n=12 
(3.11) 

thus g is a bounded positive opeJ.3tor with norm less than or 
equal to unity. We observe that P is precisely the support of g . 
The support S of a !tounded self ~djoint 0Rerator g is the 
smallest projector S for which gS = g, so S is the orthogonal 
complement of N, the projector onto the null space of g. To 
prove the above assertion let I t/J) EN, then 

glt/J) =0, (3.12) 

or 

! Pnlt/J) =0. 
n =0 2n 

If we take the inner product of the above relation with 1 t/J), 
we find 
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0= ! (t/!I/\ t/!) 
n ~ I 2n 

! (p" t/!IP" t/!) 
n ~ I 2n 

= ! IIPn t/!112 
n ~ I 2n 

(3.13) 

Hence 

IIPnt/!1I =OandP"It/!) =0, n = 1,2,3,· .. , 

which proves that It/!)El'l. Conversely if It/!)El'\ then 
~ ~ A 

glt/!) = 0. ThereforeN 1 = P= V "P". If 1t/!)El'=SY, and 
It/!) 1=0, then glt/!) 1=0. 

Since g is positive, g. g + €1.7 , € > 0, is strictly posi
tive S05 g.- I exists and is a bounded positive operator. If 
't/!)El', then 

and 

g,-Ig't/!) =g,-Ifi. -€17 )1t/!> 
= It/!) - €g.-I't/!>, 

limg,-I glt/!) = 't/!), 
£--0 

(3.14) 

sinceglt/!) 1=0,01= It/!)El'. Iflt/!)EN = PI, theng.-Iglt/!) = 0, 
and 

limg.-Iglt/!> =0. (3.15) 
,!O 

Therefore 

P = V nPn = s-limfi.-Ig). 
• ,0 

(3.16) 

We have constructed V nPn using techniques that are no 
more cumbersome than those used in many areas of math
ematical physics, e.g., scattering theory. 

For some applications other forms for P may be more 
useful. For example, since g is a bounded positive operator, 
e - Ig is a bounded positive operator for t;;;.O. It is not difficult 
to establish that 

~ ~ ( )1 P = V P = s-lim e - tg n n , 
t~oo 

(3.17) 

which is another expression for V nPn. 
We have need for one more construction. Given an arbi

trary colle.x,tion ! It/! n ) J ;: ~ 0 of vectors It/! n ), we construct the 
projector P corresponding to the closed subspace P spanned 

by ! It/!") J;: ~ I' Let Cn > ° for It/!n) ¥=O, be such that the sum 
~;:~ I Cn 't/!" > (,pn 1 g converges uniformly. This can al
ways be done, for example, by setting Cn = 0, if It/!n) = ° 
and Cn = (1/2n)(1/lllJIn 112) if It/!n > ¥=O. Then 

II~ Cn 't/!n> (t/!n I II.;; ~ Cn IIW" 112.;;1. (3.18) 
A 

Then the projector P on the closed span of ! It/! n > J ;: = I is 
given by 

A 

P = s-lim fi.- I g). 
'JO 

IV. CONSTRUCTION OF COMPOSITE PARTICLE 
OCCUPATION NUMBER OPERATORS 

(3.19) 

We now classify states of a given many-body system in 
terms of occupation numbers for composite particles. This 
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will enable us to construct corresponding occupation num
bers for composite particles. The problem of such a classifi
cation cannot be expected to have a unique solution. Our 
solution is one which we have tried to make as free from 
arbitrariness as possible, and at the same time one which is 
sufficiently general to include most anticipated applications. 

The vectors 

IN,I)=I!N(a)J, \N({3)J,.··,I), (4.1) 

given by Eq. (2.13), where a = 1,2,3, .. ·, {3 = 1,2,3, .. ·, ... , and 
!.aN (a), ~13N( {3), ... finite, ifnot zero, for fixedN span, asI 
varies, a closed subspace peN) of Y. If It/!) is a normalized 
vector and if I t/!)El' (N), wesaythatthestate It/!) hasN(a) or 
more composites of type A in the single composite particle 
state la),a = 1,2,3, ... ,N({3)ormorecompositesoftypeBin 
the single composite particle state 1{3), {3 = 1,2,3,. .. , .... For 
fermion composites N (a) = 0, 1, ~nd for boson composites 
N(a) = 0,1,2,3, .. ·. TheprojectorP(N)onthesubspaceP(N) 
may be constructed using the techniques of Sec. II. Let 

g(N) = ~/IN,l) (N,l I 
[A (a)*]N(a) [B({3)*]N(13) 

= L II '''II) (II 
/ a.13.-· v' N(a)! v' N({3)! 

[B({3)]N(13) [A (a)]N(a) (4.2) 

v' N({3)! v' N(a)! 

But !./II) (I I = 17 , therefore 

~ [A (a)*]N(a) [B({3)*]N(13) 
g(N) = II ... 

a.13 .... v' N(a)! v' N({3)! 
B({3)N(13) A (a)N(a) 

v' N({3)! v' N(a)! ' 
(4.3) 

or 

[A *(a)A (a)]N(a) [B *({3)B ({3)]N(13) 
g(N) =: II "<, 

a.13.··· N(a)! N({3)! 
(4.4) 

where: : is the Wick symbol for the normal ordering of 
"'-

operators. The projector peN) is then given by the strong 
limit as €!O of 

(4.5) 
"'-

If all N(a), N ({3), are zero P(O) = 15, . Let all N(a'), 
N ({3 ),'" be fixed except for a given N (a), then, because of the 
incompleteness assumption concerning the single composite 
particle states la), 

A A 

P( ... ,N(a) + 1, .. .) <P( ... N(a) ... ). (4.6) 

This means that 
/'<.. /'<.. A 

P(N,N(a»==P( .. ·N(a) .. ·) - P( ... ,N(a) + 1, ... ), (4.7) 

is a projector, for N (a) = 0,1,2, .. ·. Further 

A /'<.. A 

P(N,N(a»P(N,N'(a» = 8(N(a),N'(a»P(N,N(a», 
(4.8) 

A 

thus! P (N,N (a» I N(al ~ 0.1.2 •... is an orthogonal set ofprojec-
~rs. Many-body states lying in the subspace 
P (N,N (a»Y = P (N,N (a» may be considered to have pre
cisely N (a) composites of type A in the single composite par
ticle state la), N (a')(a' ¥=a) or more composites of type A in 

Wesley E. Brittin and Arthur Y. Sakakura 2167 



                                                                                                                                    

single composite particle state la' ), N ([3) or more compos
ites oftypeB in the single composite particle state 1[3 ) , ... The 
subspaces P (N,N (a», P (N,N 1 (a», N 1 (a) =1= N (a), are orthog
onal because ofEq. (4.8). 

We wish to construct clo~ed subspaces Pc of Y which 
correspond to precisely N(a), N ([3),··a = 1,2, [3 = 1,2,.·· 
particles in the various single composite particle states. A 
logical candidate for the projector on Pc is 

Q (N)-== 1\ ap(N,N (a» 1\ 1\ pP(N,N ([3» .... 

The corresponding subspace Q (N) would then correspond to 
states having precisely N (a)a = 1.2 .... A composites in the 
state la), N ([3)p = 1,2, .. , B composites in the state 1[3 ), .... 
Unfortunately quantum logic is not the same as everyday 
logic. Thesubspaces Q (N), Q (N ') are not in general orthogo
nal. If we fix all N (a'), N ([3), N (y), except N (8), say, then 
Q(··.N (8) ... ) and Q ( ... N (8)' .. ·) are orthogonal for 
N(8)#N'(8), but in general Q( ... N(a) ... N([3) ... ) and 
Q ( ... N(a)' .. -N([3)' .. ·), N(a)#N'(a), N([3)#N'([3), 
overlap. The subspaces Q (N) are too large and must be 
peeled down. This state of affairs was anticipated since we 
placed very little restrictions on the various single composite 
particle states. There may be linear relations among the vec
tors built up from the creation operators of the single com
posites, etc. The authors have constructed a theory5 which 
avoids this difficulty by selecting carefully certain linearly 
independent collections of vectors. The theory presented 
here is very general and a certain lack of uniqueness is to be 
expected. Nevertheless, a satisfactory theory does emerge. 
We must construct a family of orthogonal subspaces starting 
with the Q (N), and t~is must be done in as unarbitrarily a 
way as possible. The Q (N) are labeled by a finite number of 
nonzero integers (N (a), N ([3 )",1 and may therefore be lin
early ordered 

A A/""-./'.. 

O:QI,Q2''''QN,Q(N), (4.9) 

where QN is the immediate predecessor of Q (N) in the or
dering. The ordering (4.9) may be done using physical argu
ments, or it may be done for example by means of a lexogra
phic scheme. There does not seem to be any way out of 
selecting a certain order. (This appears to be a generalization 
of the Schmidt process for vectors.) 

The generalized Schmidt process for projectors may 
now be carried out. Define the projectors 

(4.10) 

/'0, /'0, 
RM<RM., M<M', (4.11) 
/'0, /'0, /'0, 

and RM - RM -I is a projector for M = 1,2,3, .. · (Ro=O). 
Let 

/'0, /'0, /'0, 
Pc(N)=R N -RN' (4.12) 

whereN = (N(a), N([3), N(y),.~ an~N-istheim~ediate 
predecessor of N in the ordering Q 1 , ... ,Q (N). The P dN) 
forms a orthogonal set of projectors: 

"'" /'.. /'..........,A... 

PJN)Pc(N ') = 8(N,N')Pc(N), Pc (N)<Pc(N '), 

and, in obvious notation, 
(4.13) 

N /'0, /'0, 
I, Pc (k ) = V r: = I Qk' (4.14) 

k=1 
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/'.. A . A 

where Pc (k )+-+Qk are ordered in the same fashion as the Qk' 

We take p;. (N(a) I IN ([3) J to be the projector on the 
subspace Pc of.'7 which corresponds to precisely N (a), 
N([3) .. ·a = 1,2,. .. ,[3 =/'0,1,2,3,. .. composites in the states la), 
1[3), .... For certain N, Pc may be zero. However, this is quite 
satisfactory and just corresponds to the fact that we are then 
dealing with an overcomplete description. 

/'0, "" 
Commuting operators N (a), N ([3), ... may now be in-

troduced for composite particle occupation numbers, by 
means of the definitions 

N(a) = I,N(a)p;'(N), 
;'II 

/'0, A. 

N([3) = I N([3)Pc (N), .. ·, (4.15) 
N 

where the sum extends over all N(a), N([3), a = 1,2,3, ... , 
[3 = 1,2,3,.., N(a), N([3), ... = 0,1,2, .. ·. 

The number operators commute with each other and 
with the total number operators ~ia(z)*a(z), ~jb (J)*b (J), ... 
of the elementary particles. The composite number opera
tors do not in general commute with the Hamiltonian, so 
they may be used as a basis for a first principles approach to 
nonequilibrium problems. 

The projectors p;. (N) may be used to classify states of 
the many-body system. Let 

Po + I P;'(N) = 1,., (4.16) 
N,W 

whereN =1= o means that at least one member of the set (N(a), 
"" N ([3), N (y) I is not zero. We then interpret Po to be the pro-

jector on the subspace Po corresponding to the completely 
ionized state. This does not mean that there is no ionization 
in other states. For example, if P;'(N)I1/!) = It/I), and I1/!) 
corresponds to more than the numbers of elementary parti
cles accounted for in (N (a), N ([3), ... J, the excess elemen
tary particles may be regarded as ionized. For any It/I)EY, 
according to Eq. (4.16), we have the orthogonal 
decomposition 

I1/!) = l1/!o) + L I t/I(N» , (4.17) 
N,<O 

and 

1I1t/1)W = II l1/!o) 112 + I II I 1ft (N» 11 2, (4.18) 
N 

with 

11/!(N»=Pc (N)I1/!)· 
We may extend the above considerations to situations 

where it is desirable to consider number operators for the 
elementary particles which commute with the composite 
particle number operators. Such operators would then be 
used to provide a description of the many-body system in 
terms ofJree elementary particles and bound composite 
particles. 

V. CONCLUSION 

We have classified states ofnonrelativistic many-body 
systems through the use of occupation numbers for compos
ite particles. The occupation numbers specify how many 
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composites are in a given sjngle composite particle state. 
This description is kinematic and does not say anything con
cerning the dynamics of the many body system. Any state 
may be decomposed, I"'> = 1"'0> + l:N ,",0 ItP(N», where 
I "'0> corresponds to the completely ionized state and I tP(N) > 
to precise numbers of composites. Commuting occupation 
number operators were constructed using projection opera
tor techniques. These number operators are central to funda
mental theories having to do with composite particle kinetics 

2169 J. Math. Phys .• Vol. 21. No.8. August 1980 

and equilibria. 
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The isotropic harmonic oscillator in an angular momentum basis: An 
algebraic formulation 
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A completely algebraic and representation-independent solution is presented of the si
multaneous eigenvalue problem for H, L2, and L3, where H is the Hamiltonian operator 
for the three-dimensional, isotropic hamomic oscillator, and L is its angular momentum 
vector. It is shown that H can be written in the form w(2yty + ),.t·A + 3/2), where yt 
and yare raising and lowering (boson) operators for yty, which has nonnegative integer 
eigenvalues k; and At and A are raising and lowering operators for At'A, which has 
nonnegative integer eigenvalues I, the total angular momentum quantum number. Thus 
the eigenvalues of H appear in the familiar form w(2k + I + 3/2), previously obtained 
only by working in the coordinate or momentum representation. The common eigenvec
tors are constructed by applying the operators v t and At to a "vacuum" vector on which v 
and A vanish. The Lie algebra so(2,1) Ell so(3,2) is shown to be a spectrum-generating 
algebra for this problem. It is suggested that coherent angular momentum states can be 
defined for the oscillator, as the eigenvectors of the lowering operators v and A. A brief 
discussion is given of the classical counterparts of v, yt, A, and At, in order to clarify their 
physical interpretation. 

1. INTRODUCTION 

The eigenvalue problem for the three-dimensional, iso
tropic harmonic oscillator Hamiltonian operator, 

2 

H = :M + !Mlih2 , (1) 

is often solved algebraically (see for example Stehle,! Sec. 8). 
One introduces the boson creation and annihilation 
operators 

at = (2Mw) - 1!2( - ip + Mmx), 

a = (2Mw) - 1/2(ip + Mmx) , 

which are Hermitian conjugate to each other, and which 
satisfy the commutation relations 

[ai,aj ] =0= [ai, a]] , 

[ai' aJ] = 0ij' i,} = 1,2,3. 

Then one has 

H = w(N + 3/2) , 

where 

(2) 

(3) 

(4) 

N=at.a=N1 +N2 +N3 , (5) 

with, for example, NI = aTa l • The usual boson calculus 
leads to the conclusion that the commuting operators NI , 
N 2 , and N], have simultaneous eigenvalues n l , n2 , and n3 , 

running over all nonnegative integers independently, so that 
the eigenvalues of N appear in the form n l + n2 + n3 • The 
corresponding normalized eigenvector may be denoted 
In l , n2 , n]), and is nondegenerate. It may be obtained from 
a normalized "vacuum vector" 10) as 

Inp n2 , n3 ) = (nl !n 2 !n 3 !)-I!2(aTt'(aD"'(an
n'IO), (6) 

where 

aiIO)=O, i=I,2,3, (7) 

so that 

N 10) = ° = Ni 10), i = 1,2,3 . (8) 

The eigenvalue problem for H (equivalently, for N) may 
be solved also in an "angular momentum basis." (See for 
example Oavydov,2 Sec. 37.) One works in either the coordi
nate or the momentum representation and looks for the com
mon eigenfunctions of N, L2, and L 3 , where 

Li = !~ijk Ijk , 

Ijk = (XjPk - xkPj)/fl 

= i(ajak - aka]) , 

so that 

[Lit L j ] = iflEijkL k , 

i[lij' Ikm ] = Ojk(m + Oimljk - Oik1jm - Ojmlik . 

The simultaneous eigenvalues are found to be 

(9) 

(10) 

N: 2k + I, L2: I (l + l)fl2, L3: mfl , (11) 

where k and I run over the nonnegative integers indepen
dently, and for a given I, m runs over 1,1- 1,,,,, - I. The 
corresponding normalized eigenfunction may be denoted 
tPklm and is nondegenerate. 

In this paper we show how the simultaneous eigenvalue 
problem for N, V, andL 3 can be solved in a purely algebraic 
way, with the introduction of operators which raise and low
er the values of k, I, and m, rather than n I' n2 , and n}. More 
precisely we find that N can be written in the form [contrast 
with Eq. (5)] 

(12) 

where v t and v are raising and lowering operators for vtv, 
which has eigenvalues k; and At and A are raising and lower
ing operators for 'At .'A, which has eigenvalues I, the total an
gular momentum quantum number. The normalized com
mon eigenvectors, denoted Iklm), are obtained by applying 
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suitable combinations of the raising operators to a normal
ized "vacuum vector" 10), which satisfies 

(13) 

[It is readily seen that this vector can be identified with the 
vector defined by Eqs. (7) or (8), hence the common nota
tion.] In this approach, the fundamental dynamical variables 
in the problem are vt, v, }}, and A rather than at and a. 

Of all the many investigations of the harmonic oscilla
tor and related problems (for reviews and many references, 
see Kramer and Moshinsky3 and McIntosh4

), the closest in 
spirit to ours is that by Rose,s who examined the algebraic 
structure of operators x~ satisfying 

Iklm) =x~IO). 

However, Rose did not identify the elementary operators v, 
v t, A, and A t in terms of which the Hamiltonian operator and 
all such xZ; can be expressed [see our Eqs. (12) and (53)], and 
in terms of which the eigenvalue problem can be formulated 
and solved completely. 

The algebraic solution of this problein is of some intrin
sic interest, being independent of the choice of a particular 
representation space. Although one knows that any problem 
in quantum mechanics can be formulated in a variety of 
equivalent representations, and that the eigenvalues of any 
particular operator are determined by the structure of the 
relevant algebra of operators, rather than by the choice of 
representation space, few problems have been analyzed com
pletely in a representation-independent way. (For examples, 
see the book of Green. 6 Of course, our constructions neces
sarily also define in the coordinate representation, for exam
ple, shift-operators associated with the differential operators 
N, L2, and L 3 • There is a point of contact here with the so
called "factorization method."7 We note however that the 
operator L which we introduce in the next section and which 
plays a central role in our analysis, is an integral operator, 
not a differential operator, in both the coordinate and the 
momentum representation.) 

Having an algebraic formulation, we readily identify a 
hitherto unrecognized spectrum-generating algebra for this 
problem, namely the Lie algebra so (2, 1) $ so (3,2). Howev
er, our motivation for this work is primarily to set up an 
algebraic framework within which we can construct "coher
ent angular momentum states" for the oscillator. The inves
tigation of such states will be the subject of a subsequent 
pUblication. They will be defined as common eigenvectors of 
the lowering operators v and A, just as the usual coherent 
states can be defined as common eigenvectors of the lower
ing operators a. They have many interesting properties in 
common with the usual coherent states, leading us to hope 
that they also will prove useful. Further motivation for the 
study of such states may be found in the work of Atkins and 
Dobson,' and of Delbourgo,9 where the idea of superposing 
eigenvectors corresponding to all the possible values of the 
total angular momentum quantum number of a system, to 
form "coherent angular momentum states," has been pro
posed in a more general context. 

In Sec. 2 we denve expressions for the operators vt, v, At 
and A, and investigate some of their properties. Some proofs 
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are relegated to Appendix A. The method used to determine 
At and A, in particular, depends heavily on techniques devel
oped by Bracken and GreenlO for the analysis of vector oper
ators. Indeed, the idea of constructing from the vector opera
tors at and a other vector operators which form "creation 
and annihilation operators for angular momentum" was 
partly developed some years ago by them. 11 

In Sec. 3, we present with the help of these operators the 
solution of the common eigenvalue problem for N, L2, and 
L 3 , relegating some proofs to Appendix B. Then in Sec. 4, we 
discuss the time-dependence of these operators (in the Hei
senberg picture) and the meaning of their classical 
counterparts. 

It is known 12 that the Lie algebra sp(6, R) is a relevant 
spectrum-generating algebra for the oscillator Hamiltonian 
when N 1 , N2 , and N3 are to be diagonalized. In Sec. 5, we 
show that the Lie algebra so(2, I) $ so (3,2) [::::sp(2, R) 
$ sp( 4, R ») is a more appropriate spectrum-generating alge
bra when N, V, and L3 are to be diagonalized. 

2. THE APPROPRIATE DYNAMICAL VARIABLES 

In order to introduce the operators vt, v, At, and A with 
the desirable properties described above, it is necessary in the 
first place to define the operator L +!, as the positive, sca
lar, Hermitian square-root of the positive operator 
!I;Jj + H = II - 2L2 + i), so that 

L2 = L (L + 1)112. (14) 

It follows from the nonnegativity ofL2 that any of its eigen
values can be written in the form I (I + 1)/f, with I nonnega
tive. On the same eigenvector, the eigenvalue of L will then 
be I. Of course, it will tum out that I runs over all the nonneg
ative integers-but we deduce this, not assume it. 

We define also the Hermitian operator 

K= !(N -L), (15) 

so that N = 2K + L. Like all scalar operators, N (and hence 
K) commutes with all/ij , and therefore with L. 

However, the vector operator a (and likewise at) can be 
resolved into the sum of a vector operator which shifts the 
eigenvalue of L up by one unit, and a vector operator which 
shifts it down by one unit. This may be seen with the help of 
the techniques developed by Bracl,<.en and GreenlO as follows: 
From Eqs. (3) and the definition (9) of lij we have 

Eijka,.ljk = 0, 

or, equivalently, 

(16) 

a,.ljk + ak(j + aJki = O. (17) 

Contracting on the right with !Iij' and using the commuta
tion relations (10) and the definition of L, we find 

aJijljk + iaJik + akL (L + 1) = 0, (18) 

that is 

o = a i [Ii) + i(L + lft5ij] [Ijk - iL~jk] (19) 

= ai [Ii) - iL~ij Hljk + i(L + I)~jk] . 
We define the operators a( ± 1 by 

aj±l = ai [(L + !)~ij ± !~ij =FiJi) ][2L + I] -I (20) 
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(noting that [2L + 1] has a well-defined inverse, since Lis 
nonnegative). Then a( ± 1 is evidently a vector-operator so 
that 

.[ (±) I ] -" (± 1 s:: (±) 
I a, 'jk - 0ijOk - O'kaj , 

and hence 

[ al ± ), gk Ijk ] = 2ia~ ± )1 ki - 2al ± ) . 

But, according to Eqs. (19) and (20), 

ia~ t )1 kl = al ± ) [ l =F (L + !)] . 

(21) 

(22) 

(23) 

Combining Eqs. (22) and (23), and using again the definition 
of L, we have 

[aj t ), L (L + 1)] = - a) ± ) [ 1 ± (2L + 1)] , 

or, equivalently, 

L (L + l)a( ±) = a( ± )(L ± I)(L ± 1 + 1) . 

From the nonnegativty of L, it then follows that 

La( t ) = a( ± )(L ± 1) , 

(24) 

(25) 

(26) 

so that a( ±) is a vector shift-operator for L. We have from 
Eq. (20) that 

a = a( + ) + a( -) , 

which is the required resolution of a. 

with 

and 

In the same way we find 

at = at( + ) + a t(-, ) , 

aJ< ±) = ai[(L + !)Dij ± lD'j =Filij ][2L + 1] - 1, 

Lat(±)=at(±)(L± 1). 

In Appendix A we prove that 

[a( ±)P = aWF ) . 

Now 

Na = a(N - 1), 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

and since N commutes with I,! and L, it follows from the 
definition (20) that 

Na(±) = a(±)(N - 1). (33) 

It then follows from Eq. (26) and the definition (15) of K, 
that 

[K, a( - )] = 0 , 

Eq. (15) we have 

K (a·a) = (a·a) (K - 1) , (37a) 

and, by a similar argument 

K (at·at) = (at·at) (K + 1) . (37b) 

It now follows that a( +) and at( + )(a.a) have the same shift
ing properties for N, K, and L, so it is not surprising to find 
that (see Appendix A for proofs) 

a( +) = at ( + )(a.a) (2K + 2L + 1) - 1 , (38a) 

and similarly 

at( - 1 = a( -- l(at.at ) (2K + 2L + 3) - I . (38b) 

We therefore isolate as fundamental the operator at< + ) 

and its conjugate a( - \ which are raising and lowering opera
tors for L, but which commute with K; and the operators 
(at.a t

) and (a·a), which are raising and lowering operators 
for K but which commute with L. 
[The operators a( + ) and at( - ) are relegated to a secondary 
position, and they may be regarded as defined by Eqs, (38).] 
However, the operators A, v, and their conjugates At, vt, 
defined by 

A = a(-Y(K,L) = J(K,L + l)a( -) , 

At = J(K,L )at( + 1 = ate +) J(K,L + 1), 
(39) 

v = (a.a)g(K,L) = g(K + I,L) (a.a) , 

vt = g(K,L) (at.at ) = (at.at)g(K + I,L), 

may equally well be regarded as fundamental, for any rea
sonable Hermitian operator functionsJ and g. They evident
ly have the same shifting properties for K and L as have a( -), 
a t ( + \ (a·a), and (at·at), respectively, viz 

LA=A(L-l), LAt =At(L+l), 

[L,v] = 0 = [L,vt] , 

Kv = v(K - 1), Kvt = vt(K + 1), 

[K,A] = 0 = [K,At] . 

Furthermore, for any Jwe have (see Appendix A) 

[A"Aj] =0= [Ai,A!] , 

A·A = 0 = At'At , 

iAk Ik, = Ai(L + 1) , 

(40) 

(41) 

(42) 

(34) and also 
Ka(') =a(+)(K - 1). 

In a similar way [or by conjugation ofEqs. (34)] we deduce 
that 

Kat<-)=at(-)(K+ 1). 

It is easily seen from Eqs. (3) that 

N (a·a) = (a.a) (N - 2) , 

(35) 

(36) 

and that (a·a), being a scalar, commutes with L. Hence, using 
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(43) 

i[A;, Ijk ] = DijA! - D'k A J . 
We choose the functions J and g so that, in addition to 

Eqs. (40), (41), (42), and (43), the operators A, At, v, and vt 

have other simple algebraic properties, which make them 
most useful for the solution of the problem at hand (and for 
the construction of coherent states-see the comments at the 
end of Sec. 5). Noting that 2K + 2L + 1( = 2N + L + l)is 
positive definite, and so has well-defined negative powers, 
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we take 

/= [(2L + 1)1(2K + 2L + 1)]112, 

g = (4K + 4L + 2) - 112 , 

and find (see Appendix A) 

[v, vt] = 1, 

[Ai' v] = 0 = [A;, vt] , 

[Ai' vt] = 0 = [A i, v], 

(lAt'A + IHAi' An = (2At 'A + l)oij - U iAj , 

and also 

K = vtv, L = At.A, 

iii) = A iAj - A JA i . 

(44) 

(45) 

(46) 

The definition of the operators A, At, v, and vt in terms 
ofa and at, as presented above, is rather complicated. How
ever one may choose to regard them, rather than a and at, as 
the basic variables. Then Eqs. (15) and (46) become defini
tions of N, K, L, and I ij' and it can be shown that all relations 
in the algebra, such as those in Eqs. (40), (42), and (43), 
follow from Eqs. (41) and (45). In particular, a and at, which 
from this point of view have the complicated definitions 

a = A[(2K + 2L + 1)/(2L + 1)] 112 + At v[2/(2L + 3)] 112, 

(47) 
at = At[(2K + 2L + 3)/(2L + 3)]1/2 

+ Avt[2/(2L + 1)] 112, 

can be shown to satisfy the boson commutation relations (3). 
The commutation relations satisfied by A and At as giv

en in Eqs. (41) and (45) make these operators more difficult 
to manipulate than the boson operators v and vt. However, 
the last ofEqs. (45), although complicated in appearance, 
has an important property in common with boson commuta
tion relations: It does permit an annihilation operator Ai to 
be shuffled through a product of creation operators A J act
ing on a "vacuum" vector, with the accumulation of terms 
which are free of annihilation operators. Using these opera
tors we are able to solve the common eigenvalue problem for 
K, L,an L3 in a manner quite similar to that usually adopted 
for NI , N2 , and N3 . 

The algebraic relations satisfied by the operators A and 
A t as listed above, are the same as those satisfied by the 
"modified boson operators" introduced in a quite different 
context by Lohe and Hurst. l3 Accordingly the algebraic 
structure of the eigenvectors Ik I m) defined in the next sec
tion, in so far as it involves the variables At, is essentially the 
same as the structure of the vectors I~) of Ref. 13. 

However, there is an important difference between the 
two sets of operators (apart from the fact that nO analogs of v 
and vt appear in the work of Lohe and Hurst). The operators 
A and At have been defined in terms of boson operators a and 
a t and act in the same space as those operators. While this 
space can be taken to be that of the usual coordinate repre
sentation of quantum mechanics, A and A t have been defined 
in a representation-independent way, and are perhaps best 
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thought of as acting in an abstract Hilbert space, not tied to 
any particular representation. In contrast, the operators of 
Lohe and Hurst are defined by modifying not only a set of 
boson operators a and at, but also the particular space in 
which they are taken to act. As a result, their modified boson 
operators are only defined in a space of harmonic functions 
of three variables. The reason that they satisfy the same alge
braic relations as A and At may be traced to the fact that 
equivalent representations of the Lie algebra so(3,2) underly 
the two structures. In our case this so(3,2) is a subalgebra ofa 
spectrum-generating algebra for the oscillator (Sec. 5), 
whereas in the case of Lohe and Hurst, though not metioned 
by them, it arises as a well-known in variance algebra of La
place's equation in three dimensions. 

3. SOLUTION OF THE EIGENVALUE PROBLEM 

Since K and L cannot have negative eigenvalues, we see 
at once that there must be a vector on which the lowering 
operators A and v vanish. Thus we assert the existence of a 
normalized vector 10) such that 

vlO) = 0 = A, 10), i = 1,2,3. (48) 

Since K = vtv, L = At.A, and iii) = A iA) - A JA i , we have 

K 10) = L 10) = N 10) = 0, 

(49) 

lij 10) = 0 = Li 10), i,} = 1,2,3. 

The other common eigenvectors of K, L, and L3 can 
now be built up by applying the raising operators vt and A t to 
this "vacuum" vector. We define 

A ± = (AI ± jA2 ), A t± = (A r ± iA~), (50) 

so that 

L3A ± = A ± (L3 ± Ii) , 
(51) 

L3 A t± = A t± (L3 ± Ii) . 

Now let k, r, and s run over the nonnegative integers inde
pendently and let E denote either + or - . Then it is evident 
that on the vector 

(52) 

K, L, and L3 have the eigenvalues k, r + s, and Ern, respec
tively. Setting I equal to r + s, and m equal to Er, we write 

Ik I m) = Ck1m (vt)k(A !)lml(A D1-,m'10) (53) 

as the normalized common eigenvector of these operators, 
corresponding to the eigenvalues k, 1, and mli. (We postpone 
for the moment discussion of the values of the normalization 
constants Cklm ') Here k and I run over the nonnegative inte
gers independently, while for a given value of I, m runs over 1, 
1-1, ... , - I, and E is the sign of m. It is easily shown that for 
fixed k and /, the 21 + 1 vectors Ik 1m> form the basis for an 
irreducible representation of the Lie algebra so(3) spanned 
by the operators Ii) of Eqs. (46) (cfRef. 13). [Alternatively 
one can consider for any fixed k, the vectors 

(54) 

where the subscripts a, {3, ... , 7 are I in number, and run over 
1, 2, 3 independently. These vectors form a rank-l tensor ba-
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sis forthis representation of so(3). Note that in view of Eqs. 
(41), this tensor is automatically symmetric and traceless.} 

For completeness, it is necessary to show that the vec
tors Ik / m) are, up to multiplication by constants, the only 
common eigenvectors of K, L, L3 which one can construct 
by applying to 10) any operator in the algebra generated by 
v, vt, A, and At. To do that, it suffices to show that the sub
space of all finite linear combinations of the vectors I k / m) is 
invariantundertheactionofv,vt,A 3 ,A LA± ,andA t+ ; and 
this is true, for we see in Eqs. (59) below that when any of 
these operators is applied to any I k / m), a constant multiple 
of another such eigenvector is produced. 

Turning to the calculation of the normalization con
stant Ck1m in Eqs. (53), we see at once that 

( < k / m Ik / m) = k !ICklm IZ(OI(Aj -Iml 

X(A _ .)lml(A Zrl(A O/-lmIIO) . (55) 

Using the last of the relations (45), it is straightforward to 
show by induction that 

AjA ~A ~A t···A ~A ~ 10) 

= {(DjoA 1A t···A : A ; + DjfJA ~A t···A:A ~ + ... 

+ DjTA ~A 1A ~ ... A:) - (21 ~ 1) A ;(DafJA t···A : A ~ 
+ D A fJt . "A tAt + ... + D A fJt At ... A t ay a T aT y a 

+ DfJ At. "A tAt + ... + DfJ A tAt ... A t ya aT raya 

+ ... + DaTA ~A 1A ~"')}IO) , (56) 

where / is the number of creation operators A ~ , A 1, "', A ~. 
With the help of this result, we are able to show (see Appen
dix B) that 

( ) 
k !lCklm I 221l!(1 - m)!(1 + m)! 

klm\klm = , (57) 
(2/)! 

so that I kim) as defined in Eq. (53) is normalized if we take 
(with a convenient choice of phases) 

m ( (21 )! )1/2 
Ck1m = ( - E) k!1 !(/_ m)!(/ + m)!21 . 

(58) 

It is then found that (see Appendix B) 

v\k I m) = (k)ll2\k - II m), 

vtlk 1m) = (k + l)'12lk + 11 m) , 

At Ik 1m) = ((l + 1 - m)(1 + 1 + m) )1/21k I + 1 m) 
3 (21 + 1) , 

At Ik 1m) = 'F ((l ± m + 2)(1 ± m + 1) )112 
± (21 + 1) 

X Ik / + 1 m ± 1) , 

A Ik 1m) = (/- m) (/ + m»)1/2Ik 1- 1 m) , 
3 (2/- 1) 

A Iklm)= + (I'F m)(/'F m -l»)1/2 
± - (2/- 1) 

Xlkl-lm±I). (59) 

We close this section by remarking that we have chosen 
phases in Eq. (58) in such a way that the vector \k / m) ap-
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pears in the coordinate representation as 

r/J = (-1)" ( 2a
3
k! )112Sle -(I!2)S2 

kim r(k + 1+3/2) 
XL ~ + 1/2)( S 2)Ylm (O,r/J) , 

where a = (Mw/fl) 1/ 2, S = ar(r,O andt/J are the usual spheri
cal polar coordinates), L ~ + 1/2) is the generalized Laguerre 
polynomial, defined as in Ref. 14, and the spherical harmon
ic Y1m is defined as in Ref. 15. 

4. TIME·DEPENDENCE AND INTERPRETATION 

In the Heisenberg picture, the time-dependence of an 
observable A (or of any complex linear combination A of 
observables) is determined by 

ifl dA = [A, H) . 
dt 

Now the operators v, vt, A, and At are shift-operators for H, 
allowing us to deduce at once that 

dv 2' - = - IWV, 
dt 

dA 

dt 

Thus 

- iwA , d At = iWAt 
dt 

A = Aa e - "vI, At = A6 e jwI 
, 

(60) 

(61) 

where the (constant) operators Va, V6, Aa, and A6 satisfy the 
same algebraic relations as V, vt, A, and At. 

We gain some insight into the physical interpretation of 
these variables by considering their classical counterparts. 
Denoting the classical coordinate and momentum vectors by 
x and p respectively and the classical Hamiltonian by B, we 
define 

a = (2Mw) -I/z(ip + Mwx) , (62) 

and its complex conjugate a·. [Note the extra factor of (fl)1I2 
in comparison with Eq. (2).] Then 

B = wa··a . (63) 

Introducing the classical angular momentum vector 

L=xXp, 
with length i, we define 

A 1 A A 

K = - (H - wL) . 
2w 

(64) 

(65) 

In the definitions of V, vt , A and At above, we let fl-o, with 
H-.Band 

(fl) l12a-.a, (fl) I12at-.a·, 

flljj-+Ejjkik , 

flL-.i, flK -.K , 
(66) 

in order to obtain the classical variables corresponding to V 

and A, 

v = ~(a·a) (K + i) -112 
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A A 1/2 

(K + L) - [(M2 2A2 A2) + '(2" 1 A A)] = W X - P I lY.lWX·P , 
4Mw 

(67) 
i = H£ (K + £)] -112(£i + lLXi) 

= [8Mwi (K + i)] -1/2 [(Mwii - Lxii) 
+ i(Lp + MwLXi)] , 

and their complex conjugates v· and i·, which correspond 
to v t and}" t. Apart from the overall factors involving the 
constants of the motion K and £, these expressions are rea
sonably simple. It is straightforward to verify in particular 
that 

v·v=K, i·.i=£, 
i·i = 0 = i ·.i· , 
iI = w(2v·v + i ·.i) , 
iXL = iii, i·xL = - iii·, 
i·xi=IL, 

(68) 

and also that the time-dependence of the classical variables is 
the same as that of their counterparts, as in Eqs. (61). 

From the relations (68), it can be seen that if a and il 
denote the real and imaginary parts of (v'2)i, then a and il 
are orthogonal, and of the same length (i )112. From the last 
three of the relations (68), we see then that e = a(i ) - 112, 

f = p(i) - 112, and g = L(i) - I form a right-handed system 
of orthogonal unit vectors, of which the first two are time
dependent. 

Classically, the motion is elliptical, in the plane perpen
dicular to L, i.e., in the plane determined by a and (i For any 
particular motion we can choose time-origin and space-axes 
such that the motion is anticlockwise in the XY-plane, with 

i = (A coswt, B sinwt, 0), A >B>O . 

Then 

Ii = Mw( - A sinwt, B cOS(J)t, 0) , 

L = Mw(O, 0, AB), £ = MwAB , 

iI = !Mw2(A 2 + B 2), K = aMw(A _ B )2 , 

V = rVM;" (A - B)e - 2jQ)t = V K e - 2jwt , (69) 

i = V!MwAB e - jQ)I(I, i, 0) = V if. e-,(ul(1, i ,0), 

e = (coS(J)t, sinwt, 0), f = ( - sinwt, cos wt, 0) , 

g = (0, 0,1). 

The periodic variables i and i· have angular frequency w, 
the natural frequency of the oscillator, but v and v· have 
angular frequency 2w. This is at first glance rather puzzling, 
but we can understand it as follows, and perhaps at the same 
time appreciate the geometrical significance of all these 
variables. 

The elliptical motion can be regarded as arising from 
the superposition of two uniform circular motions, with an
gular frequencies 2w and w, respectively. In the particular 
coordinate system adopted above, 

i = (A cOS(J)t, B sinwt, 0) 

= l(A + B)e + l(A - B) (cos2wte - sin2wt f) . (70) 

Thus the particle can be regarded as moving uniformly 
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clockwise, with angular frequency 2w, in a circle which is 
fixed relative to the vectors e and f and has radius !(A - B). 
This circle (epicycle) itself rotates anticlockwise (along with 
e and f) about an exterior point 0, so that its center moves 
uniformly, with angular frequency w, around the circumfer
ence of a larger circle (deferent) of radius !(A + B), centered 
at O. The point 0 is the center of the resultant anticlockwise 
elliptical motion. (See Fig. 1.) 

The relevance of the variables V, v·, i, and i· to this 
decomposition of the motion can be appreciated when one 
notes that Eq. (70) is [in the particular coordinate system of 
Eqs. (69)] just the real part of the formula 

i = [(K + £)1£] 1/2i + [i] - Il2vi·, (71) 

which is the classical equivalent of the first of Eqs. (47). 

The resolution of the harmonic motion into two circu
lar motions can also be seen and understood in the following 
way. The equation of motion for the oscillator is 

(72) 

Since the force on the particle is central, the motion is in a 
fixed plane perpendicular to the angular momentum i. We 
make a change of reference frame, to the frame rotating anti
clockwise, with angular frequency w, about a unit vector 0 

which passes through the origin and which is parallel to i. In 
the rotating frame, the equation of motion for the particle at 
r is 

d 2r 2 dr 
m- = -mwr-2mrox--mrox(roXr), (73) 

dt 2 dt 

with ro = wo' Here the second term is the Coriolis "force," 
and the third is the centrifugal "force" on the particle 

Now roX(roxr) = - w2r, 
since ro is orthogonal to i, and hence to r. Thus in this frame 
the centrifugal force exactly cancels the true force, and the 
particle moves under the Coriolis force alone, with 

dr 
-2roX -. 

dt 

Integrating once we have 

d
2
R = _ 4w2R 

dt 2 

where R = r - ro, with ro an arbitrary constant vector, 
which must be orthogonal to ro in view of Eq. (74). 

(74) 

(75) 

(76) 

We see that in this rotating frame the motion is harmon
ic with angular frequency 2w, about an arbitrary fixed point 
ro in the plane of the motion. That this motion must actually 
be circular (it is the motion around the smaller circle in Fig. 
1.) follows from the fact that we also have, from Eq. (74) 
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dR 
-2roX -

dt ' 

( 3) 

(77) 

- 4w2R = - 2 ro X dd~ , (78) 

implying that R·(d R/ dt ) = O. and hence that R2 is constant. 
We also note from Eq. (78) that 

RX dR = _1_ (rox dR)X dR (79) 
dt 2lu2 dt dt 

= __ 1 (dR)\Il' 
2lu2 dt 

so that the circular motion is in the opposite sense to ro, i.e., it 
is clockwise about an axis which passes through R = 0 and 
which is parallel to n. 

5. A NEW SPECTRUM-GENERATING ALGEBRA FOR 
THE OSCILLATOR 

For the treatment of the common eigenvalue problem 
for the operators N, , N z , and N 3 , a spectrum-generating 
(Lie) algebra is the 2 I-dimensional Lie algebra sp( 6,R ), with 
Hermitian basis 

(a,aj + aia]) , i(a,aj - aia]) , 
(80) 

( t t) .(t t) a,aj + a,aj , I a,aj - aja, . 

The vectors In" n2, n3 > with odd (n, + n2 + n3) span one 
irreducible representation of this algebra, and those with 
even (n, + n2 + n3) span another.12 

For the common eigenvalue problem for N, L2, and L3 
another Lie algebra is more relevant. Define the Hermitian 
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FIG. 1. Resolution of elliptical motion 
into two circular motions. The particle, 
whose position is marked X, rotates 
clockwise with angular frequency 2w 
around the smaller circle, whose center 
moves anticlockwise with angular fre
quency fJ) around the larger circle. Posi
tions are shown at (I) fJ)t = 0; (2) 
fJ)t = IT/4; (3) fJ)t = IT/2; (4) fJ)/ = 3lT/4. 

/ 
/ 

/ 
/ 

/ 

operators 

i 
I 

/ 

(1) 

At = J...t(2L + 1)112 = (2L _1)'/2J...t, 
(81) 

and note that, as well as commuting with yand yt, and hav
ing the same shifting properties for L as J... and J... t, they satisfy 

[A" Aj] = 0 = [A;' A J] , 
[A" A J] = (2L + l)O;j - 2il;j , 

A·A = 0 = At·At, 

At·A = L (2L - 1), 

A iAj - A ]A; = il'j(2L - 1) , 

(82) 

The proof of the results (82) is elementary, with the use of 
Eqs. (41), (45), and (46). 

Now define 

A, =!(vv + ytyt) , A2 = ai(vv - ytyt), 

A3 = !(yty + !) , 

B4 , = !(A; + AD = - B;4 , (83) 

Bs, = V(A; - A i) = - B;s , 

B;j = l,j' BS4 = (L + !) = - B45 . 

It is easily checked that these operators span an Hermitian 
representation of the Lie algebra so(2,1) Ell so(3,2) 
[=sp(2,R ) Ell sp(4,R »), with theonly nontrivial commutation 
relations being 

[A, , A 2 ] = - iA 3' [A 2 , A 3 ] = iA" [A 3 , A, ] = iA 2 , 

(84) 
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i[B,,,., Bpa] = g"pB11a + g/LaB,.p - g/LpBva - gvaB/Lp , 

where fl, v, p, and (J run over 1,2,3,4,5, and the metric tensor 
g/LV is diagonal, with gIl = g22 = g33 = - g44 = - g55 
=1. 

The quadratic invariant of the so(2, 1) algebra has the 
value 

(85) 

There are two irreducible Hermitian representations of 
so(2, 1), labelled 9( +)( - 114) and 9( +)( - 3/4) by Barut 
and Fronsdal, 16 for which the invariant has this value, and in 
which the spectrum of A 3 is bounded below (as it evidently is 
in the present situation). In the representation 
9( +)( - 114), A3 has eigenvalues 114, 5/4,9/4, ... ; and in 
therepresentation9(+)( - 3/4) it has eigenvalues 3/4, 7/4, 
1114, .... It can be seen that representations of both types are 
involved in the problem under discussion-the former asso
ciated with even-integral eigenvalues of K ( = vtv), the latter 
with odd-integral eigenvalues. 

A simple calculation shows that the quadratic invariant 
of the so(3,2) algebra has the value 

Moreover, the two invariants of the so(3,1) subalgebra 
spanned by the Bij and B4i , have the values 

1B;jB;j - B4;B4i = - i ' 

1EijkBijB4k = 0 , 

(86) 

(87) 

indicating that any irreducible representation of so(3,2) 
which appears here, remains irreducible when restricted to 
the so(3,1) subalgebra. In the commonly used1

? [ko, c) label
ling of the irreducible representation ofso(3,1), these two 
invariants have values (k 6 + c2 

- 1) and ikoc, respectively. 
Thus the irreducible representations of so(3, 1) appearing 
here can only be [!, 0] or [0, U and since the eigenvalues of 
BI2 are integral, only the representation [0, !] can be in
volved. It is known (see for example Bohm, 18) that this repre
sentation of so(3, 1) extends to either of two irreducible Her
mitian representations (two of the four Majorana rep
resentations) ofso(3,2), each consistent with Eq. (86). But in 
only one of these-let us call it Y -is the spectrum of BS4 
bounded below, as it evidently is in the present situation. In 
this representation Y, BS4 has eigenvalues 1/2, 3/2, 5/2 .... 

The representation of so(2, 1) EEl so(3,2) associated with 
the harmonic oscillator in an angular momentum basis can 
now be identified, in view of the nondegeneracy of the eigen
vectors I kim>, as simply 

(9( +)( - 114), Y) EEl (9( +)( - 3/4),Y) . (88) 

The Hamiltonian operator appears in the form 

(89) 

and its eigenvalues are immediately deducible from the 
known spectra of A 3 in the representations 9 ( +)( - 1/4), 
9( +)( - 3/4), and of BS4 in Y. 

The reader may wonder why we did not, in Sec. 2, 
choose to work with the operators A and At rather than A 
and At. A simple change of the function! in Eqs. (44) ! to 
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!(K,L) = [(4 .. [;2 - 1)/(2K + 2L + 1)] 112 J would have ac
complished such a substitution. The commutation relations 
satisfied by A and At are simpler than those satisfied by A 
and At, and the connection with the spectrum-generating 
algebra is more immediate. For these reasons it may be ar
gued that the operators A and At are more suitable for the 
algebraic treatment of the eigenvalue problem. 

Our preference for the operators A and At is mainly 
determined by our intention to define in a subsequent publi
cation, "coherent angular momentum states" for the oscilla
tor as eigenvectors of the lowering operators. The expecta
tion values of the important operators H, K, L, and I;j will be 
very simple in such states, if we diagonalize the operators A 
and v, because 

K = vtv, L = At. A , ilij = A ;Aj - A JA; . (90) 

On the other hand, if we diagonalize the operators A, we 
shall need to work with the expressions 

L = ! + HI + 81. t'1.)1/2 , 

il;j = (2L - 1) - I(A ;Aj - A JAr> , 

whose expectation values will not be simple. 
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APPENDIX A 

Here and in Appendix B we present the derivations of 
some of the results stated above. The ends of proofs are indi
cated thus: 0 

From the definition of at( + ) in the first of Eqs. (29), it 
follows that 

(aJ< + »t = (2L + 1) - I [(L + l)oij + il;j ]ai . (AI) 

Using Eqs. (21) and then Eqs. (23) we see that 

ila(±) = ia(±)l - 2a(±) 
'J I I I} ) 

= -a;±)[3/2±(L+1)]. (A2) 

Now using Eq. (27) in Eq. (AI), we have 

(aJ<+»t = (2L + 1)-I(L + l)(a5+) + a5-» 

+ (2L + 1) - I(il;ja~ +) + ilija~ - l) 

= (2L + 1) - I [aj + )(L + 2) + aj -)L 

- aj + )(L + 2) + a; - )(L - 1)] 
[using Eq. (A2)] 

= (2L + 1) - la; - )(2L - 1) 

= aj - ) [using Eq. (26)]. 

In a similar way we show that (a t( - »t = a( +), so completing 
the verification ofEqs. (31). 0 

From the definition in Eqs. (20) we have that 

aj - )(2L + 1) = ajL + ia;/;j 

= ajL -arCata] - ajaj) [using Eq. (9)] , 
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= - a](a·a) + a/N + L + 1) 
[using Eqs. (3)]. (A3) 

Similarly, we find 

aj + )(2L + 1) = aJ(a·a) - aj(N - L), 

af( - )(2L + 1) = aj(at'a t
) - aJ(N - L + 2), (A4) 

a]( + )(2L + 1) = - aj(at·at) + aJ(N + L + 3). 

It is easily deduced from the definitions (9) and the rela
tions (3) that 

FiJi) = N 2 + N - (at·at) (a·a) 

= N 2 + 5N + 6 - (a'a) (at·at) . 

Since FiJij = L (L + 1), it follows that 

(a'a) (at·at) = (N - L +2) (N + L + 3), 
(AS) 

(at·at) (a·a) = (N - L) (N + L + 1). 

Multiplying on the right by (at·at) in Eq. (A3), we get 

aj - )(at·at) (2L + 1) 

Thus 

= - aJ(a·a) (at·at) + aj(N + L + 1) (at·at) 

= - aJ(N -L +2) (N + L +3) + aj(at·at) 

X(N + L +3) [using Eqs. (AS) and (3)] 

= aJ< - )(2L + 1) (N + L + 3) [using Eqs. (A4)]. 

a( - )(at'at) = at( - )(N + L + 3) , 

and in a similar way we show that 

a t( + )(a·a) = a( + )(N + L + 1) , 

establishing Eqs. (38). 0 
Consider the product A)'j' with A having the general 

form given in Eqs. (39): 

AiAj = a~ -) f(K,L )aj -) f(K,L ) 

= f(K,L + l)f(K,L +2)a~-)aj-). (A6) 

From Eq. (A3) we have (recalling that N = 2K + L ) 

a~ - )(2L + l)aj - )(2L + 1) 

= [ - ai{a·a) + ai(2K + 2L + 1) ]aj - )(2L + 1) 

= - a;(a·a)aj - )(2L + 1) + aiaj - )(2L + 1) 

X (2K + 2L - 1) [using Eqs. (26) and (34)] 

= - a;(a'a)[ - aJ(a·a) + a/2K +2L + 1)] 

+ ai [ - aJ(a·a) + aj (2K + 2L + 1) ] 

X(2K + 2L -1) [using Eq. (A3) again] 

= a;aJ(a·a)2 + aiaj(2K + 2L + 1) (2K + 2L - 1) 

- (aiaj + aiaJ) (a'a) (2K + 2L - 1) 
[using Eqs. (3)]. (A7) 

The right-hand side of this equation is symmetric in i andj. 
Thus 

aj - )(2L + l)aj - )(2L + 1) = aj - )(2L + l)aj - )(2L + 1) , 

that is, 

(2L + 3) (2L + 5) [aj - ), aj - )] = 0 , 

which implies that [a~ - >, aj - )] = O. It follows at once from 
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Eq. (A6) that [Ai' Aj 1 = 0; and in a similar way we deduce 
that [A t, A J] = o. 

We see also from Eq. (A7) that 

(2L + 3) (2L + 5) a( - )'a( - ) 

= (at·at
) (a'a)2 + (a'a) (N + L + 1) (N + L - 1) 

- (2N +3) (a·a) (N +L -1) 

= [(N-L)(N+L+l)+(N+L+3) 

X(N +L + 1) - (2N +3)(N +L + 1) ](a'a) 

=0. 

Thus a( - )'a( - ) = 0, and it follows from Eq. (A6) that 
A'A = O. In a similar way, we deduce that At'At = O. 

Equations (41) have now been confirmed. Their valid
ity can be seen also from more general arguments. Since A 
shifts the value of L down by one unit, the vector operator 

(Ji = Eijk [Aj' Ak 1 
shifts the value of L down by two units. But a vector operator 
can only have components which commute with L, or shift 
its value up or down by one unit. Thus 9, and hence [Ai' Aj ] 
must vanish. Similarly, the scalar A'A shifts the value of L 
down by two units. But a scalar operator commutes with L; 
and therefore A'A = O. 0 

Equations (42) follow trivially from Eqs. (23) and (29), 
since f (K,L ) is a scalar operator, comm uting wi th the I ki ; and 
Eqs. (43) follow at once from the fact that A and At are vector 
operators by the manner of their construction. 0 

Consider now 

vvt = (a·a)g2(K, L) (at·at) 

= (a'a) (at·at)g2(K + 1, L) 

= 2(K + 1) (2K +2L +3) g2(K + 1, L) 

[using Eqs. (15) and (AS)]. 

Similarly we find 

vtv = (at·at) (a·a)g2(K, L) 

= 2K (2K + 2L + 1) g2(K, L ) . 

With g as in Eqs. (44), these two equations reduce to 

establishing the first ofEqs. (45) and the first ofEqs. (46). 0 
Next consider the products 

Aiv = aj -) f(K, L ) (a·a)g(K, L ) 

= aj - )(a'a) f(K - 1, L )g(K, L ) , 

vAi = (a·a)g(K, L )a~ -) f(K, L ) 

= (a·a)aj - )g(K, L -1)f(K, L) 

= aj - )(a'a)g(K, L - l)f(K, L) 

[using Eqs. (3) and (20)] . 

Withfandg as in Eqs. (44) we have 

g(K, L -1 )f(K, L) = f(K -1, L )g(K, L) 

and it then follows that [Au v] = O. Taking the Hermitian 
conjugate of this equation, we deduce that [A t, vt] = 0, and 
the second set of Eqs. (45) is verified. 0 
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Consider next the products 

A;yt = aj ~) f(K, L) (at·at)g(K + 1, L) 

= a\ ~ )(at·at)f(K + 1, L )g(K + 1, L), 

ytA; = (at·at)a~ ~ )g(K + 1, L -1)f(K, L) 

Thus 

= [a; ~ )(at·at) - 2a;< ~ )]g(K + 1, L - 1) 

X f(K, L ) [using Eqs. (3) and (20)], 

= [a\ ~ )(at·at) - 2a) ~ )(at·at) (2K + 2£ + 3) -I] 

Xg(K + 1, L -1)f(K, L) [using Eq. (3Sb)] . 

[A;, yt] =a;~)(at·at)(2K +2L +3) ~I 

X [(2K +2£ + 3)g(K + 1, L )f(K + 1, L) 

- (2K +2£ + l)g(K + 1, L -1)f(K, L) ] 

=0 ~~ 

because of the form off andg in Eqs. (44). Taking the Hermi
tian conjugate ofEq. (AS) we deduce also that [A i, Y] = 0, 
so that the third set of Eqs. (4S) is confirmed. 0 

Now consider the product 

A ;Aj = f(K, L )a;< + )a5 ~ ) f(K, L ) 

= a;< + )(2£ + l)a) ~) f2(K, L) (2L - 1) -I 

= [ - a; (at·at) + a;(N + L + 3) ]a5 ~) 

X f2(K, L )(2L - 1) ~ I [using Eqs. (A4)] 

= [ - a; (at·at)a) - )(2£ + 1) + aia) - )(2£ + 1) 

X (N + L + 1) ] f2(K, L ) (4L 2 - 1) ~ I 

= ! - a;(at·at)[ - aJ(a·a) + aj(N + L + 1)] 

+ a;[ - aJ(a·a) + aj(N + L + 1) ](N + L + I») 
X f2(K, L )( 4L 2 - 1) - I [using Eq. (A3)] 

= ! a;aJ(at·af) (a·a) - a;a/at·af) (N + L + 1) 

+ 2a;aJ(N + L + 1) - a;aJ(a·a) (N + L + 1) 

+ aiaj(N + L + 1)2) f2(K, L) (4L 2 - 1) ~ I 

= !2a;aJ(K + 1) + aiaj(2K +2L + 1) 

- a;aj(at·at) - a;aJ(a·a») 

X f2(K, L)(2K + 2£ + 1) (4L 2 -1) ~ I (A9) 

[using Eqs. (AS) and (IS)]. 
In a similar way, we show that 

A;A J = !2a;ajK + a;aJ(2K +2L +3) - a;aJat·af) 

- a;aJ(a.a) lf2(K, L + 1) (2K + 2£ + 3) 

X(2L + 1) ~'(2£ +3) -I. (AW) 

It follows from Eqs. (A9) and (AS) that 

At'A = !2(2K +L +3)(K + I) + (2K +L) 

X(2K +2L + 1) -2(K + 1)(2K +2L +3) 

-2K(2K +2L + I») 

Xf2(K,L) (2K +2L + 1) (4L 2 _1)-1 

= L j2(K, L )(2K + 2L + 1) (2£ + 1) ~ I . 

Thus At'A = L for the choice of/in Eqs. (44), verifying the 
second ofEqs. (46). 0 

It can also be seen from Eqs. (A9) that 

A ;Aj - A JA; =! 2(a;aJ - ajai> (K + 1) 

+ (a;aj - aJa;) (2K +2L + I») 

2179 J. Math. Phys., Vol. 21, No.8, August 1980 

X f2(K, L ) (2K + 2£ + 1) 

X(4L 2 -1) ~I 

=ilijf2(K,L)(2K+2L+l) (2£+1)~', 

SO that, again withfas in Eqs. (44), we confirm the last of 
Eqs. (46). 0 

From Eqs. (A9) and (AI0), we see that with this choice 
off, 

(2L + I) [A;, A J] + U ;Aj 

= (2L + I)A;A J - (2L - I)A JA; +2(A iAj -A JA;) 

= 2aiaj K + a;aJ(2K + 2L + 3) - a;aj(at'at ) 

- a;aJ(a·a) - 2aj ai(K + 1) - aJa;(2K +2£ + 1) 

+ aja;(at'at ) + aJai(a.a) + 2ilij 

= -2a j ar -2Koij +2a;aJ 

+ oij(2K +2L + I) +2i lij 

= (2£ + l)oij' 

thus confirming the last ofEqs. (4S). 

APPENDIXB 

o 

In order to derive Eq. (S7) from Eq. (SS), it is necessary 
to calculate the effect of A _ E on the vector 

(A !)lml(A Dl~ 'm'IO) . 

We note that 

A~EA! = (AI -iEA2)(AT +iEAi) 

=A'At -A3A! +iE{A,AI -A2AO· 

It follows from Eqs. (4S) and (46) that 

A'At =(2L+3)(L+l) (2L+l)~', 

AlAI -A2 AT = -i(2£+3) (2L+l)~'/J2' 

so that 

A_EA! = (L + 1 + E/,2 )(2£ +3) (2£ + 1) ~I -A3A! . 
(Bl) 

We now see that if Iml > 1 (which requires I> 1), 

A _ AA !)lml(A 1>/- 'm'IO) 

=(/+ Iml-l)(2/+1) (2/-1)-1 

X(A !)Iml-I(A Dl~ 'm'IO) _ A3(A D,m,-J 

X(A !Y-Iml +110) . (B2) 

Working from Eq. (S6), we deduce that if r, s, and tare 
nonnegative integers, then 

A3 (A D'(A i}S(A D' 10) 

Now 

= [2(r+s+t)-I]-'{t(t+2r+2s) (An'(A~Y 

X (A !)' - I - r(r - 1) (A T Y - 2(A nS(./q)' + I 

- s(s -1) (A.)'(A 2 )'-2(A 1)'+ 1)10) . (B3) 

(A !)lml(A D/-lmIIO) = L Iml Iml! 
,~O r!(lml- r)! 
X (A D'(iEA D,m

, 
- '(A D /- 'm'IO) , 

(B4) 
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'and so 

Ii&t !)lml(1i 1)1 ~ ImIIO) 

= (2/-1) ~I L Iml Iml! W2 _ m 2)(1i ty 
r~O r!(lml - r)! 

X (id Dlml ~ r(,q), ~ Iml ~ I - r(r - 1) (Ii ry~2 

X (i€1i Dlml ~ r(li D/~ Iml + I + (Iml - r) 

x(lml - r -1) (Ii Dr(i€1i Dim I ~r~2 

X (Ii D/~ Iml + IlIO) 

= I W - m 2)(2/-l) ~ I (Ii !)lml(1i !)'~ Iml ~ I 

_ (2/-1) ~ I L Iml 1m I! (Ii ty~2 
r~2 (r-2)!(lml-r)! 

X (i€1i Dim I ~r(1i ;)'~ Iml +1 

+(2/-1)~1 Llml~2 Imil 
r~O r!(lml- r-2)! 

X (Ii Dr(id Dlml ~r~2(1i D'~ Iml +llIO) 

= (/2 _ m 2) (2/-1) ~ I (Ii J)lml(1i n/~ Iml ~IIO), (B5) 

since the two sums cancel. 

Combining this result with Eq. (B:~" we see that if 
Iml>l, 

Ii ~ ,(Ii Dlml(1i D' ~ ImIIO) 

= [(/+ Iml-l)(2/+I) (2/-I)~1 -(/-Iml +1) 

x(I+ Iml +1) (2/-I)~I](liDlml~l(liD/~lmII0) 

= (I + Iml)(1 + Iml-l) (2/-1) ~I 

x(liDlml~l(lin/~lmIIO). (B6) 

It follows that, if 1m I > 1, 

(01(li3)'~ Iml(1i ~ .)lml(1i Dlml(1i n/~ ImIIO) 

= (I + Iml)(1 + Iml-l) (2/-1) ~I (01(li3)/~ Iml 

X (Ii ~.)Iml ~1(1i Dlml ~1(1i !)'~ ImIIO) 

= [Imif (/-2i + Iml) (/-2i + Iml-l) )] 
i ~ 0 (21 - 2i - 1) 

X (01(,13)' ~ Iml(A D' ~ ImIIO) . (B7) 

We see from Eq. (B3) that 

,13(,1 D/~ ImIIO) = [2(/-lml) -1] ~1(/_lml)2 
X(A D/~ Iml ~ 110) , 

so that 

(01(A3)/~ Iml(1i n/~ ImIIO) 

= [2(1- Iml -1)] ~ 1(/_ Iml)2 

X (01(A3)/~ Iml ~ 1(,1 1)1 ~ Iml ~ 110) 

It is seen from Eq. (BS) that this result is valid also if m = O. 
Combining Eqs. (B9) and (55), we obtain Eq. (57). 0 

The first two of Eqs. (59) are well known in the boson 
calculus, and require no derivation here. Consider 

,11 Ik 1m) = A !cklm (yt)k(A Dlml(A !)' ~ ImIIO) 

Ck1m 
= --Ikl+ 1m) 

Ckl + 1m 
_ ((I + 1 - m)(1 + 1 + m) )112 
- (2/ + 1) I k 1 + 1 m) , 

verifying the third of Eqs. (59). 0 
Next consider, for m*O, 

A! Ik 1m) = A !ck'm(yt)k(A Dlml(A D/~ ImIIO) 

Ck1m 
---Ik 1+ 1 m +€) 
Ckl + lm +, 

= (_ €)' (I + Iml + 2)(1 + Iml + 1))1/2 
(21 + 1) 

X Ik 1+ 1 m + €) . 

From this equation we have 

At Iklm)= _((I+m+2)(/+m+I) )1/2 
+ (21 + 1) 

X Ik 1+1 m + 1) , for m > 0, 

A t~ Ik I m) = + [(1- m +2)(/- m + 1) ]112 
(21 + 1) 

X I k 1 + 1 m - 1 ) , for m < 0 . 

Now consider, also for m#O, 

= A t~ ,Cklm(yt)k (A !)lml(A D' - ImIIO) 

(BlO) 

= (A t~ <A !)ck,m(yt)k(A Dlml ~ 1(,1 ;)'~ ImIIO) 

= - (A !fck,m(yt)k(A Dlml ~I(A n/~ ImIIO) 

[using the last of Eqs. (41)] 

Ck1m 
-~-Ik 1+ 1 m-€) 
Ckl+lm~< 

= __ €«(/-lm l +2)(/-lm l +I))1/2 
() (21 + 1) 

X Ik 1 + 1 m - €) . 

From this equation we have 

At Iklm)= _(/+m+2)(/+m+I) )112 
+ (21 + 1) 

X I k 1 + 1 m + 1) , for m < 0 , 

A t~ Ik 1 m) = ((1- m + 2)(/- m + 1) )112 
(21 + 1) 

X I k 1 + 1 m - 1) , for m > 0 . 

Next consider (with € = ± 1) 

(Bll) 

[ /~i#~I( (/-lml-1Y )] 
= 11 (010) . 

j ~ 0 (21 - 21 m I - 2j - 1) 
(BS) A!lkIO) =A!ck,o(yt)k(AD/IO) 

We now combine Eqs. (B7) and (BS) to obtain (for I m I > 1) 

(01(,13)1 ~ Iml(A ~ ,)lml(A J)lml(A n/~ ImIIO) 

2180 

= 2/l!(1 + Iml)!(/- Iml)! 
(2/)! 
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(B9) 

= ~Ik 1+1 €) (B12) 
Ckl + 1< 

= ( _ €),(I + 2)(1 + 1) )1I21k 1 + 1 €) . 
(21 + 1) 

Combining Eqs. (BlO), (BIl) and (BI2), we arrive at the 
fourth set of Eqs. (59). 0 
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From Eq. (B5) we have 

A.31k 1m) = C (/2 - m
2
) (Vhk(A. t)lml(A. t)I-lml-110) 

kim (21 _ 1) J E 3 

= (12 - m
2
) ~ Ik 1- 1 m) 

(2/-1) Ckl-Im 

= ((I - m)(/ + m ») 1121 k I _ 1 m), 
(2/-1) 

as in the fifth of Eqs. (59). 0 
Using Eq. (B6), we see that, for I m I ;;;'1, 

A. _ E Ik 1m) = A. _ ECkim (vtt(A. D'm'(A. DI-,m'IO) 

(/ + Iml)(1 + Iml -1) Cklm 

(2/-1) Ckl-Im-E 
X Ik I-I m - €) 

= (_ €Y( (I + Iml)(1 + Iml -1) )1/2 
(2/-1) 

X Ik 1-1 m - €) . 

From this equation we have 

A. Iklm)= _(/+m)(/+m-l»)1I2 
- (21- 1) 

X I k I - 1 m - 1) , for m > ° , 
A. Ik 1m) = (/- m) (1- m - 1) )112 

+ (2/-1) 
X I k I - 1 m + 1) , for m < ° . 

Now consider the vector 

A.Elklm) =A.ECklm (vtt0!)lml(A.!)I-lmIIO) , 

(B13) 

on which L has the value I -1, and L3 the value fz(m + E). 
Since IfL (L + 1) = (L 1)2 + (L2)2 + (L3)2, the value of L3 
cannot be greater in modulus than that of fzL. Therefore, this 
vector vanishes unless l-l;;;.lm + €I = Iml +1; i.e., unless 
1;;;.1 m I +2. Supposing this inequality is satisfied, we write 

A.< Ik 1m) = cklmA..(A. D2(vt)k(A. ;)lml(A. j)1- lml - 210} 

= - CklmA.<A. t_. (vt)k (A. D'm' + 1 (A.1Y - Iml -210) 

[using the last of Eqs. (41)] . 

Now using Eq. (B1) (with € replaced by - E), we have 

A.< Ik 1m) = - Cklm {(L + 1 - €112)(2L + 3) 

2181 

X(2L + 1) -1(vt)k(A. D,m, + 1 (A. DI - lml -2 

-A.3(vt)k(A. ;)Iml +1(A.1)l- lml -1 J 10) 

= - Cklm !(l-lml-1)(21 + 1) (2/-1)-1 

- [12 - (Iml + 1)2] (2/-1) -I J 
X (vt)k(A. !)Iml + 1 (A. i)I-lml - 2 10) 

[using Eq. (B5)] 

= 
(1- Iml) (1- Iml -1) Cklm 

(2/-1) ckl-lmH 
Xlk I-I m + €) 
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= _. _€E(/-lmi)(/-lm l -l»)1I2 
() (2/- 1) 

X Ik 1- 1 m + €) . 

From this equation we see that 

(
/- m)(/- m - 1»)112 

A.+ Iklm) = 
(2/-1) 

X Ik 1- 1 m + 1) , for m > ° , 
A. Ik I m) = _ (I + m) (I + m -1) )112 

- (2/-1) 

X I k 1 - 1 m - 1) , for m < ° . 
It is easily seen from Eq. (56) that 

A.± (A3t )110) = 1(/-1) A. t± (A t3)1-210), 
(2/- 1) 

so that 

A.± IkIO) =A.±CkIO(V~k(A.DIIO) 

1(/-1) CklO 
= Ik 1- 1 ± 1) . 

(21 - 1) C kl _ 1 ± 1 

From this equation we see that 

A.± IkIO) = ± (/(/-l»)1I2 Ik 1-1 ± 1), 
(21- 1) 

(BI4) 

(BI5) 

and combining Eqs. (BI3), (BI4), and (BI5) we obtain the 
last of Eqs. (59). 0 
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A new tight lower bound to eigenvalues of the Schrodinger equation, which tends to be better than 
the well-known Temple lower b?und, is presented. The new bound works (as does the Temple 
~ound) for bo~h ground and excited states. Optimization of both the Temple bound and the new 
tight bound with respect to a variational trial function is discussed. Numerical results are given for 
the anharmonic oscillator. 

I. INTRODUCTION 

Traditional variational (Rayleigh-Ritz) calculations of 
eigenvalues of the Schrodinger equation yield upper bounds 
to those eigenvalues. Complementary lower bounds are 
needed to complete the picture and locate the eigenvalues 
with certainty. Tight lower bounds comparable in accuracy 
with the Rayleigh-Ritz upper bounds are normally wanted 
for this purpose. I 

The best-known tight lower bound is the Temple lower 
bound2 

ET = (H) - (En+1 - (H»)-I«H2) - (H)2) (1) 

to the energy En of the nth state of a Hamiltonian H. Here 
(H) = (<1> IH 1<1> )/( <1> 1<1» and (H2) = (<1> IH21<1»1 
(<1> 1<1> ), where 1<1> ) is an approximation to the nth state ei
genfunction. En + I' which must be greater than (H), is a 
rough prior lower bound to the energy of the (n + 1 )th state. 
In practice, 1<1» is usually the approximation obtained by 
minimizing (H ) with respect to the parameters in a suitably 
chosen variational trial function. Typically the Rayleigh
Ritz upper bound to En is much closer to En than the 
Templer lower bound to En. For example, in Bazley's well
known calculation3 on the ground state of helium, values of 
(H) and (H 2) - (H) 2 from an 80-term variational compu
tation by Kinoshita yielded -2.9037474 = ET<.EI for the 
Temple bound and EI <. (H) = - 2.9037237 for the upper 
bound. Comparison with the value EI ~ - 2.9037244 taken 
from a variational computation by Frankowski and Pe
keris,4 which is generally believed to be exact to at least one 
part in 109, shows that the errorin the Temple lower bound is 
greater than the error in the Rayleigh-Ritz upper bound by a 
factor of about 33. 

The fact that the Temple lower bound tends to be much 
further from the true value than the Rayleigh-Ritz upper 
bound motivated a search for alternative methods of obtain
ing tight lower bounds. Section II reviews relevant existing 
work and presents a new tight lower bound which can be 
expected to be more accurate than the Temple bound, and 
which works for both ground states and excited states. Sec
tion III presents numerical comparison of the Rayleigh
Ritz upper bound, the Temple lower bound, and the new 
tight lower bound for the anharmonic oscillator. Section IV 
discusses optimization of both the Temple lower bound and 
the new tight lower bound with respect to a variational trial 
function I <P ). 

II. A NEW TIGHT LOWER BOUND 

Construction of the Temple lower bound to E requires 
values for (H), for (H 2), and for En + I . The meth~ds intro
duced by Bazley3 and by Bazley and Fox5

-
8 to obtain the 

rough lower bound En + I to the (n + l)th eigenvalue En + I 
can be used to obtain rough lower bounds to other excited 
states; with this extra information available, it is possible to 
obtain improved tight lower bounds which are closer to the 
true value than the Temple bound for both the ground state 
and the excited states. This section begins by stating the basic 
theorem used to establish the lower bounds. Relevant exist
ing lower bound methods are then briefly reviewed. Intro
duction of the new tight lower bound follows. The section 
concludes with a comparison of the errors expected for the 
Rayleigh-Ritz upper bound, the Temple lower bound, and 
the new tight lower bound. 

A. The basiC theorem 

The basic theorem used to establish the lower bounds is 
. h 9 a companson t eorem well known among mathematicans 

who work on eigenvalue problems: 
Let H ( I , and H (2, be two essentially self-adjoint (Hermi

tian) Hamiltonians whose discrete eigenvalues below the 
bottom of the essential spectrum can be characterized by the 
familiarvariationalprincipleE = min(1/IlH 11/1)/(1/111/1), with 
the minimization for excited states carried out subject to the 
constraint that 11/1) be orthogonal to preceding eigenvectors. 
Denote the ordered eigenvalues of H(O by 
E\j)<.E~I)<. ... <.E~)<. ... <.E~';s' where E~';S is the energy at 
which the essential spectrum (if any) begins. Assume 
(1/I1H (1'11/1) is defined for all vectors 11/1) for which (1/I1H ,2, 11/1) 
is defined. Then if (1/IIH<I '11/1) <. (1/I1H (2)11/1) holds for all ad
missible state vectors 11/1), E~I)<.E~2) holds for all n, and 
E ~~~ <.E ~;!. 

The result E \I)<.E \2) for the ground state energy follows 
immediately from the "familiar variational principle." 
Proofs of the results for the excited states are usually based 
on one of the minimax characterizations 10 of eigenvalues. In 
practical applications of the basic theorem to the computa
tion oflower bounds, H (2) is the original Hamiltonian, while 
H ( I , is something more tractable. 

B. Review of relevant existing methods 

Several methods of obtaining a tractable lower bound-
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ing Hamiltonian H ' I ) have been introduced by Bazley, 3 and 
by Bazley and FOX.5-8 Assume that the Hamiltonian of inter
est has the form 

H=Ho+ V, (2) 

where the eigenvalue problem for Ho is exactly solvable, and 
where Vis a nonnegative operator. Then Vwill have a unique 
positive square root, which will be denoted by V 1/2 Suppose 
that P is a projection operator. The fact that a projection 
operator such as P cannot increase the length of a vector 
such as V 1/21¢') implies that (¢'I V 1t2pV 1/21¢') .,;;¢'I V I¢') forall 
admissible I¢'). Aronszajn-type projection, also known as 
inner projection, replaces V in H by a modified interaction 
V 1/2pV 1/2 and leads to a new Hamiltonian H I defined by 

H' = Ho + V 1t2pV 1/2. (3) 

Then the hypotheses of the basic theorem are satisfied with 
H' I) = H I and H (2) = H, so that the eigenvalues of H I are 
lower bounds to the eigenvalues of the original Hamiltonian 
H. It remains to choose P. 

Bazley's method of special choice l
.
3 for constructing P 

starts with the first M eigenvectors lSi) of Ho and uses 
Schmidt orthogonalization to construct vectors 15;) such 
that 

(4) 

The projection operator P, which will for this case be denot-
ed by PB I is then chosen such that the modified interac-az ey' 

tion is 
M 

VI/2p V I/2 = '" It- ') (t- ~I. Bazley k ~, ~t (5) 
;=1 

It follows immediately from (4) and (5) that P Lley = P Bazley 
and P ~aZley = P Bazley' so that P Bazley is a projection operator 
as is required. Because 15;) is a linear combination of the 
firstM lSi)' V 1/2PBazley V I/2 couples only the first Mstates of 
Ho, and the eigenvalue problem for Ho + V 1t2PBaZley V 1/2 re
duces to an eigenvalue problem for an M XM matrix. The 
above described method of special choice was used by Bazley 
to obtain the lower bound £2 to the first excited state needed 
for evaluation of the Temple lower bound to the ground state 
energy of helium. A generalization of Bazley's method of 
special choice was used by the present author to prove that 
the H - ion has only one bound state. II 

The method of special choice is inconvenient if some of 
the matrix elements (5/1 V- 115m) are hard to calculate, and 
fails if they do not exist. (This happens for the anharmonic 
oscillator example of Sec. III, where V = AX4.) An alterna
tive, which works if (5/1 V 11215 m) is a band matrix which 
couples only states for which II - m I ";;r, was introduced by 
Bazley and Fox and called the method of generalized special 
choice. 8 This alternative is the choice P = Pk where 

(6) 

The modified interaction V I/2Pk V
lt2 then couples only the 

states 151) for which I";;k + r, so that the eigenvalue problem 
for Ho + V I

/
2Pk V

I
/2 reduces to an eigenvalue problem fora 

(k + r) X (k + r) matrix. A slightly different version of the 
method of generalized special choice, which works when 
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(5/1 V 15m) is a band matrix, has also been given by Bazley 
and FOX.5.7 

In some cases more accurate bounds can be achieved by 
starting with N vectors 1111 ) which are not eigenvectors of H 0 

and proceeding as outlined above. A modified interaction 
V 1/2 PV 1/2 which couples a finite number of vectors 1111) then 
results; in order to obtain a tractable problem, Ho must then 
also be modified. The necessary modification, suggested by 
Bazley and Fox,6 is called truncation. Denote the eigenval
ues of Ho by €1";;€2";;"''';;€1 .,;; .... Define Hgl by 

s-I 

Hgl = L (€I - €n)15/) (5/1 + En!, (7) 
1= I 

whereIis the identity operator. Then (¢'IHgll¢').,;; (¢,IHol¢,) 
for all admissable I¢'), and the eigenvalues of 
Hgl + V I/2Pk V 1;2, which can be obtained by solving a finite 
dimensional matrix problem, are lower bounds to the eigen
values of the original Hamiltonian H = Ho + V. 

A generalization of these methods to three or more elec
tron atomic systems, where the continuous spectrum of Ho 
can overlap the ground state of the atom, was given by Fox, 12 
who was later joined by SigiIlito. 13 A similar but mathemat
ically less complete analysis was given by Reid, 14 who later 
tried the method on lithium 15 but was unable to raise the 
bottom of the continuum for his lower-bounding problems 
above the ground state of the atom. 

C. The new tight lower bound 

Suppose that a projection operator Phas been chosen in 
such a way that V 1/2pV 1/2 couples only the first M eigen
states of Ho. Let the subspace spanned by these first M eigen
states be denoted by SII ' and let PII be the projection operator 
which projects onto SII . Let Sl be the orthogonal comple
ment of SII ' and let P1 be the projection operator which pro
jects on Sl' Let Elb be a lower bound to the spectrum of Ho 
restricted to Sl' and define H I ,H2 by 

HI = PII(Ho + V 1/2pV 1/2)P
11 
+ ElbP1, (8) 

H2 = H - HI = V - V I/2pV I/2 + P1(Ho - Elb)P1. (9) 

Thus HI is obtained from H by truncating Ho and perform
ing an Aronszajn-type projection (inner projection) on V. 
The differenceH2 is then an operator whose expectation val
ue is nonnegative. H2 will noW be modified via an Aronszajn
type projection. Suppose now that I <P ) is an approximation 
to the nth eigenvector of H, obtained by any method, for 
which H21<P) is not the null vector. Then 

pi = H ~/21<P ) « <P IH21<P »-1 (<P IH ~12 (10) 

is a projection operator, and H; =H ~/2P 'H ~/2 
= H21<P )«<P IH21<P »-1 (<P IH2 isanoperatorwhoseexpec

tation value is less than or equal to the expectation value of 
H 2 • The eigenvalues of 

H "=HI + H; = HI + H21<P )«<P IH21<P )tl(<p IH2 (11) 

are then lower bounds to the eigenvalues of H. If solving the 
eigenvalue problem for HI requires diagonalizing an M X M 
matrix, the eigenvalue problem for H " can be solved by dia
gonalizing an (M + I)X(M + 1) matrix if P1 H21<P) is not 
the null vector; this follows immediately from using 
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«q> IH2P1 H zlq> »-1/2q> )P1 H21q> ) as one of the basis vectors 
in Si' If Pi H21 ef> ) is the null vector, the eigenvalue problem 
for H " can be solved by diagonalizing an M X M matrix. 

The above construction of H " is motivated by the obser
vation that H "Iq» = H,lef» + H 2 1ef» = H Iq»; thus if 
I q> ) were an exact eigenstate of H with eigenvalue En, it 
would also be an exact eigenstate ofH" with eigenvalue En. 
If I q> ) is a good approximation to the nth eigenstate of H, 
and if Elb is above En and not too close to En (E1b must be 
above En because Elb is an infinitely degenerate eigenvalue 
of H "), then the nth eigenvalue of H " will be a tight lower 
bound to En. 

D. Comparison with the Rayleigh-Ritz and Temple 
bounds 

The lower bound produced by H" can be compared 
with the Rayleigh-Ritz upper bound and the Temple lower 
bound produced by a given approximate I q> ) by supposing 
that Ief» = Iq>ex) + EI5q», where Iq>ex) is the exact wave 
function and E18q> )is a small error assumed perpendicular 
to Iq>ex ):(q>ex 18q> ) = O. Denote the exact energy by Eex' the 
Rayleigh-Ritz upper bound by ERR' the Temple lower 
bound by ET , and the new tight lower bound by E " . Expand
ing formally to second order in E then produces the 
following: 

ERR =Eex +E2(8q>I(H-Eex )18q» + o (E3), (12) 

Er = Eex + E2 [(5q> I(H - Eex)18q» 
- (En + I - Eext ' (8ef> I(H - Eex)218q»] + 0 (E3), 

(l3) 

and 

E" = Eex - E2 [(5q> I(Hz - H DI£5ef» 

+ (8q>I(H2-H;)(H, +H; -Eext' 
X (H2 - H DI8ef» ] + 0 (E3). (14) 

The following observations can be made: In all three cases, 
the error is of order E2. The errors in the Temple bound and 
in the new tight lower bound both look something like sec
ond order perturbation theory, but in the Temple formula, 
the energy denominator is (En + I - E ex ), whereas in the 
new tight lower bound the energy denominator is the im
proved approximation (H, + H; - E e,) which incorpo
rates not just the lower bound En + I to the (n + 1 )th excited 
state, but all of the lower bounds contained in 
H" =H I +H;. 

III. NUMERICAL RESULTS FOR THE ANHARMONIC 
OSCILLATOR 

The anharmonic oscillator, with Hamiltonian 
H=Ho+ V,where 

and 

(I 5) 

v = AX4
, (16) 

provides a well-understood one-dimensional model problem 
which can be easily solved to high accuracy. 16 Thus it pro-
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vides a useful vehicle for the preliminary exploration of the 
quality of lower-bound methods. The above bounds have 
been tested on this model as outlined below. 

The eigenstates of Ho restricted to the even parity sector 
[symmetric wave function t/J(x) = t/J( - x)] are 

5/ (x) = Cz/ ~ 2 exp( - x 2 12)h2/ ~ Z (x), (17) 

where hr is the Hermite polynomial defined by the Rodri
gues' formula 

(18) 

and Cr = (1T1/22rr!tI/2. The Bazley method of special choice 
does not work here, because the matrix elements (5/ Ix-4 15m) 
are divergent. However, (5/ 1V '/215m) = A 112(5/ Ix215m) is 
a band matrix which couples only states with II - m I.;; 1; 
thus the alternative ofEq. (6) works very nicely. '7 The modi
fied interaction V' /2Pk V '/2 = Ax2Pk x 2 then couples only the 
states 151)' 152),···,15k + I ), which span SII' The needed ma
trix elements are easily obtained with the aid of the differen
tial equation, the recursion relations, and the orthogonality 
relation for the Hermite polynomials. The matrix elements 
of Ho and X4 are 

and 

(5/ Ix4 15m) = H(21 + 2)(21 + 1)(2/)(2/-1)] 1/28/ +2.m 

+ !(4/-1) [2/(2/-1)] 1128/+ I.m 

+(8/2-12/+5)8,.m +!(4/-5) 

X [(21- 2)(2/- 3) ] 1/28/ _ I.m 

+ H (21 - 2)(21 - 3) 

(19) 

X (21 - 4)(21 - 5) ] 1/28/ ~ 2.m . (20) 

The matrix element (5/ Ix2PkX215m) equals the matrix ele
ment (5/ Ix4 15 m ) for either 1< k or m < k. All other matrix 
elements (5,lx2Pk x 215m) are zero except for 

and 

(5k IX2PkX215k) = !(20k 2 - 34k + 15), 

(5k+llx2PkX215k+l) =!k(2k-l), 

(5k+ 1 IX2PkX2 15k) = (5k Ix2Pk x
2

15k + I ) 

(21a) 

(21b) 

= !(4k - 3)[2k (2k -1)]'/2. (2Ic) 

It follows that Elb = 4k + 5, and that the null space of H2 is 
the space spanned by the k - 1 vectors Is,), \52),,",\5k ~ I)' 

Table I shows results obtained for the A = 1 ground 
state eigenvalue EI when \q» is the N-term trial function 

N 

Ief» = I a/15/), (22) 
/= 1 

with thea, chosen to minimize (H) = (q> IH Iq> )/(q> Iq»· 
Table II shows corresponding results for the second excited 
state eigenvalue E3" All computations were done with a 78 
bit mantissa (about 22 significant figures) on a Burroughs 
B7700 computer. The exact results used for comparison, and 
the lower bounds E2 and ~ to the first and third excited 
states needed for the Temple lower bound, were obtained by 
using a 52-term Rayleigh-Ritz trial function to obtain upper 
bounds and by solving the eigenvalue problem for H. with 
k = 51 to obtain lower bounds. The upper and lower bounds 
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to E, agree to 21 significant figures and give 

E, = 1.39235164153029185566. 

The upper and lower bounds to E3 agree to 17 significant 
figures and give 

E3 = 18.057557436303253. 
The values obtained for E2 and ~ are 

Ez = 8.65504995775930968779 
and 

~ = 28.8353384595042467469. 
Comparison with the corresponding Rayleigh-Ritz upper 
bounds, which are 8.65504995775930968804 and 
28.8353384595042542932, shows that Ez and ~ are exact to 
19 and 15 significant figures, respectively. The values of 

superiority of the E" bounds, does not vary much with N; it 
is roughly 1.6,2.7,3.8,5.1 and 6.0 for k = 2,4,6,8, and 10, 
respectively. Inspection of Table II shows that the Temple 
bounds are better than the E " bounds to E3 for k = 4, but the 
E " bounds are better for k = 6,8,10, and 12. As N gets large, 
the ratio (E3 - ET )/(E3 - E ") does not vary much with N; 
it is roughly 0.27, 1.0, 1.8,2.5 and 5.3 for k = 4, 6, 8, 10, and 
12, respectively. For k = 2 (not shown in Table II), the error 
E3 - E" is 5.06 = E3 - E'b for all NbecauseE'b , which is 13 
for k = 2, is an infinitely degnerate eigenvalue of the lower 
bound Hamiltonian H ". 

IV. OPTIMIZATION OF THE LOWER BOUNDS 

Inspection ofT abies I and II shows that the errors in the 
Temple lower bound and in the new tight lower bound do 
not always get smaller when the number of terms N in the 
variational trial function I <P ) increases. This is a clear indi
cation that the choice of the coefficients a, which gives the 
best Rayleigh-Ritz upper bound for a given Nis not the same 
as the choice of the a, which gives the best lower bound for 

E, - E" given for N = 1 in Table I and of E3 - E " given for 
N = 3 in Table II are the same as the differences between Eex 
and the lower bounds obtained from HI' Inspection of Table 
I shows that the E " bounds are better than the Temple 
bounds to E, in every case shown. As N gets large, the ratio 
(E, - ET )/(E, - E H), which is a quantitative measure of the 

TABLE I. The differences between E, and the various bounds to E, are listed for different numbers N of terms in cP when A = 1.0. 

E,-E" EI-E" E,-E" E,-E" E,-E" 
N ERR -E, E,-ET k=2 k=4 k=6 k=8 k = 10 

1 3.58X 10-' 5.lIX 10-' 8.66X 10-2 1.95X 10-3 1.41 X 10.4 2.75 X 10-' 5.82X 10-' 
2 2.03X 10-2 1.23 X 10-' 1.88x 10-2 1.95 X 10-3 1.41 X 10-' 2.75X 10-' 5.82X 10-' 
3 2.72X 10-] 7.59X 10-3 3.29X 10-3 1.95 X 10-3 1.41 X 10-" 2.75X 10-' 5.82X 10-' 
4 2.56X 10-3 1.38 X 10-2 6.63X 10-3 1.54x 10-" 1.41 X 10-' 2.75X 10-' 5.82X 10-' 
5 1.02 X 10-3 1.31 X 10-2 7.00 X 10-3 8.74X 10-" 1.41 X 10-' 2.75X 10-' 5.82 X 10-' 
6 2.14X 10.4 5.14x 10-3 3.01 X 10-3 8.20X 10-' 8.43 X 10-' 2.75X 10-' 5.82X 10-' 
7 2.33X 10-' 9.69X 10.4 5.93X 10-' 2.87X 10-' 7.74X 10-' 2.75X 10-' 5.82 X 10-' 
8 3.8SX 10-· 6.23 X 10-' 3.7SX 10-5 2.03x 10-' 1.17x 10-5 5.31 X 10-· S.82X 10-' 
9 3.8SX 10-· S.68X 10-5 3.41 X 10-' 1.83 X 10-5 1.0S X 10-5 5.02 X 10-6 5.82x 10-' 

10 2.28x 10-6 7.4OX 10-5 4.SSX 10-' 2.56X 10-' 1.53 X 10-5 7.94x 10-· 1.68 X 10-' 
II 8.02X 10-' 4.26X 10-' 2.63X 10-' 1.51 X 10-5 9.75X 10-6 5.93x 10-· 3.59X 10-' 
12 1.77X 10-' 1.43 X 10-' 8.89X 10-6 5.18X 10-· 3.54x 10-6 2.49 X 10-· 4.00X 10-' 
13 2.34X 10-" 2.68X 10-· 1.67 X 10-6 9.78X 10-' 6.85X 10-' 5.I7X 10-' 2.35 X 10-' 
14 5.54X 10-9 1.91 X 10-' 1.17 X 10-' 6.71 X 10-" 4.60X 10-" 3.44X 10-" 2.54X 10-" 
15 5.S2X 10-" 1.56X 10-' 9.S8X 10-" 5.44X 10-" 3.71 X 10-' 2.75X 10-" 2.03X 10-" 
16 3.74X 10-" 2.36X 10-' 1.46x 10-' 8.50X 10-" 5.93 X 10-" 4.50X 10-" 3.36X 10-" 
17 1.64 X 10-" 1.62 X 10" 1.01 X 10-' 5.91 X 10-" 4.15X 10-" 3.17XIO-" 2.44 X 10-' 
18 4.89 X 10,10 6.96X 10-" 4.33X 10-" 2.55 X 10-" 1.79 X 10-" I.38x 10-" I. lOX 10-" 
19 9.64X 10-" 1.93 X 10-" 1.20X 10-" 7.08 X 10-9 5.00X 10-" 3.85 X 10-9 3.11 X 10-9 

20 1.45 X 10-" 2.85X 10-9 1.78 X 10-9 1.05 X 10-9 7.39X 10- 10 5.69X 10-'0 4.62X 10- 10 

21 8.15X 10,'2 2.23x 10-10 1.36 X 10- 10 7.74X 10-" 5.26X 10-" 3.90X 10-" 3.03 X 10-" 
22 7.74X 10- '2 5.01 X 10- '0 3.IIXIO- 1O 1.81 X 10- 10 1.26 X 10- 10 9.60X 10-" 7.70x 10-" 
23 4.90X 10-" 6.02X 10-10 3.75 X 10- 10 2.20X 10- 10 1.55x 10-10 t.I9X 10- '0 9.61 X 10-" 
24 2.17XIO- '2 3.94 X 10- 10 2.46 X 10- 10 1.44 X 10-10 1.02 X 10- 10 7.86X 10-" 6.38X 10-" 
25 6.96X 10- 13 1.73X 10- '0 1.08 X 10- 10 6.38X 10-" 4.51 X 10-" 3.48 X 10-" 2.83 X 10-" 
26 1.55X 10- 13 5.23X 10-" 3.26X 10-" 1.93 X 10-" 1.36 X 10- " 1.05 X 10-" 8.58 X 10- '2 
27 2.65X 10-1• 9.24X 10- '2 5.77XIO- '2 3.41 X 10-" 2.41 X 10- 12 1.86x 10. 12 1.52 X 10- '2 
28 1.24 X 10-1• 6.84X 10- 13 4.23 X 10- 13 2.46 X 10-13 1.71 X 10- 13 I.30x 10- 13 l.04x 10- 13 

29 1.24x 10- 1' 9.64X 10- 13 5.98X IO-I.l 3.49X 10- 13 2.44x 10- 13 1.87x 10- 13 1.50X 10,13 
30 8.94X 10,15 1.48 X 10- '2 9.22X 10- 13 5.42 X 10- 13 3.83 X 10- 13 2.95X 10'" 2.39X 10,13 
31 4.64X 10-15 1.16x 10- '2 7.24x 10-13 4.27X 10-13 3.02X 10- 13 2.33 X 10-" 1.89 X 10- 13 

32 1.80x 10- 15 6.14X 10-13 3.83 X 10- 13 2.26X 10- 13 l.60x 10-" 1.24X 10-" 1.01 X 10-" 
33 5.19X 10- '6 2.34x 10- 13 1.46 X 10- 13 8.64X 10- 1• 6.12x 10-1• 4.74x 10- 14 3.86x 10- '4 
34 1.07 X 10- '6 6.IOX 10-1• 3.81 X 10- 1• 2.25x 10-'4 1.60 X 10- '4 1.24 X 10-1• 1.01 X 10- 1• 
35 2.47 X 10-" 8.40X 10-15 5.25 X 10- 15 3.IOX 10-15 2.19x 10- '5 1.69 X 10- 15 1.38 X 10'" 
36 1.97X 10-" l.00X 10- '5 6.18X \0-16 3.58X \0-16 2.48 X 10- '6 1.88x 10-" 1.50X 10'" 
37 1.82X \0-" 2.71 X 10-" 1.69 X 10- 15 9.94x 10- '6 7.00X 10- '6 5.39x 10-1• 4.37 X 10,1. 
38 1.23 X 10-" 3.31 X 10-" 2.07X \0-15 1.22X 10- 15 8.63X \0-16 6.66X \0-16 5.42 X \0.16 
39 6.20X 10"" 2.40 X 10- 15 1.50x 10- 15 8.85 X 10- '6 6.27x 10- '6 4.85 X 10- '6 3.95 X 10- 1• 
40 2.42X 10- ' " 1.24X 10- '5 7.78x \0-16 4.59x \0-1. 3.26x 10-1• 2.52x 10- 1• 2.05X 10- 1• 
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TABLE II. The differences between E3 and the various bounds to E3 are listed for different numbers N of terms in <P when A = 1.0. 

E3- E " E3 -E" 
N ERR -E3 E3- ET k=4 k=6 

E3- E " E3 -E" E3- E " 
k=8 k = 10 k= 12 

3 2.67X 10 2.33 2.68X 10- 1 1.78x 10-1 2.38X 10-2 6.67X 10..4 
4 9.72 4.41 X 102 6.65X 10- 1 2.68X 10- 1 1.78 X 10-1 2.38X 10-2 6.67X 10-' 
5 3.68 3.39X 10 1.90 2.68X 10- 1 1.78 X 10-1 2.38X 10-2 6.67 X 10-' 
6 1.25 1.35 X 10 1.99 2.67X 10- 1 1.78 X 10- 1 2.38 X 10-2 6.67 X 10-' 
7 3.38X 10- 1 5.49 1.92 2.08X 10- 1 1.78x 10-1 2.38X 10-2 6.67X 10-' 
8 6.28X 10-2 1.66 1.53 2.13X 10- 1 7.90X 10-2 2.38X 10-2 6.67X 10-' 
9 9.68 X 10-3 2.54X 10- 1 6.18X 10- 1 1.24 X 10-1 7.36X 10-2 2.38 X 10-2 6.67X 10-' 

10 6.64X 10-3 2.65X 10-2 1.07 X 10- 1 2.25X 10-2 1.05 X 10-2 4.71 X 10-3 6.67X 10-' 
II 5.89 X 10-3 7.88X 10-2 2.56X 10- 1 5.78X 10-2 3.23X 10-2 9.94X 10-3 6.67X 10-' 
12 3.31 X 10-3 8.82X 10-2 2.76X 10- 1 6.41 X 10-2 3.71 X 10-2 1.23 X 10-2 3.35X 10-' 
13 1.26x 10-3 S.34X 10-2 1.77 X 10-1 4.35 X 10-2 2.52X 10-2 1.04 X 10-2 4.69X 10-' 
14 3.31 X 10-' 2.08X 10-2 7.36X 10-2 1.90 X 10-2 1.09 X 10-2 5.94X 10-3 5.35 X 10-' 
IS 5.70X 10-' 5.04X 10-3 1.84X 10-2 4.87X 10-3 2.80X 10-3 1.82 X 10-3 4.39X 10-' 
16 1.21 X 10-' 5.47 X 10-' 2.03X 10-3 5.37X 10-' 3.05 X 10-' 2.IOX 10-' 1.25 X 10-' 
17 1.08 X 10-' 1.36 X 10-' S.2SX 10-' 1.33 X 10-' 7.25 X 10-' 4.76X 10-' 3.15XIO-' 
18 8.96X 10-6 3.25X 10..4 1.21 X 10-3 3.20X 10-' 1.81 X 10-' 1.24X 10..4 8.05X 10-' 
19 4.99X 10-6 3.13x 10-' 1.16X 10-3 3.08X 10-' 1.76 X 10-' 1.21 X 10..4 8.05X 10-' 
20 2.00X 10-6 1.82X 10..4 6.73X 10-' 1.80X 10-' 1.03 X 10-' 7.16X 10-' 5.04X 10-' 
21 5.76X 10-7 7.33X 10-' 2.70X 10-' 7.22X 10-' 4.15X 10-' 2.90X 10-' 2.15 X 10-' 
22 1.15X 10-7 1.97 X 10-' 7.24X 10-' 1.94X 10-' 1.11 X 10-' 7.80X 10-6 5.93x 10-6 

23 2.27X 10-" 2.77X 10-6 1.02 X 10-' 2.73X 10-6 1.57 X 10-6 1.09 X 10-6 8.37 X 10-7 
24 1.68 X 10-" 2.92X 10-7 1.11 X 10-6 2.87X 10-7 1.59XIO-7 1.07 X 10-7 7.84X 10-" 
25 1.55 X 10-" 7.85X 10-7 2.92X 10-6 7.73XIO-7 4.40X 10-7 3.05X 10-7 2.31 X 10-7 
26 1.01 X 10-" 9.48X 10-7 3.50X 10-6 9.33 X 10-7 5.35X 10-7 3.73X 10-7 2.85X 10-7 
27 4.80X 10-9 6.61 X 10-7 2.43 X 10-6 6.51 X 10-7 3.74X 10-7 2.61 X 10-7 2.00X 10-7 
28 1.72 X 10-9 3.22X 10-7 1.18 X 10-6 3.17X 10-7 1.83 X 10-7 1.28 X 10-7 9.81 X 10-" 
29 4.52X 10- 10 1.13 X 10-7 4.15X 10-7 1.11 X 10-7 6.41 X 10-" 4.49 X 10-" 3.45X 10-" 
30 8.79X 10-" 2.59X 10-" 9.51 X 10-" 2.55x 10-" 1.47 X 10-" 1.03 X 10-" 7.93X 10-9 

31 2.80X 10-" 2.74X 10-9 1.01 X 10-" 2.70X 10-9 1.55 X 10-9 1.08 X 10-9 8.26X 10- 10 

32 2.67X 10- 11 9.12X 10- 10 3.41 X 10-9 8.98 X 10- 10 5.08 X 10- 10 3.49 X 10- 10 2.63 X 10-10 

33 2.27X 10-" 2.18 X 10-9 8.05X 10-9 2.15X 10-9 1.23 X 10-9 8.59 X 10-10 6.57x 10- 10 

34 1.41 X 10-" 2.25X 10-9 8.28 X 10-9 2.22X 10-9 1.27X 10-9 8.92X 10- 10 6.84X 10- 10 

35 6.64X 10- 12 1.49 X 10-9 5.47X 10-9 1.46 X 10-9 8.43 X 10- 10 5.91 X 10- 10 4.54X 10- 10 

36 2.42 X 10-" 7.19XIO- 1O 2.64X 10-9 7.08 X 10- 10 4.08X 10- 10 2.86X 10- 10 2.20x 10- 10 

37 6.66X 10-\3 2.57X 10- 10 9.43 X 10- 10 2.53X 10- 10 1.46 X 10- 10 1.02 X 10- 10 7.88 X 10- 11 

38 1.40 X 10-\3 6.20X 10-" 2.27X 10- 10 6.11 X 10-" 3.52X 10-" 2.47 X 10-" 1.90X 10- 11 

39 4.57X 10- 14 7.31 X 10- 12 2.69X 10- 11 7.20X 10- 12 4.14XIO- 12 2.90X 10- 12 2.22X 10- 12 

40 4.26X 10- 1• 1.79 X 10- 12 6.66X 10- 12 1.76 X 10- 12 9.99X 10-\3 6.90X 10-\3 5.22 X IO- IJ 

that value of N. Subsection A below shows how to choose the 
a, to get the best Temple lower bound for a given N. Subsec
tion B shows how to choose the a, to optimize the new tight 
lower bound for a given N. 

N 

I<P) = L a,lb,), (25) 
,= I 

where Ib, ) are members of a suitably chosen orthonormal set 
and the a, are (linear) variational parameters to be deter
mined. Varying (24) with I <P ) given the form (25) leads, via a 
standard argument, to the matrix eigenvalue problem 

A. Optimization of the Temple lower bound 

We begin with the observation that the usual formula 
(1) for the Temple lower bound E T can be rearranged to take 
the form 

(23) 

It follows that the best Temple boundET can be charac
terized by the minimum principle 

- - -I . (<PI(H-En+J)I<P) 
(ET -Eo+l ) =mm(<PI(H_En+J)21<P)' 

(24) 

The minimum principle (24) for the lower bound can also be 
obtained via the procedure of Lehman l8 and Maehly,18 
which amounts to the calculation of Rayleigh-Ritz bounds 
on the operator (H - En + I I t I with trial functions of the 
form (H - En + I I) I <P ) . Assume now that I <P ) is constrained 
to have the form 
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N _ 

L (bk I(H - Ell + 11)2Ib, )a, ,= I _ _ N _ 

= (ET - Ell + I) L (bk I(H - En +-11)lb, )a,. (26) ,= I 

If En, I is not an eigenvalue of H so that (H - En + I 1)2 is 
positive definite, the existence of solutions to (26) follows 
from the minimum principle (24) by invoking the theorem of 
Weierstrass that a continuous function of several variables 
which are restricted to a finite closed domain assumes a 
minimum on that domain. The finite, closed domain can, for 
example, then be chosen to be 
~k' (bk I(H - En + 11)2Ib, )aka, = 1. Actually, it is suffi
ci~nt that En+ I not be an eigenvalue of the N X N matrix 
(bkIHlb,)' 

The numerical solution of the matrix eigenvalue prob
lem (26) is hampered by the fact that the matrices 
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(~k I(H - En + I j?I~I) and (~k I(H - En + I /)I~I) are al
most singular if En + I is close to the (n + l)th eigenvalue of 
(~k IH I~I)' An effective iterative procedure, which circum
vents this problem and exploits the fact that the vector which 
gives the best Rayleigh-Ritz upper bound is close to the vec
tor which optimizes the Temple bound, follows. 

The iterative procedure starts with the nth and 
(n + l)th eigenvectors a (n), a(n + I) of (~k IH I~I)' whose 
components will be denoted by a~n) and a~n + I). The vector 
a(n) is presumably a good starting approximation to the vec
tor which optimizes the Temple bound; the vector a(n + I) is 
the vector whose presence causes trouble when En + I is close 
to the (n + l)th eigenvalue of (~k IH I~I)' The Temple 
bound E V) which results from using (25) with a l = a~n) is 
calculated. The matrix A with elements 

Ak,/ = (~kl(H-En+II?I~I) -(EY)-En+ l ) 

x(~kl(H-En+I/)I~I) (27) 

and the vector Aa (n) are then computed. Let lIall denote the 
usual Euclidean norm 

(28) 

of the vector a. The iteration stops when IIAa(n)1I 2/1Ia(n)11 2 is 
less than some prescribed small parameter E. If 
IIAa(n)1I 2/I1a(1)1I 2 is not sufficiently small, the matrix D, given 
by 

(29) 

is computed. Here IN is the N X N identity matrix and {) is a 
small parameter; the term I N{) is inserted to prevent the ma
trix D from becoming too singular. The linear equations 

Db(J) = a(n + i-I) , i = 1,2 

are then solved to obtain new vectors b(O. 19 The ratio 
IIAb(Oll/llb(1)1I will in general be smaller than the ratio 

(30) 

IIAa(n + i-I)lI/lIa(n + i-I)II. The matrix eigenvalue problem 
(26) is solved exactly (to machine accuracy) in the two di
mensional subspace spanned by the vectors b' I) and b(2) to 
obtain new N-dimensional vectors c' I I and c' 2 I which are the 
eigenvectors of (26) in the subspace spanned by b' I I and b'21. 
If the eigenvalues of (26) in the subspace spanned by b' I I and 
b' 2 I are degenerate or almost degenerate, the eigenvectors are 
not computed and c' I I, C'21 are taken equal to b' I I, b,21. The 
procedure is then repeated with a(n) replaced by the member 
of the pair c' I I, C'2 I which gives the best Temple bound, and 
a (n + I) replaced by a linear combination of the c (,) which is 
orthogonal to the new a(n). This orthogonalization is needed 
to prevent the b(O from approaching linear dependence as the 
iteration proceeds. It was found essential to carry along the 
approximations a(n + I), b,2 1, C, 2l to the "troublemaking" 
vector and solve exactly in the subspace spanned by b' I ) and 
b' 2 I; without this refinement the iteration did not converge. 

Table III shows optimized Temple lower bounds to EI 
obtained for six different values of the lower bound if; to the 
first excited state. Comparison with the unoptimized Tem
ple bounds of Table I shows that the improvement obtained 
fluctuates with N almost in periodic fashion: the ratio of the 
error E I - ET for the unoptimized bound to the error 
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EI - ET for the optimized bound, which is a quanitative 
measure of the improvement, has maxima for N = 2, 4 or 5, 
10 or 11, 17,23 or 24,31, and 39, and minima for N = 3, 8, 
14, 21, 28, and 36. The various values of E2 used are obtained 
from if; = aEI ub + (1 - a)E2lb where 
EI ub = 1.39235164153029185566 is the 52-term Rayleigh
Ritz upper bound, which is exact to the 21 significant figures 
shown, and E 21b = 8.65504995775930968779 is the k = 51 
lower bound used for the unoptimized Temple bounds, 
which is exact to 19 significant figures. It is straightforward 
to prove that the Temple bound (optimized or unoptimized) 
improves as En + I moves closer to En + I . Comparing the 
results for different values of if; shows when the error is 
significant: The error EI - ET in the optimized Temple 
bound is sensitive to the value of E2 only when the error 
E2 - if; in the if; lower bound is within an order of magni
tude of EI - ET . The unoptimized Temple bound showed 
no such sensitivity to the value of E2• Similar results (not 
shown) have been obtained for optimized Temple lower 
bounds to excited states. 

The parameters {) and E in the iterative optimization 
scheme were given the values {) = 10-5 and E = 10-28 . With 
these values of {) and E, computation ofthe optimized Tem
ple lower bound to EI required at most three iterations, ex
cept for a = 0.1 and N = 3, where five iterations were need
ed. For N greater than 25, one iteration was sufficient. The 
choices of E and {) were not critical. 

The approach of Lehman 18 and Maehlyl8 to the opti
mized Temple bound shows that a lower bound to En + p + I 
is given by the pth eigenvalue of (26). Some lower bounds to 
EI of this type are shown in Table IV for n = p = 2 and for 
n = p = 3. The various values of En + I used are obtained 
from En + I = aEnub + (1 - a)E(n + 1)lb' where the upper 
bounds E2 ub ,E3 ub' and the lower bounds E31b ,E41b agree 
with the exact values of E 2,E3 , and E4 to at least 15 signifi
cant figures. The bounds for n = p = 3 are better than those 
for n = p = 1 and n = p = 2 for all N greater than 8. The 
bounds for n = p = 2 are better than those for n = p = 1 (for 
a given a) except for N = 10, 16, and 17 when a = 10-8 and 
N = 16, 17,23,25,30,31, and 32 when a = 10-12. Again 
significant improvement in the lower bound is obtained 
when the difference En + I - E,. + I is within an order of 
magnitude of E I - ET . The lower bounds are more accurate 
than the Rayleigh-Ritz upper bounds, for the same N, for 
N = 3-6 when a = 10-2 and n = p = 2, for N = 3-7 when 
a = 10-8 or 10-12 and n = p = 2, for N = 9-11 when 
a = 10-2 and n = p = 3, and for n = 9-12 and 14-33 when 
a = 10-12 and n = p = 3. 

The improvement obtained by making En + I - En + I 
of the order of the accuracy desired suggests an iterative 
procedure which starts with rough lower bounds En + I and 
uses the Lehman-Maehly optimized Temple bounds ob
tained at a given step as improved En + I for use in the com
putation of better Lehman-Maehly optimized Temple lower 
bounds at the next step. 

B. Optimization of the new tight lower bound 

The best new tight lower bound to the nth eigenvalue of 
the original Hamiltonian H will be obtained when the nth 
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TABLE III. The differences ERR - E, between E, and the Rayleigh-Ritz upper bound and the differences E, - E1' between E, and the optimized Temple 

l.£wer bound to E, for different lower bounds if2 to the first excited state are listed for different numbers N of terms in <P when A = 1.0. if2 is given by 
E2 = aE, uh + (I - a)E, 'h' whereE, uh is a Rayleigh-Ritz upper bound toE, which is exact t021 significant figures andE, 'b is a lower bound toE2 which is 
exact to 19 significant figures. 

E, -E1' E,-ET E, -E1' E,-ET E,-E1' E, -E1 
N ERR -E, a = IO~' a = 1O~2 a = 1O~4 a = 1O~8 a = 10~12 a=O 

3.58X 10-' 6.13 X IO~' 5.21 X 1O~' 5.11 X IO~' 5.IIXIO~' 5.11 X 1O~' 5.11X 1O~' 
2 2.03 X 1O~2 5.75X 1O~2 4.78 X 1O~2 4.68X 1O~2 4.68 X 1O~2 4.68 X 1O~2 4.68 X 1O~2 

3 2.72x 1O~3 8.36X 1O~3 7.32 X 1O~3 7.21 X 1O~3 7.21 X 1O~3 7.21X 1O~3 7.21 X 1O~3 

4 2.56X 1O~3 3.52 X 1O~3 2. lOX 1O~3 1.93 X 1O~3 1.92 X 1O~3 1.92 X 1O~3 1.92 X 1O~3 

5 1.02X 1O~3 3.50X 1O~3 1.57 X 1O~3 1.08 X 1O~3 1.07 X 1O~3 1.07 X 1O~3 1.D7 X 1O~3 

6 2.l4X 1O~4 1.81 X 1O~3 1.39 X 1O~3 1.07 X 1O~3 1.07 X 1O~3 1.07 X 1O~3 1.07 X 1O~3 

7 2.33 X 1O~5 4.23 X 1O~4 3.74X 10~4 3.58 X 1O~4 3.58 X 1O~4 3.58 X 1O~4 3.58 X 1O~4 

8 3.85 X lO~b 5.75X 1O~5 5.17 X 1O~' 5.07 X !O~5 5.07X 1O~' 5.07 X 1O~5 5.07 X 10' 

9 3.85X 1O~6 2.54x 10.5 2.08 X 10~5 1.14 X 1O~5 1.09 X 1O~5 1.09 X 1O~5 1.09 X 1O~' 

10 2.28 X 1O~6 2.42 X lO~5 2.04 X lO~5 5.84x lO~6 3.87 X 1O~6 3.87X lO~6 3.S7X lO~6 

II 8.02 X 1O~7 1.37 X lO~5 1.22 X 1O~5 5.72X 1O~6 2.35 X lO~6 2.35X lO~6 2.35 X 1O~6 

12 1.77 X 1O~7 4.91 X !O~6 4.41 X lO~6 3.89X !O~b 2.31 X 1O~6 2.31 X 1O~6 2.31 X 1O~6 

\3 2.34X !O~" 1.11 X !O~6 1.01 X lO~6 9.96X !O~7 9.94X 1O~7 9.94X 1O~7 9.94X 1O~7 

14 5.54X 1O~9 1.69 X !O~7 1.53 X lO~7 1.51xlO~7 1.50 X 1O~7 1.50 X 1O~7 \.SOX 1O~7 

15 5.52 X 1O~9 6.86X IO~' 6.18X 1O~8 5.90X !O~" 3.22X !O~" 3.21 X 1O~8 3.21 X lO~8 

16 3.74X !O~9 6.79 X IO~K 6.12X 1O~8 5.8SX lO~" 1.06 X 1O~8 1.04 X 1O~8 1.04 X 1O~8 

17 1.64 X !O~9 4.51 X IO~' 4.07X lO~8 3.98X 1O~8 5.43 X 10~9 5.\3 X 1O~9 5.13 X 1O~9 

IS 4.89X !O~JO 2.01 X !O~8 1.81 X !O~. 1.79 X lO~K 4.46 X 1O~9 3.94X 1O~9 3.94X lO~9 

19 9.64X lO~JJ 6.22X lO~9 5.63 X !O~9 5.57 X !O~9 4.16XlO~9 3.86 X 1O~9 3.S6x!O~9 

20 1.45 X IO~JJ 1.30 X lO~9 1.18 X 1O~9 1.16 X !O~9 1.16 X 1O~9 1.16 X 1O~9 1.16 X 1O~9 

21 8.15 X 1O~12 2.36X 1O~1O 2.14XIO~1O 2.12X 1O~1O 2.05 X IO~JO 2.03 X lO~\O 2.03x 1O~J(' 

22 7.74X lO~" 1.56x 1O~J() 1.41 X !O~JO 1.40 X 10~1U 8.32 X lO~" 5.06X lO~JJ 5.06X lO~JJ 

23 4.90X 1O~12 1.47 X lO~'o 1.33 X 1O~1O 1.32 X 1O~ JO 8.00X lO~JJ 1.81 X !O~JJ 1.81x!O~JJ 

24 2.17 X 10~12 9.53 X lO~' I 8.63 X 1O~1I 8.54X 10~1I 6.8IxlO~1I 9.21 X !O~'2 9.18x 10~'2 

25 6.96x !O~u 4.41 X lO~JJ 3.99X !O~JJ 3.95X !O~" 3.72 X 1O~1I 6.83 X 1O~12 6.78X 1O~12 

26 1.55 X \O~" 1.49 X lO~JJ 1.35 X !O~II 1.33 X !O~II 1.33 X 1O~1I 6.82X 1O~12 6.78X 1O~12 

27 2.65 X 1O~14 3.57x 1O~12 3.24X !O~12 3.20X 1O~12 3.20X 1O~12 3.17X 10. 12 3.17X 10" 

28 1.24 X 10~14 6.77 X 1O~1J 6.14X !O~u 6.08 X 1O~1J 6.08 X 1O~13 6.01 X !O~IJ 6.01 X IO~I' 

29 1.24 X !O~14 3.27X 1O~13 2.96X lO~13 2.93 X 1O~13 2.92X IO~IJ 1.46X 1O~13 1.43 X lO~u 

30 8.94x 1O~15 3.27X lO~n 2.96X JO~lJ 2.92X 1O~\3 2.92 X lO~u 5.65X !O~14 4.73 X 10~14 

31 4.64X !O~15 2.46 X !O~13 2.23 X JO~IJ 2.21 X 1O~1J 2.20x 1O~13 3.78X 1O~14 2.13 X 1O~14 

32 1.80X 1O~15 1.35 X !O~13 1.22 X !O~IJ 1.21XlO~lJ 1.2IXlO~13 3.67 X 1O~14 1.31 X !O~14 

33 5.19X 1O~16 5.58X JO~14 5.06X JO~14 5.01 X JO~14 5.01 X 1O~14 3.23 X 1O~14 1.13xlO~14 

34 1.07 X IO~ 16 1.73 X 1O~14 1:57 X !O~14 1.56 X 10~14 1.56 X 1O~14 1.48 X !O~14 1.07 X !O~ .. 

35 2.47 X IO~" 3.94x 1O~15 3.57X lO~15 3.54X lO~15 3.54x lO~15 3.54x 1O~15 3.52 X 10- 15 

36 1.97 X 10" 9.16XIO- '6 8.31 X 10 '6 8.23 X 1O~16 8_23X 10-'6 8.Bx 10-'6 7.31 X 1O~'6 

37 1.82x 10-" 6.61 X lO~16 5.99X 1O~16 5.93X lO~16 5.92 X lO~16 5.62 X 1O~16 1.99X lO~16 

38 1.23 X lO-" 6.37 X lO~16 5.77 X 10- '6 5.7IxlO~16 5.71 X 1O~\6 5.48x 1O~16 7.27XIO- '7 

39 6.20X 1O~1X 4.57X 1O~16 4.14x 10'6 4.IOX 10- '6 4.IOXIO~16 4.02 X 1O~16 3,49X 10~17 

40 2.42 X 1O~1X 2.48 X 1O~16 2.25 X 1O~lh 2.23X 10- '6 2.23 X 1O~lh 2.21 X 1O~16 2.22x \O~17 

or 

(SI IH21<P ) = « <P IH2 ItP") t l (<P IH21<P) (SI IH2ItPn)' 

1= 1,2, ... ,N. (34) 

eigenvalue E ~ of H" is a maximum as a function of the pa
rameters in the trial function I <P ) (provided, of course, that 
E ~ <E1b ). Assume again that I <P ) is constrained to have the 
form (25). Necessary conditions for E ~ to be a maximum are 
that 

aE~/aa, =aE~/ajj, =0. 1= 1,2, ... ,N (31) 

If(33) is satisfied, E ~ is the same as the nth eigenvalue of HI 
and the term inH" which contains I <P ) does not improve the 
lower bound. On the other hand, (25) and (34) imply that 

(sufficiency will be discussed below). The derivatives in (31) 
can be computed from the Hellmann-Feynman theorem 
(which holds for finite dimensional matrices when the eigen
values are nondegenerate): 

aE ~/aal = «tPn ItPn »-I(tPn laH" laal ItPn)' 1= 1,2, ... ,N. 
(32) 

Here I tPn ) is the eigenfunction of H " belonging to E ~. The 
conditions (31) then imply that either 

(33) 
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N 

ak =CI Gk.I (SIIH2ItPn) +bk, (35) 
I_I 

where C = « <P IH2ItP") )-1 (<P IH21<P ) is an undetermined 
nonzero constant, G k.1 is the generalized inverse of the N X N 
matrix (Sk IH2 Isl)' and the bk are the components of an 
arbitrary vector b in the null space of (Sk IH2Isl)' The gener
alized inverse Gk,1 is defined in the usual way by 

N 

I Gk,l (Sk IH2ISm) = Qk.m (36) 
I~ I 
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TABLE VI. The difference between E3 and the Rayleigh-Ritz upper bound ERR' the difference between E3 and the optimized Temple bound ET for 
E. = E, Ib' and the differerences between E3 and the optimized new tight lower bounds E" are listed for different numbers N of terms in f/J when A. = 1.0. 

E3-ET E3-E" E3- E " E3- E " E3- E " E3- E " 
N ERR -E3 n = 3,p = I k=4 k=6 k=8 k= 10 k= 12 

3 2.67X 10 2.33 2.68X 10-' 1.78X 10- ' 2.38X 10-2 6.67x 10-' 
4 9.72 9.12 6.65X 10-' 2.68X 10- ' 1.78X 10- ' 2.38X 10-2 6.67X lOA 
5 3.68 8.94 3.81 X 10-' 2.68X 10- ' 1.78X 10-' 2.38X 10-2 6.67X lOA 
6 1.25 2.52 3.69X 10-' 2.67X 10- ' 1.78X 10-' 2.38X 10-2 6.67X lOA 
7 3.38X 10-' 6.39X 10-' 3.54XIO-' 1.87X 10-' 1.78 X 10-' 2.38X 10-2 6.67XIO-' 
8 6.28X 10-2 1.79x 10-' 2.89X 10-' 9.83X 10-2 7.90X 10-2 2.38X 10-2 6.67X 10-' 
9 9.68X 10-3 5.53X 10-2 1.71 X 10-' 4.22x 10-2 2.75x 10-2 2.38X 10-2 6.67X lOA 

10 6.64x 10-3 2.00X 10-2 7.23x 10-2 l.72x 10-2 7.96X 10-3 4.71 X 10-3 6.67X 10-' 
II 5.89x 10-3 9.64x 10-3 5.75x 10-2 1.15 X 10-2 2.86x 10-3 8.68 X lOA 6.67X 10-' 
12 3.31 X 10-3 6.89x 10-3 5.44x 10-2 1.15 X 10-2 2.28x 10-3 4.75XI0-' 3.35X 10-' 
13 1.26 X 10-3 6.86X 10-3 3.66X 10-2 8.16X 10-3 2.21x 10-3 4.73x 10-' 3.22X 10-' 
14 3.31 X 10-' 3.94X 10-3 1.69 X 10-2 3.82X 10-3 1.48 X 10-3 3.69X lOA 2.14 X lOA 
15 5.70X 10-' 8.97x lOA 5.24x 10-3 1.23 X 10-3 5.84x 10-' 2.03 X lOA 1.04 X 10-' 
16 1.21 X 10-' 2.19X 10-4 1.09 X 10-3 2.70X 10-' 1.41 X 10-4 7.IOXIO-' 3.96X 10-' 
17 1.08 X 10-' 7.05 X 10-' 3.00x 10-4 7.23 X 10-' 3.63X 10" 2.IOX 10-' 1.35 X 10-' 
18 8.96X 10-6 3.07X 10-' 2.76X 10-4 6.39X 10-' 3.00X 10-' 1.63 X 10-' 8.68 X 10-" 
19 4.99X 10-6 1.89x 10-' 2.35 X 10-4 5.59X 10-' 2.72X 10-' 1.53 X 10-' 8.64X 10-6 

20 2.00X 10-" 1.69 X 10-' l.40x 10-" 3.41 X 10-' 1.73 X 10-' 1.02 X 10-' 6.32X 10-" 
21 5.76X 10-7 1.47 X 10-' 6.05 X 10-' 1.50 X 10-' 7.90X 10-" 4.85 X 10-6 3.18XIO-" 
22 1.15 X 10-7 4.08x 10-6 1.91 X 10-' 4.84x 10-6 2.61 X 10-6 1.67x 10-6 1.14 X 10-6 

23 2.27X 10" 8.75x 10-7 4.28x 10-6 1.11 X 10-6 6.11 X 10-7 4.06x 10.7 2.9IXIO·7 

24 1.68x 10-· 2.48 X 10-7 9.55x 10-7 2.44x 10-7 1.34 X 10-7 8.87x 10-" 6.42 X 10-" 
25 1.55 X 10-· 9.36X 10-' 6.92X 10-7 1.71XIO-7 8.94X 10-· 5.63 X 10-· 3.81 X 10-· 
26 1.01 X 10-" 4.74X 10-" 6.58x 10-7 1.64 X 10-7 8.66X 10-· 5.51XIO-· 3.77x 10-· 
27 4.80x 10-9 3.3IxlO-· 4.55x 10-1 1.15 X 10-7 6.16X 10-8 3.99X 10-· 2.79X 10'· 
28 1.72 X 10-9 3.18X 10-' 2.33 X 10-1 5.94x 10-" 3.23X 10-' 2.12X 10-' 1.52 X 10-' 
29 4.52X IO- 'D 2.35X 10-· 9.05x 10-8 2.33 X 10-· 1.28 X 10-· 8.56X 10-9 6.21X 10-9 

30 8.79x 10-" 5.82X 10-9 2.62x 10-8 6.83 X 10-9 3.81 X 10-" 2.58 X 10-9 1.90x 10-9 

31 2.80X 10-" 1.34 X 10-9 S.68X 10-9 1.49 X 10-9 8.41 X IO- 'D 5.76X 10-10 4.31 X 10- 10 

32 2.67X 10-" 4.11 X 10- 10 1.72 X 10-9 4.42 X 10.10 2.43 X IO-'D 1.63 X 10- 10 1.19 X 10. 10 

33 2.27X 10-" 1.64 X 10- 10 1.55 X 10-9 3.92 X 10-10 2.12X 10-'0 1.39 X 10- '0 9.93XIO· 11 

,34 1.41 X 10-" 8.54X 10-" 1.40 X 10-9 3.56X 10.10 1.94X 10-'0 1.28 X 10- '0 9.25X 10-" 
35 6.64X 10- '2 5.94x 10-" 9.33X 10-'0 2.40X 10- 10 1.32 X IO- 'D 8.81 X 10-" 6.42X 10-" 
36 2.42 X 10- '2 5.56X 10-" 4.77X 10-'0 1.24X 10- '0 6.85X 10- 11 4.61 X 10-" 3.39X 10-" 
37 6.66X 10- 13 4.70X 10-" 1.90X 10-'0 4.96X 10-" 2.77X 10- 11 1.88X 10-" 1.40 X 10-" 
38 1.40 X 10- 13 1.40 X 10-" 5.80XIO- '1 1.52X 10-" 8.58 X 10-'2 S.87x 10-" 4.40X 10- '2 
39 4.57 X 10- 1• 3.25 X 10- '2 1.35 X 10-" 3.56X 10-" 2.02x 10- '2 1.39 X 10-" 1.05 X 10-'2 
40 4.26X 10- 1• 9.70X 10- 13 3.88x 10- '2 1.01 X 10- '2 5.65 X 10- 13 3.84X 10- 13 2.86X 10- 13 

The optimized E " lower bounds can also be compared 
with the optimized Temple bounds E T . EI - E" tends to be 
smaller than EI - ET for n = p = 1, but there are a number 
of exceptions, which occur at and near N = 10, 17, 24, 31, 
and 39, for cases in which E2 - E2 S EI - ET . E3 - E " 
tends to be larger than the n = 3, P = 1 E3 - ET for k = 4, 
except for N < 8. E3 - E " also tends to be larger for k = 6, 
except for N < 11 andN = 14,24, or 29. E3 - E" tends to be 
smaller than E3 - ET for k = 8,10, and 12, but there are a 
number of exceptions, which occur at and near N = 11, 19, 
27, and 34, for cases in whichE4 - ~ SE3 - ET • Compari
son of the k = 10 EI - E " with the optimized Temple 

but poorer than the E " bounds when such a highly accurate 
En + I is not known. It would be interesting to see if these 
tendencies persist for other model problems. 

E 1 - ET for n = p = 2 and n = p = 3 shows that the opti
mized Temple bound is more accurate for n = p = 2, N = 19 
when a = 10-8 or 10-12

, for n = p = 3, N = 15-31, when 
a = 10-8

, and for n = p = 3, N = 11, 12, and 15-40 when 
a = 10- 12

• Thus it appears that the optimized Temple 
bounds tend to be better than the optimized E " bounds when 
a lower bound En + 1 is known whose accuracy is compara
ble to the accuracy desired in the optimized Temple bound, 
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Note added in proof After the present paper had been 
submitted, the author became aware of a paper of M. Cohen 
and T. Feldman, J. Phys. B 12, 2171-9 (1979), entitled "A 
generalization of Temple's lower bound to eigenvalues." The 
Cohen-Feldman lower bound appears to coincide with the 
Lehman-Maehly optimized Temple bound; in particular, 
their Eq. (29) is just the secular equation for the eigenvalue 
problem of Eq. (26) of the present paper. 
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'E.ABLE Y. The difference between EI and the Rayleigh-Ritz upper bound ERR' the difference between E, and the optimized Temple bound Er for 
E, = E, Ib' and the differences between EI and the optimized new tight lower bounds E" are listed for different numbers N of terms in 4> when A = 1.0. 

E,-ET E,-E" EI-E" E,-E" E,-E" E,-E" 
N ERR -EI n=p=1 k=2 k=4 k=6 k=8 k = 10 

I 3.58X 10-' 5.11 X 10-' 8.66X 10-2 1.95 X 10-3 \.41 X 10-4 2.75 X 10-' 5.82X 10-7 

2 2.03X 10-2 4.68X 10-2 1.88X 10-2 1.95 X 10-3 1.41 X 10-4 2.75 X 10-' 5.82X 10-7 

3 2.72 X 10-3 7.21 X 10-3 3.08X 10-3 1.95 X 10-3 1.41 X 10-4 2.75 X 10-' 5.82X 10-7 

4 2.56X IO-J 1.92 X 10-3 7.87X 10-" 1.54 X 10-4 1.41 X 10-4 2.75 X 10-' 5.82 X 10-7 

5 1.02 X 10-3 1.07 X 10-3 7.25XIO-4 1.41 X 10-4 1.41 X 10-4 2.75x 10-' 5.82X 10-7 

6 2.14X 10-4 1.07 X 10-3 5.56X 10-4 9.63X 10-' 8.43X 10-' 2.75X 10-' 5.82X 10-7 

7 2.33X 10-' 3.58X 10-4 1.87 X 10-' 4.14x 10-5 2.97X 10-' 2.75 X 10-5 5.82 X 10-7 

8 3.85 X 10-6 5.07X 10-' 2.94X 10-' 1.16x 10-5 7.2SX 10-6 5.31 X 10-6 5.82X 10-7 

9 3.85X 10-6 1.09 X 10-' J.l8X 10-' 4.89x 10-6 1.87 X 10-6 7.37X 10-7 5.82X 10-7 

10 2.28X 10-6 3.87x 10-6 1.15 X 10-5 4.89X 10-6 l.40x 10-6 2.69 X 10-7 1.68 X 10-7 

II 8.02X 10-7 2.3Sx 10-6 6.86X 10-6 3.14x 10-6 1.28 X 10-6 2.69x 10-7 1.65 X 10-7 

12 1.77 X 10-7 2.31 X 10-6 2.54x 10-6 1.25 X 10-6 6.65 X 10 7 1.94x 10-7 LOI X 10-7 

13 2.34X 10-& 9.94x 10-7 5.95x 10-7 3.13Xl0-7 1.91x 10-7 8.52X 10-" 4.23 X 10-" 

14 S.S4X 10-9 l.50x 10-7 9.17x 10-& 5.08x 10-8 3.33 X 10-" 2.08X 10-" I.2S X 10-8 

15 5.S2X 10-9 3.21 X 10-& 3.S7X 10-& 1.83 X 10-8 1.0Sx 10-8 6.63x 10-9 4.14x 10-9 

16 3.74X 10-' 1.04 X 10-" 3.5SX 10-" 1.83 X 10-8 1.08 X 10-8 6.49X 10-9 3.S8X 10-9 

17 1.64 X 10-' 5.13 X 10-9 2.39X IO-s 1.27 X 10-8 7.81 X 10-9 4.95x 10-9 3.IOX 10-9 

18 4.89x 10- 10 3.94X 10-9 1.08 X 10-8 S.85x 10-9 3.74X 10-· 2.49 X 10-9 1.69 X 10-9 

19 9.64X 10-" 3.86X 10-· 3.38X 10-9 1.87 X 10-9 1.23 X 10-9 8.61 X 10- '0 6.1Sx }O-IO 

20 1.45 X 10'" 1.16x 10-9 7.13x 10- 10 4.05X 10-10 2.74X 10- 10 1.99 X 10- 10 I.SOx 10- 10 

21 8.IS X 10'12 2.03X 10-10 1.29 X 10- 10 7.30X 10-" 4.93X 10- 11 3.63X 10-" 2.79X 10-" 

22 7.74X 10-'2 5.06x 10-" 8.36X 10- 11 4.52X 10-" 2.90X 10-" 2.00X 10-" 1.42 X 10- 11 

23 4.90X 10'12 1.81 X 10-" 7.91 X 10- 11 4.32X 10,11 2.80X 10-" 1.96 X 10-" 1.41 X 10-" 

24 2.17 X 10,12 9.18X 10,12 S.17X 10- 11 2.86X 10-" L89X 10-" L34X 10-" 9.93 X 10'12 

25 6.96X 10"3 6.78X 10-12 2.40X 10'" \.35 X 10-" 9.02X 10-12 6.53 X 10- 12 4.93X 10- 12 

26 L55 X }(j13 6.78X 10-'2 8.17xlO- 12 4.64X 10 12 3.14x 10-'2 2.3 I X 1O- 12 L78X 10,12 

27 2.65X 10'" 3.I7X 10-12 1.97X 10- 12 1.!3 X 10-12 7.80X 10- 13 S.84X 10- 13 4.58 X 10-" 

28 1.24 X 10,14 6.01 X 10-13 3.75 X 10,13 2.16X 10- 13 1.49 X 10- 13 1.12 X 10-" 8.88 X 10-'4 

29 1.24 X 10'" 1.43 X 10- 13 1.78 X 10,13 9.90X 10'" 6.59X 10-14 4.76x 10-'4 3.60X 10-14 

30 8.94X 10-'5 4.73x 10-" 1.77 X 10,13 9.89x 10-'4 6.59X 10"4 4.76x 10-'4 3.59X 10-'4 

31 4.64X 10-'5 2.I3X 10-'4 1.34 X 10-13 7.57X 10-" S.09x 10"4 3.72X 10-'4 2.84x to", 

32 1.80X 10-'5 1.31 X 10- '4 7.41 X 10-'4 4.20x 10-'4 2.85X 10-'4 2.IOX 10'" 1.63 X 10-'4 

33 5.19X 10-'6 1.13 X 10-" 3.08X 10'" 1.76 X 10-" L20x 10'" 8.97X 10-\5 7.01 X 10'" 

34 1.07 X 10-'6 L07x 10-1• 9.61 X 10- 15 5.54x 10-'5 3.82X 10,'5 2.87x 10- 15 2.27X 10'" 

35 2.47X 10,'7 3.S2x 10-15 2.19 X 10,15 1.27X 10-" 8.86X 10,'6 6.73x 10-" 5.37x 10,'6 

36 1.97 X 10-'7 7.31xlO,'6 5.07X 10-16 2.92X 10-'6 2.02x 10,'6 1.52 X 10-'6 J.20x 10-'6 

37 1.82X 10,11 1.99 X 10-16 3.62X 10,'6 2.04X 10-'6 1.38x 10,'6 1.01 X 10,'6 7.79x 10,'7 

38 L23X 10,'7 7.27X 10-'7 3.49X 10-'6 1.98 X 10-'6 1.34x 10,'6 9.89X 10-'7 7.65x 10-'7 

39 6.20X 10- 1
• 3.49X 10- 17 2.52x 10,'6 1.44 X 10-'6 9.80X 10-'7 7.28x 10- 17 S.68x 10,'7 

40 2.42 X 10-'" 2.22 X 10- 17 1.37 X 10,16 7.86X 10- 17 S.40X 10-17 4.04X 10- 17 3.18X 10- 17 

eigenvalues of H " for every I c:P ) of the form (25). Thus we 
have indeed optimized the new tight lower bound. 

for N = 10 and k = 8; the greatest improvement for the sec
ond excited state (by a factor of25.9) occurs for N = 12 and 
k = 10. Improvement by factors of 2-5 are more typical. Tables V and VI show optimized E " bounds obtained 

for the ground state energy E\ and the second excited state 
energy E

3
• Comparison with the unoptimized E " bounds of 

Tables I and II shows that the improvement obtained fluctu
ates with N almost in periodic fashion; the ratio of the error 
E \ - E ;' for the unoptimized bound to the error E \ - E ;' 
for the optimized bound has maxima for N = 10, 16 or 17, 23 
or 24,30 or 31, and 38 or 39 and minima for N = 8, 14,21, 
28, and 36, which is almost the same as the location of the 
corresponding maxima and minima for the Temple bound. 
The ratio of the errors E3 - E ~ for the unoptimized and 
optimized bounds behaves similarly, with maxima for 
N= 12, 19, 260r27,and34,andminimaforN= 17,24,31, 
and 40. These ratios also increase with k for fixed N, except 
for a few cases in which N is comparable to k. The greatest 
improvement for the ground state (by a factor of 29.5) occurs 
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The optimized lower bounds can also be compared with 
Rayleigh-Ritz upper bounds for the same N. For N < k, the 
error Eex - E " in the optimized lower bound is smaller than 
the error ERR - Ee , in the Rayleigh-Ritz upper bound in all 
but two cases (N = 7, k = 8 for the ground state and N = 9, 
k = 10 for the second excited state). For N;;.k, the error 
Eex - E" tends to be larger, with a few exceptions, all of 
which occur for N<ok + 6. The ratio (Ee, - E ")I 
(ERR - E ") fluctuates with N, taking on minima at N = 9 
or 10, 15,22,29, and 37 for the ground state, and at 11 or 12, 
17 or 18,25, and 32 or 33 for the second excited state. The 
values of this ratio tend to increase at successive minima. For 
example, for the ground state with k = 10, values of this 
ratioatN= 10, IS, 22, 29,and 37 are 0.074, 0.75, 1.84,2.91, 
and 4.28 respectively. 
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TABLE VI. The difference between E3 and the Rayleigh-Ritz upper bound ERR' the difference between E3 and the optimized Temple bound ET for 
E. = E, Ib' and the differerences between E3 and the optimized new tight lower bounds E" are listed for different numbers N of terms in f/J when A. = 1.0. 

E3-ET E3-E" E3- E " E3- E " E3- E " E3- E " 
N ERR -E3 n = 3,p = I k=4 k=6 k=8 k= 10 k= 12 

3 2.67X 10 2.33 2.68X 10-' 1.78X 10- ' 2.38X 10-2 6.67x 10-' 
4 9.72 9.12 6.65X 10-' 2.68X 10- ' 1.78X 10- ' 2.38X 10-2 6.67X lOA 
5 3.68 8.94 3.81 X 10-' 2.68X 10- ' 1.78X 10-' 2.38X 10-2 6.67X lOA 
6 1.25 2.52 3.69X 10-' 2.67X 10- ' 1.78X 10-' 2.38X 10-2 6.67X lOA 
7 3.38X 10-' 6.39X 10-' 3.54XIO-' 1.87X 10-' 1.78 X 10-' 2.38X 10-2 6.67XIO-' 
8 6.28X 10-2 1.79x 10-' 2.89X 10-' 9.83X 10-2 7.90X 10-2 2.38X 10-2 6.67X 10-' 
9 9.68X 10-3 5.53X 10-2 1.71 X 10-' 4.22x 10-2 2.75x 10-2 2.38X 10-2 6.67X lOA 

10 6.64x 10-3 2.00X 10-2 7.23x 10-2 l.72x 10-2 7.96X 10-3 4.71 X 10-3 6.67X 10-' 
II 5.89x 10-3 9.64x 10-3 5.75x 10-2 1.15 X 10-2 2.86x 10-3 8.68 X lOA 6.67X 10-' 
12 3.31 X 10-3 6.89x 10-3 5.44x 10-2 1.15 X 10-2 2.28x 10-3 4.75XI0-' 3.35X 10-' 
13 1.26 X 10-3 6.86X 10-3 3.66X 10-2 8.16X 10-3 2.21x 10-3 4.73x 10-' 3.22X 10-' 
14 3.31 X 10-' 3.94X 10-3 1.69 X 10-2 3.82X 10-3 1.48 X 10-3 3.69X lOA 2.14 X lOA 
15 5.70X 10-' 8.97x lOA 5.24x 10-3 1.23 X 10-3 5.84x 10-' 2.03 X lOA 1.04 X 10-' 
16 1.21 X 10-' 2.19X 10-4 1.09 X 10-3 2.70X 10-' 1.41 X 10-4 7.IOXIO-' 3.96X 10-' 
17 1.08 X 10-' 7.05 X 10-' 3.00x 10-4 7.23 X 10-' 3.63X 10" 2.IOX 10-' 1.35 X 10-' 
18 8.96X 10-6 3.07X 10-' 2.76X 10-4 6.39X 10-' 3.00X 10-' 1.63 X 10-' 8.68 X 10-" 
19 4.99X 10-6 1.89x 10-' 2.35 X 10-4 5.59X 10-' 2.72X 10-' 1.53 X 10-' 8.64X 10-6 

20 2.00X 10-" 1.69 X 10-' l.40x 10-" 3.41 X 10-' 1.73 X 10-' 1.02 X 10-' 6.32X 10-" 
21 5.76X 10-7 1.47 X 10-' 6.05 X 10-' 1.50 X 10-' 7.90X 10-" 4.85 X 10-6 3.18XIO-" 
22 1.15 X 10-7 4.08x 10-6 1.91 X 10-' 4.84x 10-6 2.61 X 10-6 1.67x 10-6 1.14 X 10-6 

23 2.27X 10" 8.75x 10-7 4.28x 10-6 1.11 X 10-6 6.11 X 10-7 4.06x 10.7 2.9IXIO·7 

24 1.68x 10-· 2.48 X 10-7 9.55x 10-7 2.44x 10-7 1.34 X 10-7 8.87x 10-" 6.42 X 10-" 
25 1.55 X 10-· 9.36X 10-' 6.92X 10-7 1.71XIO-7 8.94X 10-· 5.63 X 10-· 3.81 X 10-· 
26 1.01 X 10-" 4.74X 10-" 6.58x 10-7 1.64 X 10-7 8.66X 10-· 5.51XIO-· 3.77x 10-· 
27 4.80x 10-9 3.3IxlO-· 4.55x 10-1 1.15 X 10-7 6.16X 10-8 3.99X 10-· 2.79X 10'· 
28 1.72 X 10-9 3.18X 10-' 2.33 X 10-1 5.94x 10-" 3.23X 10-' 2.12X 10-' 1.52 X 10-' 
29 4.52X IO- 'D 2.35X 10-· 9.05x 10-8 2.33 X 10-· 1.28 X 10-· 8.56X 10-9 6.21X 10-9 

30 8.79x 10-" 5.82X 10-9 2.62x 10-8 6.83 X 10-9 3.81 X 10-" 2.58 X 10-9 1.90x 10-9 

31 2.80X 10-" 1.34 X 10-9 S.68X 10-9 1.49 X 10-9 8.41 X IO- 'D 5.76X 10-10 4.31 X 10- 10 

32 2.67X 10-" 4.11 X 10- 10 1.72 X 10-9 4.42 X 10.10 2.43 X IO-'D 1.63 X 10- 10 1.19 X 10. 10 

33 2.27X 10-" 1.64 X 10- 10 1.55 X 10-9 3.92 X 10-10 2.12X 10-'0 1.39 X 10- '0 9.93XIO· 11 

,34 1.41 X 10-" 8.54X 10-" 1.40 X 10-9 3.56X 10.10 1.94X 10-'0 1.28 X 10- '0 9.25X 10-" 
35 6.64X 10- '2 5.94x 10-" 9.33X 10-'0 2.40X 10- 10 1.32 X IO- 'D 8.81 X 10-" 6.42X 10-" 
36 2.42 X 10- '2 5.56X 10-" 4.77X 10-'0 1.24X 10- '0 6.85X 10- 11 4.61 X 10-" 3.39X 10-" 
37 6.66X 10- 13 4.70X 10-" 1.90X 10-'0 4.96X 10-" 2.77X 10- 11 1.88X 10-" 1.40 X 10-" 
38 1.40 X 10- 13 1.40 X 10-" 5.80XIO- '1 1.52X 10-" 8.58 X 10-'2 S.87x 10-" 4.40X 10- '2 
39 4.57 X 10- 1• 3.25 X 10- '2 1.35 X 10-" 3.56X 10-" 2.02x 10- '2 1.39 X 10-" 1.05 X 10-'2 
40 4.26X 10- 1• 9.70X 10- 13 3.88x 10- '2 1.01 X 10- '2 5.65 X 10- 13 3.84X 10- 13 2.86X 10- 13 

The optimized E " lower bounds can also be compared 
with the optimized Temple bounds E T . EI - E" tends to be 
smaller than EI - ET for n = p = 1, but there are a number 
of exceptions, which occur at and near N = 10, 17, 24, 31, 
and 39, for cases in which E2 - E2 S EI - ET . E3 - E " 
tends to be larger than the n = 3, P = 1 E3 - ET for k = 4, 
except for N < 8. E3 - E " also tends to be larger for k = 6, 
except for N < 11 andN = 14,24, or 29. E3 - E" tends to be 
smaller than E3 - ET for k = 8,10, and 12, but there are a 
number of exceptions, which occur at and near N = 11, 19, 
27, and 34, for cases in whichE4 - ~ SE3 - ET • Compari
son of the k = 10 EI - E " with the optimized Temple 

but poorer than the E " bounds when such a highly accurate 
En + I is not known. It would be interesting to see if these 
tendencies persist for other model problems. 

E 1 - ET for n = p = 2 and n = p = 3 shows that the opti
mized Temple bound is more accurate for n = p = 2, N = 19 
when a = 10-8 or 10-12

, for n = p = 3, N = 15-31, when 
a = 10-8

, and for n = p = 3, N = 11, 12, and 15-40 when 
a = 10- 12

• Thus it appears that the optimized Temple 
bounds tend to be better than the optimized E " bounds when 
a lower bound En + 1 is known whose accuracy is compara
ble to the accuracy desired in the optimized Temple bound, 

2191 J. Math. Phys., Vol. 21, No.8, August 1980 

Note added in proof After the present paper had been 
submitted, the author became aware of a paper of M. Cohen 
and T. Feldman, J. Phys. B 12, 2171-9 (1979), entitled "A 
generalization of Temple's lower bound to eigenvalues." The 
Cohen-Feldman lower bound appears to coincide with the 
Lehman-Maehly optimized Temple bound; in particular, 
their Eq. (29) is just the secular equation for the eigenvalue 
problem of Eq. (26) of the present paper. 
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Let N('A) be the number of eigenvalues less than 'A of the k -dimensional Schrodinger equation for 
which the potential energy becomes infinite as x~oo in all directions of the k-dimensional space. 
Titchmarsh has derived a first order asymptotic approximation to N('A) for 'A~oo. His formula is 
rederived here by a different method a,nd then extended so as to give at least one more term of the 
asymptotic series. The method is based upon approximating q (x ) locally by a quadratic function 
and evaluating the short time properties of the propagator for a hypothetical time-dependent 
diffusion equation having the same eigenvalues. 

1. INTRODUCTION 

One of the standard problems in quantum mechanics is 
to determine the eigenfunctions ¢ n (x) and eigenvalues An of 
the Schrodinger equation, a dimensionless form of which is 

(1.1) 

x = (XI 'X2 ... ,xk), An <An + I' 

in the space Rk. This in turn is obtained from the time-depen
dent equation 

H .',( ) _ ia¢(x,t) 
0/ x,t - , 

at 
(1.2) 

the complete solution of which is 

¢(x,t) = ! an ¢n (x) exp( - iAn t), 
n=O 

for suitable coefficients an' 
It is assumed here that q(x)~ + 00 for x~oo in all di

rections in Rk so that the spectrum of H is, in fact, discrete. 
We also assume thatq(x) is bounded from below. By suitable 
translation of the An we can assume that q(x»O. 

One special aspect of this problem is to determine just 
the spectrum of H, i.e., a function 

N (A) = number of eigenvalues with All <A, (1.3) 

or at least the asymptotic properties of N (A ) for A~ 00 • 

In one dimension, k = 1, the asymptotic properties of 
N (A ) can be determined very accurately. The standard meth
od for evaluating N (A) or An is to exploit the fact that ¢n (x) 
has n zeros. One can obtain asymptotic approximations for 
¢(x,A ) using WKB or analogous schemes and then simply 
count the number of zeros of the approximate ¢(x,A ) as A 
increases. It can be shown that1. 2 

n+~= ~I[An-q(X)]12dX+O(lIn), (1.4) 

[] =[Y if y;;;'O, 
Y + - 'f 01 y<O. 

This means that the function N (A ), which is a step func-

"'This research was done while the author was on sabbatical leave visiting 
the Institute for Fundamental Studies, Physics Department, University of 
Rochester, Rochester, New York, 

tion of integer steps, jumps from 

N(An __ )= -~+ ~ I [An -q(x)1':2dx, 

to 

N(An+)= +!+ ~ I[A n -q(x)1':2dx, 

with a mean value at An of 

~N (A II + ) + ~N (A n _ ) 

= ~ I [An - q(x) 1'2 dx + 0 (lin). (1.5) 

Note that the convention for counting is to start with n = 0, 
thus N (A ) jumps from ° to 1 at ,10' 

Titchmarsh3 shows that the generalization of(1.5) in k
dimensions, k > 1, is 

N(A) = [1 + 0(1)] I[A _ q(X)]k!2 dX(k). 
2k'lTkI2r(kI2 + 1) + 

(1.6) 

The derivation is quite different than for k = 1, however, 
since one cannot easily count nodal planes or cells of the 
¢Il (x) in Rk for k> 1. He gives two derivations of (1.6), but 
neither produces a quantitative estimate of the error term 
o( 1). One could infer some bounds on the error from his 
derivation but the methods are such that the bounds would 
not'be very tight. In fact, (1.6) is much more accurate than 
one might expect. Even for k = 1, the error term 0 (lin) in 
(1.5) is extremely small compared with the leading term, 
o (n); it is even small compared with thejumpof 1 atA = An' 

The purpose of the following analysis is to obtain some 
reasonable estimate of the error term in (1. 6), or at least to 
understand why, in comparison with accurately known spe
cial solutions, it gives such good results. 

2. FORMULATION 

For various reasons, it is more convenient to work with 
the equation 

H¢(x,t) = - a~;x,t) (2.1) 

than with (1.2). They differ only in that t is replaced by it, but 
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the t/J(x,t) in (2.1) can be interpreted as the (positive) prob
ability density of a diffusing particle in an absorbing medi
um. For q(x) = 0, (2.1) is the classic diffusion or heat con
duction equation in lRk. For q(x»O, q(x) can be interpreted 
as the rate at which the probability density decreases atx due 
to absorption. We can also imagine a hypothetic motion of a 
Brownian particle which upon collision with particles of the 
medium has a certain probability of being captured. 

Suppose that one could evaluate the propagator solu
tion of (2.1 ) 

G (x,t Ixo) = probability density at x, t for t> 0, given 

that the particle was at Xo at t = 0, (2.2) 

i.e., G (x,t Ixo) is the solution of (2.1) with initial condition 
G (x,Olxo) = D(x - xo)' Since it is assumed thatq(x}--+oo for 
x_ 00 in all directions, the particle is certain to be absorbed 
eventually. 

The general solution of (2.1) is 

tf;(x,t) = G (t )t/J(x,O) 

in which G (t ) is an integral operator, for each t, defined by 

(2.3) 

Since the general solution of (2.1) can also be written in 
terms of the eigenfunctions of H 

t/J(x,t) = ! an tf;n (x) exp( - An t), 
n=O 

it follows that G (t ) has the same eigenfunctions as H 

G (t )tf;n (x) = exp( - An t )tf;n (x), 

with eigenvalues exp( - An t), for each t. 
If G nm (t ) is a matrix associated with the G (t ) relative to 

any orthonormal base in the Hilbert space of lR\ then 

traceG(t) = I Gnn(t) = I exp( -Ant). 

In the orthonormal base corresponding to 15 (x - X o), G nn (t ) 
becomes G (xo ,t Ixo) and trace G can be written as 

J G (xo ,t Ixo )dxo (k) 00 

= Iexp(-Ant)= ( e-AtdN(A). (2.4) 
n Jo 

The function N (A ) describes a measure on (0, 00 ), but it 
is not bounded, N (00) = 00. We assume, however, that (2.4) 
is finite for all real t> 0 (but infinite for t = 0). It is monotone 
decreasing in t on the real line t> 0 and analytic in the com
plex t plane for Ret> O. Since (2.4) represents the Laplace 
transform of the measure N (A ), N (A ) can be determined 
from G by inversion of the transform 

1 ia+iOO[J ] eAt N (A) = -. G (xo,t Ixo) dxo (k) - dt, (2.5) 
2'TTl a - ioo t 

for any a >0. 
If we reverse the order of integration, we can write (2.5) 

in the form 

N (A) = J n(A,xo) dxo (k), 

with 
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(2.6) 

1 ia+iOO e'"t 
n(A,xo) = -. G(xo,t Ixo)-dt. 

21TI a-ioo t 
(2.7) 

We can think of n(A,xo) as the contribution per unit volume 
to N (A ) coming from the propagator G evaluated at Xo' 

Thus, if we can determine an approximate G (x,t Ix), we 
can obtain a corresponding approximate N (A ). Much of the 
subsequent analysis will be concerned with approximate 
forms for the G and the errors which they induce in the N (A ). 
In anticipation that these approximations will be valid only 
for "short" time, we note here that the short time properties 
of G determine the large scale properties of N (A ). If, for ex
ample, we replace At by t I in (2.7) we have 

1 ia 
+ ioo ( t I I ) et

' , n(A,xo) = -. G xo, - Xo ---; dt , 
2m a-ioc A t 

(2.7a) 

involving the G evaluated in til A. 
Since the exact N (A ) and n(A,xo) will be step functions, 

we also note that one could smooth these functions on a scale 
of order a by defining an approximate spectral density of 
n(A,xo) 

dn 
-- (Ao,xo,u) 
dAo 

f + oc 1 (A - ..1.0 )2) 
= _ oc (21T)1/2O' exp - 2~ dn(A,xo)· (2.8) 

from (2.7) we can evaluate the n(Ao ,Xo ,a) as 

n(Ao,xo,u) 

1 ia+iOC exp(Aot) (~t2) 
= -. G(xo,t Ixo) exp -- dt. 

2m a - ioo t 2 
(2.9) 

As one integrates (2.9) along or near the imaginary t-axis the 
factor exp(~t 2/2) will further help to truncate the contribu
tions to the integral from large Imt. Roughly speaking, a 
truncation of the time coordinate on a scale of order 1/0' 
gives a smearing of the spectrum on a scale of order o'. 

3. FIRST APPROXIMATION 

If a particle started at Xo and q(x) = q were a constant, 
the particle would survive by time t with probability e- qt. If 
it survived it would have a probability density 

(3.1) 

Thus 
e - qt 

G (xo,t Ixo) = 2' ,12 k 12 for q(x) = q. (3.2) 
1T t 

One might now argue that the particle does not travel 
very far (a distance of order t 1/2) in a short time. If q(x) is a 
continuous function of x, a particle starting at Xo temporar
ily sees a nearly constant q, namely the q(xo) at its origin. 
Thus for sufficiently small t and variable q(x) 

exp[ - q(xo)t] 
G(xo,t Ixo)= 2k k/2 k12 • (3.3) 

1T t 
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Ifwe substitute (3.3) into (2.7) we have 

1 [+ i"" exp[ [A. - q(xo)]t J 
n(A.,xo)~ -. k _kl2 k /2 + 1 dt. 

2ffl a-i"" 2 ff t 

For A. < q(xo) the integrand is analytic in the right half plane 
(rhp) and vanishes for Ret_ + 00. The path of integration 
can be closed by a semicircle in the rhp enclosing no singu
larities. The integral vanishes. For A. > q(xo) the contour can 
be closed in the lhp 

[A. - q(xO)]kI2 1 La + ioo eU 

n(A.,xo) = 2kt/12 2' . k'I2+l du ffl a -/00 U 

[A - q(xo)t 12 
= 

2kt/ 12F(k 12 + 1) 
(3.4) 

Thus we obtain the Titchmarsh formula 

N(A) - 1 I[A _ (x )]k12 dx (k) 
- 2kt/12r(k/2 + 1) q 0 + o· 

Suffice it to say that one can use various continuity 
theorems for transforms to prove that this formula is correct 
for A_ 00 in the sense of (1.6). Our goals are more ambitious 
than this, however. The above derivation gives a somewhat 
more intuitive reasoning than others [starting from (2.5)], 
from which we can make further corrections. 

4. SECOND APPROXIMATION 

The motivation for the first approximation to G (xo' 
t Ixo) was that the large A behavior of N (A) would be deter
mined mainly by the short time behavior of G (xo ,t Ixo), but 
during a short time a particle does not travel very far. It sees 
the q(x) as if it were nearly constant with a value q(xo). 

As a second approximation (for short time) it seems 
logical to assume that, in the vicinity of xo, the q(x) can be 
expanded in a Taylor series in x - Xo; 

k Jq(xo) 
q(x) = q(xo) + L (Xj - XOj ) 

j~ 1 JXOj 

k J2q(xo ) 
+ t L (Xj - XOj )(Xj - xoJ + .... 

j.! = I JXOjJXOI 

It is possible, however, for each value of X O, to choose a 
coordinate system such that the matrix of quadratic terms 
J 2q(xo)lJXj JXk is diagonal. Thus we can write q(x) as 

k 

q(x) = q(xo) + L qj(xo)(Xj - XOj ) 
j= I 

in which 

(4.1) 

J2q(Xo) Jq(xo) 
qjj(xo) = a 2 ' qj(xo) = -a--' (4.2) 

X Oj XOj 

are respectively the second derivatives in the coordinate sys
tem for which the matrix is diagonal,and the corresponding 
first derivatives in the same coordinates. To simplify nota
tion we will hereafter write these coefficients as simply q, qj' 
qjj' etc., the dependence upon Xo being understood. 

If we neglect all terms in (4.1) of third or higher degree 
in(xj - x(Jj)' wecanstillevaluateG (x,t Ixo) exactly, and con-
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sequently also G (xo ,t Ixo). Equation (2.1) is separable in the 
spatial coordinates and has a solution of the form 

k 

G(x,tlxo)=e- qt II exp[hjO(t) + hjl(t)(xj -XOj ) 
j~ I 

(4.3) 

i.e., G (x,t Ixo) is an exponential of a quadratic form in the 
(Xj - xOj ) with suitable time-dependent coefficients, hjO (t), 
hjl (t), hj2 (t). 

If we substitute (4.3) into (2.1) and collect the coeffi
cients of(xj - xo)m, m = 0,1,2, we see that (4.3) is indeed a 
solution of (2.1) provided the hj 's satisfy the ordinary differ
ential equations 

2hj2 (t) + h JI (t) - dhjO(t)/dt = 0, 

4hj! (t )hj2 (t) - dhj ! (t )Idt = qj' 

4h 1 (t) - dhj2 (t )Idt = !qjj' 

(4.4a) 

(4.4b) 

(4.4c) 

Equation (4.4c) involves only hj2 (t) and can be solved 
by standard methods to give 

hj2 (t) = - /3j coth(/3jt), Pj = (2qjj)1I2, (4. Sa) 
4 

with an initial condition that for t-o,hj2 (t)- - l/(4t )asin 
(3.1). Equation (4.4b) involves only hjl and hj2 . With hj2 (t) 
known from (4.5a), this becomes a linear equation in hjl (t). 
This is solved subject to the initial condition, hj! (t H for 
t-o, giving 

hjl (t) = 
qj [cosh( ,Bjt) - 1] 
Pj sinh( /3j t ) 

(4.Sb) 

Finally, with hj2 (t) and hj! (t) known, (4.4a) can be 
solved by direct integration, subject to the initial condition 
that it agree with (3.1) for t-O. This gives 

( 
4ff ) 2q2 [ pt (/3t)] hjO(t) = -pn -sinh{,8jt) + -' -'--tanh -'- . 
/3j /3J 2 2 

(4.Sc) 

The function G (xo ,t Ixo) involves only the hjO (t); 

-qt k ( { 2q2 G (xo ,t Ixo) = _e __ II ,B,I12 exp -' 
2"-,,12 . /3 3 

11 ,= ! j 

In order to understand the meaning of this it is conve
nient to look at the complete G (x,t Ixo) for small and large t, 
specificially for I,B/ 1 « 1 or I,B/ I> 1. For IPjt 1 -< 1 we can ex
pand the h 's in powers of ,Bjt to give 

h ( ) 1 qjjt 2 3 
j2 t = - - - - + o (qjjt ), 

4t 6 
hjl (t) = - qjt 12 + 0 (qjqjjt 3), 

t 2 

hjO(t) = -! In(4fft) - qjj 6" 

(4.7a) 

(4.7b) 

(4.7c) 

The first terms of hj2 (t ) and hjO (t) give the approxima-
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tion (3.1). The former describes the diffusion of the particle, 
the latter the "renormalization". The second term of hj2 and 
the first term of hjl (t ) describe the fact that, for Xj - xfJ *0, 
the particle feels the decay associated with q(x) along some 
average (linear) path from Xo to x. For qjj > 0, the decay is 
greater the greater the displacement IXj - XfJ 12. Indeed, a 
particle traveling at constant speed from Xo to x will see an 
average quadratic term of j(qjj/2)(xj - xjOf. Similarly, for 
qj > ° the decay is greater if the particle moves in the direc
tion of increasing q(x), i.e., Xj - x jO > 0. 

These help to explain the meaning of the other terms of 
hfJ(t) which are important to the evaluation of G (xo,t Ixo). 
The second term of(4.7c) is associated with the fact that a 
particle starting at Xo and returning to Xo at time t will have 
wandered a distance of order V t before returning. Thus it 
would have been in a range of(xj - xjO) where the quadratic 
term of q(x) is higher than at Xo by the order of qjj t, and will 
have decayed by an extra amount of order qjjt 2. 

The third term of hjO(t) is proportional to q] and posi
tive. If a particle wanders in the direction of increasing q. it 
decays faster, but it is equally likely (for short times) to wan
der in the direction of decreasing q and decay slower. The 
first order effect of this is that the two cancel. The second 
order effect, however, is that the particle can survive if it can 
stay on the side oflower q(x). If it wanders a distance of order 
V t it will survive or decay at an extra rate of order qjt 1/2 and 
have a total extra decay proportional to qjt 3/2. The net effect 
of the positive and negative contributions, however, is pro
portional to the square of this, namely q]t 3. 

For /3/> 1, qjj > 0, 

hj2 (t)- - /3j [1 + 0 (e ~ 2f3j')], (4.8a) 
4 

hj' (t)- - qj [1 + O(e ~f3j')], 
/3j 

[ 
/3 q2 ] (21T) hjU(t)- _-..l-.+_'_ t-pn -
2 2qjj /3j 

_ 2q] + o(~e~f3,r). 
/3J /3] 

(4.8b) 

(4.8c) 

To see the significance of this, one should first note that, 
if qjj > ° for all}, then q(x) - q(xo) has a minimum with 
respect to the Xj at 

- (Xj - xu) = q/qjj 

[possibly outside the range of validity of the expansion (4.1)], 
where 

k 

[q(x) - q(xo ) ]min = I q]!2qjj. 
j~ I 

The complete G (x,t Ixo) becomes 

G (x,t Ixo) 

_exp [ - ± /3j (Xj _ XOj + qJ)2] exp( - ± qJ]) 
, ~ I 4 qj, , ~ I /3, 

X [ IT (~)I/2] exp [ _ qt +± (_ /3j + q})t] , 
,~I 21T , ~ I 2 2q" 

(4.9) 
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and 

[ 
k (/3 )1/2] G (Xo,t Ixo)- n -j 

,~I 21T 

[ 
k ( /3. q2 ) ] X exp - qt + I - -..l-. + -'- t 

j~ I 2 2qjj 

( 

k 2q2 ) 
Xexp - I -+ . 

,~I /3j 
(4.10) 

The first factor of (4.9) is a normal distribution around 
the minimum of q(x). It is the eigenfunction of H corre
sponding to the lowest eigenvalue. The last factor is the ex
ponential decay associated with the lowest eigenvalue of H, 
namely 

(4.11) 

The factor exp( - ~f~ I q]l/3 J) can be interpreted as the de
cay suffered by the particle before it reaches the minimum of 
q(x). Correspondingly, in (4.10), the factor exp( - 2 
X ~f ~ I q]l/3 J) can be interpreted as the decay suffered in 
reaching the minimum of q(x) and then returning to the 
starting point Xo . 

5. INVERSION OF THE TRANSFORM 

To determine n(..1"xo) we must substitute (4.6) into (2.7) 
and evaluate (or approximate) the integral with respect to t 
along a path parallel with the imaginary axis or an equivalent 
path. The integrand (4.6), however, has very unpleasant sin
gularities along the imaginary axis due to the tanh{{3jt /2) in 
the exponential; also some branch point singularities from 
[sinh{{3/)] 1/2. The former occur at t = i(2nj + 1)1T//3j' the 
latter at inj1TI/3j for every integer nj and each /3j ,} = 1, ... ,k. 

If one wished to invert the transform exactly, one could 
expand G (xu ,t Ixo) in powers of exp( - /3j t ),} = 1, ... ,k and 
integrate term by term. The fact that G (xo ,t Ixu) has such an 
expansion means that, for fixed xo , the spectrum of G is 
discrete with jumps in n(..1, ,xo) at each A of the form 

k k 

..1,= q - I qJ!2qjj + I /3/nj +!) (5.1) 
j~ I j ~ 1 

for every integer value of nj with nj ;;;.0. For n I = n2 .. ·n k 

= 0, this A corresponds to the lowest eigenvalue of H as in 
(4.11). 

To carry out such an evaluation is quite tedious and not 
very instructive because, in the next step, one must integrate 
the n(..1"xo) with respect to xu' If the q(x) were exactly a 
quadratic function of x, i.e., the coefficients/3j were indepen
dent ofxo' then the jumps in n(..1"xo) would occur at the same 
values of A for all xu' Indeed one can easily show, by revers
ing the order of integration with respect to t and xu, that 
N (A ) has, in this case, a unit step at each value of A satisfying 
(5.1). If, however, the/3j and theq]!2qjj vary withxo and are 
continuous functions of xu, an integration of the n(..1"xo ) 

with respect to Xo will yield an N (A ) which is a continuous 
function of A. 

Although in some limit in which the /3j approach con
stants, our approximate N (A ) will approach a step function, 
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it is obvious that it would require only a very small deviation 
from an exactly quadratic q(x) to smear out completely any 
ripples in the N (A ), for large A. 

The spectrum of H is certainly discrete, i.e., the exact 
N (A) has integer steps, but an exact evaluation of the eigen
valued" requires that the tPn(x) in (1.1) remain bounded for 
X----+ 00. Even for the one dimensional case, k = 1, any solu
tion tP" (X,A ) which is well behaved near one value of x where 
q(x)-A must also be well behaved on the other side of the 
"potential well" where q(x) - A. We certainly did not intend 
that the locally quadratic approximation to q(x) near some 
Xo should be accurate all the way to the other side of the 
surface where q(x) is equal to q(xo), except possibly for Xo 
near the minimum of q(x). The best we can hope for is that 
our approximateN (A ) gives a good smoothed approximation 
to the correct N (A ), hopefully one which passes nearly 
through the midpoints of the steps in the exact N (A ), at least 
for k = 1; as it should according to (1.5). 

Since our approximate G (xo ,t Ixo) is accurate only for 
IP/I < 1, we will use the expansion (4.7 c ) 

I 
exp[-qt-Ylt2+Y2t3+ ... ] 

G(xo,t xo)'" 2k k12 kl2 ' (5.2) 
1T t 

with 
k 

Yl = ~ I qjj = rV2q>O, (5.2a) 
j~ 1 

k 

- 1 " 2 - 1 I d 12 ° Y2 - 12 £.. qj - 12 gra q > . (5.2b) 
i~ 1 

In the evaluation of n(A,xo) for large A, the most impor
tant terms in this expansion are the qt and Y2 t 3 since the 
coefficients q and Y2 will both be large (in some sense) for 
most values of Xo. The term Y 1 t 2 (of order IPi t 12) is accurate 
only for IYl t 21 -( 1. It is not clear whether one should leave 
this in the exponent as in (5.2) or write it as 

exp( - Yl t 2)~ I - Yl t 2 + .... (5.3) 

As it stands, this factor is an annoyance because it in
creases along the imaginary t axis. We could remove it by 
smearing the spectrum as in (2.9) with c? = 2Yl. This would 
smear the spectrum on a A-scale of the order 0", which is of 
the order of the one-dimensional spacing Pi of the steps in 
(5.1). We shall, however, keep this term in the form (5.3). 
Thus we will approximate n(A,xo) by 

If we rescale the t variable 

(5.4a) 

with 

(5.4b) 

and 
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(5.4c) 

It can be shown, see Appendix A, that F/(S) is an entire 
function of 5 with a power series expansion 

'" 5" 
FI(S) = 1 n~o n! r((l-2n)/6 + 1) . 

For 5 < ° and - 5'> 1 it has an asymptotic form 

exp( - 215/313/2) 
FI( 5)'" 2(31T)1/215/3I(l+ 3)/4 ' 

(5.5a) 

(5.5b) 

a very rapidly decreasing function of 151. For 5> 1 the asymp
totic behavior is the sum of two series 

F ( /;" )"'/;" I /2 ~ 5 - 3n 
I~-~ n~on!r(//2+1-3n) 

+ cos[2(S /3)3/2 - (1T/4)(/ + 3)] 
(31T)1/2(S /3)(1 + 3)/4 

X [1 + 0 (S - 3/2)] . (5.5c) 

The first series decreases in powers of 5 - 3; the second is 
highly oscillatory with an amplitude proportional to 
5 -- (I + 3)/4. The first term of (5.5c), for n = 0, leads to the 
Titchmarsh formula. 

6. EVALUATION OF N(A) 

The functions F I ( 5) can be tabulated for all relevant 
values of / and can, therefore, be considered as "known func
tions." Except for very special analytic forms for q(x), it 
would be necessary to do the final integration (2.6) with re
spect to Xo numerically, regardless of the analytic form of 
n(A ,xo). We could, therefore, consider the evaluation of our 
approximate N (A ) to be complete. It is possible, however, to 
obtain a somewhat simpler form for N (A ). 

Let 

N'(A)_N(A)- -q + f 
[A ]k12 dX(k) 

2k~12r(k /2 + 1) 

= J Yz 16F~I)( 5 )dX(k) 
2k1Tk 12 

- f YIY2(k-4)/6Fk_ 4(5)dx(k) 
2k1Tkl2 ' (6.1) 

represent the correction to the Titchmarsh formula, with 

F~l)( 5)-- e expu - du 1 ia+ioo SU( 3 1) 

21Ti a-ioc U112 + 1 

(6.2) 

The two correction terms in (6.1) are actually of compa
rable size. To see this, consider the following identity 

± ~ [(_1_!!l...)Y2(k-4)/6Fkl~2(5)] 
I~ 1 aXI 12 ax 

_ ± a [( 1 aq ) 
I~ 1 aXI 12Y2 ax 

X ia+iOO e(A-q)1 [exp(y2t 3) - 1] dt] 

a-ioc t k12 + 2 
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(6.3) 

in which 

3Y3 = L - - Igradql2 k aq a2q aq0 
'.m = I ax, ax,axm aXm 

(6.4) 

can be interpreted as the second derivative of q in the direc
tion of grad q. 

The function F~I~ 2 (S) has continuous derivatives for 
all S including S = O. If we integrate both sides of(6.3) over 
any region of R\ the left hand side can be integrated to a 
surface integral (by the divergence theorem). The integrand 
of the surface integral is bounded. Furthermore, if we let the 
surface go to infinity, then q-H:IJ, S- - 00 and the surface 
term vanishes because F~I~ 2 ( S) goes to zero very rapidly for 
S-- 00. 

The integral of the second term on the right-hand side 
of (6.3) is proportional to the first term of(6.1). Thus (6.3) 
can be used to transform (6.1) into the form 

(2 ) (k - 4)/6 _ f YI - Y3 Y2 F I£-) dX(k). 
2k+ 111""/2 k-4~ 

(6.S) 

Suppose we now define F \')( S) so that 

F,(O-F\/)(S) 

{

(I + 1)/6 S - 3n 

= S'/2 n~o n!r(I/2 + 1 - 3n)' 

0, 

for S>O 

for S <0 
(6.6) 

in which the sum over integer n extends only to the largest 
integer less than or equal to (/ + 1)/6. For even integer I, the 
series (6.6) actually terminates by itself because r(x) = 00 

forx = 0, - 1, - 2, ... ,i.e.,F,(O -F(')(S)isapolynomial. 
Generally, however, the lowest power of Sin (6.6) is periodic 
in I with period 6 and is always at least - ~ for I> - 2, 
lowest power of S = - 1/2 + 1/2 [(I + l)mod6]. For 
1<, -2,F,(O=F\')(S)' 

The function F\/)( S), which is the difference between 
F,( S) and the terms (6.6) of the asymptotic expansion for 
S> 0, decreases very rapidly for - S> 1 as in (S.Sb). For 1 an, 

o 
In particular for S-oo we have, since Ff:22)( S)-o for 
S-oo, 
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even integer, F \')(S) is finite at S = 0 and behaves like just the 
second series of(S.Sc) for S> 1. For 1 an odd integer, F\')(S) 
will be infinite for S -0 + like S - 112 for 1 mod 6 = 3, I> 0, 
but otherwise is finite. For S> 1 it behaves like the second 
series of (S.Sc) plus those terms from the first series which 
decreases at least as fast as S - 3/2. 

Substitution of (6.6) into (6.S) now gives 

N'= - f [A_q]kI2-2 
2k + Irrk 12 

The first series in (6.7) is in decreasing powers of [A - q] 
starting with power k /2 - 2 (two less than the Titchmarsh 
formula) but decreasing in steps of three. There is no term for 
k < 3 and only one term for 3<,k < 9. Furthermore for n = 0 
there is no contribution from the nY3' For k>9, there will 
also be terms from n = 1. In view of the various approxima
tions that have been made to obtain the n(A,xo) in (S.4), it is 
not clear, however, whether or not these higher order terms 
(n> 1) are reliable. 

The last two terms of (6.7) should be smaller than any 
nonzero terms of the first series, but for k < 3 they are the 
only terms. Consequently we should try to estimate these 
terms also. 

We know that F \')(S) decays very rapidly for S - - 00 

and at least as fast as S - 3/2 for S _ + 00. It can be integrated 
over S = 0 where, at worst, it behaves as S - 1/2 for s-o + . 

We expect, therefore, that most of the contribution to the 
integrals of (6.7) will come from points near the surface SA 
where q(x) = A, in particular for S comparable with 1. This 
also suggests that we introduce a new coordinate system in 
Rk such that one of the coordinates is S = (A - q)Y2- 1/3 it
self, which vanishes on SA' The other coordinates can de
scribe positions in the surface S = constant. We can then 
integrate first with respect to S. 

From (S.4c) it follows that 

F'+2(S)= r ~ F,(S')dS', 

and, consequently, from (6.6) we obtain. 

for S>O and I mod 6 = 3, 

for S> 0 and I mod 6 = 4, . 
(6.8) 

for S < 0 or I mod 6*3 or 4 
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for I mod 6 = 4 

otherwise 
(6.9) 

If, in (6.7), we consider YI ,Yz' and Y3 as essentially constant 
over the range S -1, these integrals nearly vanish due to 
cancellation of positive and negative contributions of the 
Fj/)( s) over the range S - 1, except for k mod 6 = 2. 

In the special case k mod 6 = 2 we can write 

dX(k) = dS~k - l)ds II grads I 
with dS~k - I) a surface element of the surfaceq(x) = A,. Since 

/ d f:" / = I d (A, - q) I = I (gradq) I = (12)I12y l/6 gra ~ gra 1/3 113 Z , 
Yz Y2 

the last two integrals in (6.7) give approximately 

f [YI + [(k - 2)/6 ](2YI - Y3) ]Y2 (k - 5)/6 dS" 

2k+217"k123112 [(k + 4)/6]! 

, for k mod 6 = 2, 

0, for k mod 6*2. 

(6.10) 

(6.11) 

We could go on to obtain a second approximation to 
(6.11) correcting for the deviation of the is from constants 
or that S does not go to + 00, but the former corrections 
would involve either third derivatives of q or squares of sec
ond derivatives. It does not seem reasonable to keep such 
terms in view of the previous approximations to n(A"xo)' The 
contributions from large S would be comparable with a hy
pothetical next term in the sum over n of the series in (6.7). 
Our final result is (6.7) along with (6.11). 

7. SPECIAL CASES 

Since one is usually interested in the N (A, ) for small val
ues of k, it is instructive to consider explicitly the values of 
k = 1,2,···. 

For k = 1, (6.7) gives nothing meaningful, thus 

N(A,)= ~ J [A, - q] 12 dx, for k = 1, (7.1) 

with an error term with is small compared with the integer 
steps of the exact N (A, ). Given that the present approxima
tions yield a smooth N (A, ), this is the best one can do. It does 
properly show that the term of order 1 is missing in (1.5). If 
there had been such a term it would have appeared as a posi
tive contribution from the last terms of (6.7). 

For k = 2, the only correction comes from the surface 
integral (6.11) 

N(A,)= _1_J [A, - q] + dX(2) 
417" 

1 f V2qdS~I) 
- 4817" /gradql' for k = 2. (7.2) 

For a symmetric quadratic q(x), q(x) = XT + x~, the first 
term of (7.2) is A, 2/8; the second term is - 1112. The exact 
N (A, ) for this q(x) is highly degenerate with steps at 
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A, = 2n + 2, n = 0,1,2, but the steps are of magnitude n + 1. 
For an asymmetric quadratic q(x) with irrational ratios 
(qll Iq22)112, the steps of N(A,) will occur singly, The second 
term of (7.2), however, is still small compared with these 
integer steps and only describes some appropriate smoothing 
of the exact N (A, ). 

For k = 3, we obtain, for the first time, a correction 
from the leading term of (6.7), giving 

N (A,)= 6~ f [A, - q P2 dX(3) 

- _1_ f [A, - q] - 1I2V2q dx(3), for k = 3. 
3·25~ + 

(7.3) 

For a symmetric quadratic q(x), the first term now gives 
i(A 12)3; the second term - A, 132. 

For k = 4 to 7, we continue to obtain just a single 
correction. 

N(A,)=_I_J [A, _q]2+ dX(4) 
25~ 

___ 1_ r V2q dX(4), for k = 4, 
3·26~ )qd 

(Note that one can also write S V2q dX(4) as S I gradq I 
X dS~3» 

N(A,)= ~3 f[A, - q]S2 dX(5) 

(7.4) 

- _1_ f [A, - q] 1!2V2q dX(5), for k = 5, 
3·25~ + 

(7.5) 

N (A, )=_1_ f [A, - q P dX(6) 
3.2617"3 + 

- _1_ f [A, - q] V2q dX(6), for k = 6, 
3·28~ + 

(7.6) 

N (A,)"" 3 1 4 J[A, - q] 7:2 dx(7) 
2 ·7·5·317" 

- _1_ f [A, - q] 3:2V2q dx(7l, for k = 7. 
9.2717'4 

(7.7) 
For k = 8 we start a sequence offormulas with three 

terms, the third term coming from (6.11) for k = 8 but from 
the series in (6.7), n = 1, for k = 9-13. 

At least the first correction term in the above formulas 
should be valid for "almost all" q(x). The case of the com
pletely symmetric quadratic q(x), q(x) = qo + (f3 14)l:xJ is 
exceptional, however, in that the A, 's are linear functions of 
n + k /2, n integer. But the multiplicity of the eigenvalues 
increase like nk 

- I making the steps of N (A, ) oflarger order 
than thecorrectionN '(A, ) for all k. For any other rotationally 
symmetric q(x) one can expect the steps in N (A, ) to be of an 
order comparable with the N'(A,). 

Except in such cases in which the multiplicity of the 
eigenvalues is of order greater than 1 because of some obvi
ous symmetry of H, one does not expect the steps of N (A, ) to 
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be larger than 1. The exact location of the steps, however, is 
sensitive to detailed irregularities in the q(x). It seems likely 
that, for "most" q(x), the difference between the exact N (A ) 
and some smoothed approximation will look like a stochas
tic process (noise) probably with an amplitude of order 
somewhat less than N 1/2(,.1, ). In particular, for k = 3 one 
might expect this noise to be of a magnitude comparable 
with N '(A) but to be of order smaller than N '(A) for k > 3. A 
study of the magnitude of this noise is a possible subject for 
future research. 

8. RELATED PROBLEMS 

Correction terms for the Titchmarsh formula have been 
derived previously5 for the special case q(x) = 0 (Laplace's 
equation) over some finite region, with the if;n(x) satisfying 
certain boundary conditions [for example if; n (x) = 0] on the 
surface. They were obtained also by Brownian motion type 
arguments analogous to those described here. Indeed such 
methods have been used very extensively in the analysis of 
partial differential equations. 

If one considers a sequence of smooth functions l'})(x) 
for which 

xE1l, 
xeD, 

the eigenfunctions if;~J)(x) would automatically satisfy the 
condition lim if;~J)(x}--+O on the surface of D. It is tempting, 
therefore, to ask if the results for q(x) = 0 can be derived 
from appropriate limits of the formulas of Secs. 6 and 7. 

The latter formulas were obtained from an assumption 
that q(x) can be approximated locally by a quadratic func
tion. This assumption is clearly violated in the limitj-+oo at 
or near the boundary so one could not justify taking any such 
limit. In fact the present correction terms to the Titchmarsh 
formula are meaningless in this limit even though the Titch
marsh formula itself gives the correct first approximation for 
q(x)=OinD. 

The key arguments in the above analysis were that a 
particle cannot travel very far in a short time and conse
quently sees a nearly quadratic potential, and that the propa
gator for the harmonic potential is known exactly. It is inter
esting to note that if we were interested in the thermody
namic properties of the system and t were interpreted as 
11 KT, T = temperature, K = Boltzmann's constant, then 
(2.4) would be the partition function. 

For sufficiently large T (small t) we can use (5.2), (5.3) 
directly (without inverting the transform to obtain N (A )], 
and conclude that 

Z = L exp( - An IKT ) 
n 

~(~BkI2 f [1 -YI/(KT)2) 

Xexp( - qlKT + Y2/(KT)3) dX(k). 

(8.1) 

The lowest approximation corresponding to YI = Y2 = 0 is, 
of course, the classical partition function. The "quantum 
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mechanical corrections" for YI 'Y2 =¥=O are disguised some
what because we have taken a dimensionless form of (1.1). 

Possible uses of this formula have not been explored yet. 
Neither is it obvious from thermodynamics what it means 
that a particle cannot travel very far in a "time" lIKT. 
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APPENDIX 

For even integer I, most of the properties of the FI ( 5') 
can be derived from known properties of the Airy function J

·• 

since 

I fa + ioc 

F_ 2 (5) = -. exp[5'u + u'] du 
21Tl a -;00 

= 3 1/3Ai( - 5' 13 1/3
), 

and 

FI U ( 5' ) = s: oc FI ( 5' ')d5' '. (AI) 

Equations (5.5) can, however, be derived quite easily for ar
bitrary I. 

The path of integration parallel with the imaginary u
axis can be deformed to the path C of Fig, la at angles of 
± 1T13. If, now, we let z = u3

, then 

F
I
( 5') = ~ ~ ( exp[5'z I!3 + z] dz 

2m 3 JC' Z1/6+ I 

where C' a path along the negative z line as in Fig. la. Equa
tion (5.Sa) is obtained by expanding exp( 5'zI/3), 

00 (t"z 1/3)" 
exp( 5'zI/3) = L:" , 

n =0 nl 

and integrating term by term. 
For - 5'> 1, the factor exp(5u + u3

) has a saddle point 
at Uo 

c' 

(0 ) ( b) 
FIG. I. 
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on the real line, Uo > 0. Equation (S.5b) is obtained by de
forming the contour C _ passing through this saddle point 
in the imaginary direction as in Fig. I b, and doing the usual 
saddle point integration. 

For 5> 0, the saddle points of the exponential are on the 
imaginary axis at 

u± = ±ils/31112. 
Since the integrand is rapidly decreasing along the negative 
line, U < 0, one would like to integrate along a path like C', 
but the path must start and end at u = ± 00 in the rhp. The 
simplest way to reach the rhp from u = - 00 is to deform 
the contour to a path C + passing through the saddle point 
u ± as in Fig. 1 b. The path should go through u ± at angles 
of ± 1T/4. 

The second term of(5.5c) comes from saddle point inte
grations through u ± . The first term of(5.5c) comes from the 
integration along the negative line, C. Ifwe let v = su, this 
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part of FI ( 5) becomes 

-1-i exp[v + (U/5)3] dv 
21Ti C' 5 (U/S)kl2+ 1 

This time we expand exp[(u/sn in a power series and inte
grate term by term. 

The properties of FI ( 5) for I an odd integer can be ob
tained also by multiple integrations or differentiations of 
F1(s)· 
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We examine the amplitude/ P(cosO) for scattering off a screened Coulomb potential V P(r) 
= VC(r)aP(r), where VC(r) is the Coulomb potential y/r. We prove that, for a wide class of 

smooth screening functions a P(r), the screened amplitude / P( cosO) approaches the pure 
Coulomb amplitude/ C (cosO), times a phase factor, as the screening radiusp-oo. This limit is 
pointwise and uniform in angle and energy (excluding arbitrarily small neighborhoods of 0 = 0 
and E = 0), and therefore implies that the corresponding cross sections become equal as p- 00 • 

1. INTRODUCTION 

This is one of a series of papers on Coulomb scattering, 
the nonrelativistic scattering of two charged particles. 1-4 

Our aim in these papers has been to establish the extent to 
which Coulomb scattering can be treated as the limit of scat
tering by a screened Coulomb potential, in the limit that the 
screening radius p tends to infinity. 

We consider a screened potential V P(r) with the form 

V P(r) = VC(r)aP(r), 

where VC(r) denotes the pure Coulomb potential 

VC(r) = y/r 

(1.1) 

(1.2) 

(or, more generally, the Coulomb potential plus some short
range potential) and a P(r) is a screening function that goes to 
zero as r_ 00 (withp fixed) but approaches 1 as the screening 
radiusp-oo (with rfixed). Examples of the kinds of screen
ing function one might consider are the exponential function 

aP(r) = exp( - rip) (1.3) 

and sharp cutoff 

aP(r) = 0 (p - r), (1.4) 

where 0 (x) is the step function, which is zero for x negative, 
but is one for x positive. 

We denote the amplitude and differential cross section 
for scattering off the screened potential V P by / P and 
(do/dfl) p. The corresponding pure Coulomb quantities are 

/ C and (do/dfl) c; in particular, the Coulomb amplitude/ C 

is well known to be5 

(
2. )exp[ -iylnsin2(OI2)] 

/ C (cosO) = - yexp zoo 2 sin2(O 12) (1.5) 

y' (1.6) 
(1 _ COSO)l + iy , 

where 0 is the scattering angle, 0 0 is the s-wave Coulomb 
phase shift, argF (1 + iy), and 

(1.7) 

In Refs. 1 and 2 we considered the amplitudes/ P and 
/ C as distributions, and showed that, in this sense, / P ap-

proaches / C times a certain phase factor as p_ 00 : 

[/P(cosO)-e2i,(p)/C(COSO)] _ 0 (as a distribution), 

(1.8) 

where the phase; (p) is 

;(p) = _ r'" dr VP(r). (1.9) 
)112 

The result (1.8) means that if the left-hand side is multiplied 
by a smooth function <P (cosO) (which vanishes at 0 = 0)6 and 
is integrated over all angles, then the resulting integral goes 
to zero as p_ 00. The physical significance of the result is 
clear if one recalls that, for a given incident wave packet 
<Pin (p), the scattered wave is the integral over angles of <Pin (p) 
times the amplitude. Thus Eq. (1.8) means that the wave 
scattered off the screened potential V P approaches that for 
the Coulomb potential (within a phase factor) as p- 00 • 

Thus for a given incident packet, the probability for scatter
ing by the screened potential V P approaches that for the 
Coulomb potential as p- 00 • In Ref. 1 this result was proved 
for the case that the potential that is screened is a pure Cou
lomb potential [as in Eq. (1.1)]. In Ref. 2 it was extended to 
the case of a Coulomb plus a short-range potential. In either 
case, the result was proved for a wide class of screening func

tions aP(r) including both smooth functions like the expo
nential (1.3) and sharp ones like the cutoff (1.4). 

The results of Refs. 1 and 2 establish equality of the 
relevant scattering probabilities/or a given incident packet 
<Pin (p). This does not, by itself, guarantee equality of the cor
responding cross sections, since the definition of a cross sec
tion involves a large number of different incident packets 
with randomly distributed impact parameters. In Refs. 3 
and 4 we took up the question of cross sections. We showed 
that the screened cross section (dol dfl ) P does approach the 
Coulomb cross section. 

(1.10) 

provided the limit (1.8) holds pointwise and uniformly for all 
relevant momenta [see Ref. 3, paragraph below Eq. (2.3).] 
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We then examined the amplitudes I P andl C computed in 
Born and eikonal approximations and reached the following 
two conclusions: First, based on examination of the approxi
mate amplitudes, it appears that for smooth screening func
tions like the exponential (1.3) the limit (1.8) does hold 
pointwise and uniformly. Thus it appears that the cross sec
tion for a smoothly screened Coulomb potential does ap
proach the Coulomb cross section as p- 00 ; that is, the limit 
(1.10) is true. On the other hand, for the sharpcutoff(I.4), it 
appears that the limit (1.10) does not hold (again based on 
examination of the Born and eikonal approximations). In
stead, we found that, in Born and eikonal approximations, 

(dU)P _ ~ (dU)C, 
dfl p->= 2 dfl 

(1.11) 

and were able to show that the extra (1/2) (du/dfl) C is con
tributed by particles that are reflected off the discontinuity in 
the potential at r = p (no matter how large we make p). 

Both of these conjectures were based on the examina
tion of approximate amplitudes. Although one can argue 
that there are circumstances where the approximations are 
almost certainly reliable, it is obviously desirable to find 
proper proofs based on the exact amplitudes. In this paper 
we give an exact proof of the first result. That is, we prove 
that, for screening functions that are sufficiently smooth, the 
amplitudel P does approach the Coulomb amplitude/ C 

within the expected phase factor, 

[I P(cosO) - e2i{;(p) I C (cosO)] _ 0, (1.12) 

pointwise and uniformly for cosO in any closed interval ex
cluding cosO = 1 and for energy in any compact interval ex
cluding O. This ensures that the desired limit (1.10) for the 
cross sections holds. 

Our smoothness conditions on the screening function 
are described in Sec. 3. The conditions are sufficient, but 
quite likely not necessary, and could probably be weakened. 
However, they are already sufficiently weak to admit a wide 

class of smooth functions, including the exponential a P(r) 
= exp( - rip), the Gaussian exp( - r/p2), and an inverse 

power likepn/(p + rY. On the other hand, they exclude the 
sharp cutoff (1.4) as one might expect. [We have not yet 
managed to show what does happen with the sharp cutoff, 
but we conjecture that the limit (1. I I) holds.] 

Our proof of the limit (1.12) uses the partial-wave ex
pansion for the amplitudes concerned. For this reason we 
begin our proof, in Sec. 2, with some useful results relating to 
the partial-wave series for the Coulomb amplitude. In Sec. 3 
we give our conditions on the screening function. In Sec. 4 
we outline the main proof, and in Secs. 5 and 6 we fill in some 
of the details; the remainder can be found in the thesis of the 
first named author. 7 

In the last few years there have appeared many papers 
on the scattering of charged particles. In particular, consid
erable progress has been made in understanding of scattering 
involving three or more bodies,8-1O some of it based on the 
use of screening functions. (See especially Ref. 8 and 9.) N ev
ertheless, as far as we know there has appeared no proof of 
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the simple two-body result (1.12), and this is therefore what 
we now prove. 

2. PROPERTIES OF THE COULOMB PARTIAL-WAVE 
SERIES 

The standard definition of the Coulomb phase shift u, is 

U, = argI' (l + 1 + iy). (2.1) 

In terms of these one can define a Coulomb partial-wave S 
matrix sf = exp(2iu,) and a partial-wave amplitude 
I,c = (sf -1)/2i. It is well known that the corresponding 
partial-wave series 

is pointwise divergent. I On the other hand, it was shown in 
Ref. 1 that this same series, when considered as a distribu
tion, is convergent and converges to the Coulomb amplitude 

I C(x)=y'/(I - X)I + ir 

= L (21 + I)lrp,(x) (as a distribution), (2.2) 

where we have introduced the abbreviation x = cosO. 
The reason that the series (2.2) is pointwise divergent is 

thatl C (x) has an infinite singularity at x = 1 (the forward 
direction) due to the factor (1 - x) in its denominator. This 
suggests that one would obtain a better series if one multi
plied Eq. (2.2) by (1 - x). If we do this and use the recur
rence relation for the Legendre polynomials, we can rewrite 
(1 - X )P, (x) in terms of P, _ I , P" and P, + I , and after some 
simple algebra obtain 

(l-x)/ C(x)=y'(I_x)-ir 

·.2S
C 

= ~ (21 + 1) r ,- I P (x) 
L.. '(1 1')(1 ')' . I + -IY -IY 

(2.3) 

From (2.2) it follows that the series (2.3) converges as a 
distribution. However, it follows from Laplace's formula, II 

P,(cosO) = (_2_. _)IIZ cos[(/+~)8-a1T] + o (/-3IZ), 
11'1 smO 

(2.4) 

uniformly for - I + E";;;COSO..;;; 1 - E(any E> 0), that P,(x) is 
o (I-liZ) and hence that the series (2.3) is actually convergent 
pointwise for -1 < x < 1 and uniformly for - 1 + E";;;X 

..;;; 1 - E. Furthermore, it is easily seen that the sum of the 
series is precisely the function on the left, (1 - x}f C(x). Thus 
even though the partial-wave series (2.2) is itself of no use in 
studying the pointwise properties of the Coulomb ampli
tude, the series (2.3) obtained by multiplying (2.2) by (1 - x) 
is pointwise convergent and can be used to study the 
pointwise properties of I C (x). 

The series (i.3) is unfortunately still divergent at 
x = ± 1. This divergence reflects that the function 
(1 - x}f C(x) is discontinuous at x = 1. We shall not be in
terested in the point x = 1, since we know that the Coulomb 
cross section is undefined in the forward direction. On the 
other hand we shall be interested in the point x = - 1 (the 
backward direction). To obtain a series that converges at 
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x = - 1 (and. incidentally. at x = 1) we can multiply (2.3) 
by a second factor of (1 - x). The function (1 - X )2f C(x) is 
continuous for - 1 <x< 1 and has a Legendre expansion 
that can be found either by multiplying (2.3) by (1 - x) and 
rearranging. or directly. using standard techniques. It is l2 

(1 - x)2f C (x) = 2. gf PI (x). (2.5) 
I 

where 

2iy( 1 - iy)2(21 + 1 )sf _ 2 

gf = -------------------------------
(I + 2 - iy)(l + 1 - iy)(1 - iy)(/ - 1 - iy) 

(2.6) 

Obviously the coefficientgf is 0 (/-3
) and. since IPI(x) I < 1 for 

all x. the series (2.5) is uniformly and absolutely convergent 
for all x in [ - 1.1]. 

In Sec. 4 we shall use the series (2.5) and the corre
sponding series for (1 - x ff P(x) to establish our main result 
that. as p_ 00 ,J P(x) converges pointwise to f C (x) times the 
expected phase factor. 

3. CONDITIONS ON THE SCREENING FUNCTION 

The proof of our main result requires various assump
tions concerning the screening function a per). We assume 
first that a per) satisfies the same conditions as in Ref. 1; that 
is we suppose that 

(1) a P(O) = 1; 
(2) a P(r)-O monotonically like 0 (r - 2 - £) as r- 00 (p 

fixed); 
(3)a P(r)-1 asp-oo (rfixed). 

The main point of these assumptions is that V per) 
= aP(r)ylris a "well behaved" short-range potential [in the 

sense that it is 0 (r - 3 - E) as r_ 00] and that V P(r)-V C (r) 
as p- 00. Concerning the smoothness of a per). we suppose 
that it has at least five continuous derivatives satisfying 

(3.1) 

for m = 1 ..... 5. where K is independent of rand p. 
Although the assumption (3.1) could perhaps be some

what relaxed. it already admits a wide class of functions in
cluding the exponential aP(r) = exp( - rip). the Gaussian 
exp( - r I p2). and a power like p" I( p + r)" (n > 2). 

For future reference we note that our assumptions im
ply that the screened potential V per) = a P(r)ylr satisfies 

(3.2) 

for m = 0 ..... 5. where Mis a constant independent ofr andp. 

4. PROOF OF CONVERGENCE OF THE AMPLITUDES 

We have to show. subject to the conditions of Sec. 3. 
that 

(4.1) 

uniformly for -1 <x< 1 - E (any € > 0). To this end it is 
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obviously sufficient to show that 

uniformly for aU x. We shall prove this using the partial
wave expansions of the two amplitudes concerned. 

The screened amplitudef P(x) has a convergent partial
wave series. since the potential V per) is of short range. How
ever. asp- 00 and V per) approaches the Coulomb potential. 
the series forfP(x) converges more and more slowly. reflect
ing the divergence of the pure Coulomb partial-wave series. 
Now. we have seen that multiplication off C(x) by (1 - X)2 
leads to a convergent Legendre expansion. Thus one might 
guess that multiplication off P(x) by (1 - X)2 would produce 
a series that converges uniformly in p. and this proves to be 
the case. 

Multiplying the partial-wave series forfP by (1 - x) 
and using the recurrence relation for Legendre polynomials 
to rewrite (1 - x)PI(x) in terms of PI_I' PI' and PI+ I' we 
obtain 

i 
(1-x)fP(x)= '22. W+l)sf+1 

- (21 + l)sf + Isf_1 ] PI(X). (4.3) 

where sf is the partial-wave S matrix for the screened poten
tial V per). This can be rewritten in terms of the first 
difference. 

..1s1 SI+1 -Sl. 

to read 

(4.4) 

(1 - x)f P(x) = ~ 2. {(I + 1)..1sf - l..1sf_1 } PI (x). (4.5) 

If we multiply once more by (1 - x) and use the recurrence 
relation again. we obtain a series 

(4.6) 

where the coefficientgj is easily written down in terms of the 
differences ..1sf+ I ..... ..1sf_ 2' The expression for gf simplifies 
if we introduce the higher differences 

(4.7) 

With this definition it is easily seen thae4 

gf= 1 [(2[3 + [2 - 3/)..1 4 Sp 

2i(21 +3)(2/-1) 1-2 

+ (4[2 + 6l)..1 3Sl-1 - (21 + 4)..1 2sf 

+ 2L1sf+ I ]. (4.8) 

Now. if one examines the differences ..1 msf for the Cou
lomb S matrix. it is found that as 1_00 15 

(4.9) 

that is. each successive difference goes to zero more rapidly 
than its predecessor by one power of I. This suggests that the 
same might be true of the screened S matrix. and that this 
would be true uniformly for all screening radii p. In Secs. 5 
and 6 we prove that this is so. Specifically. we prove. subject 
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to the conditions of Sec. 3 on a per), that as p- OC) 

A msf = 0(1 - m), 

uniformly inp for m = 1,2,3,4. 

(4.10) 

Substituting the bound (4.10) into the expression (4.8) 
for the coefficient gf we see immediately that as 1_ OC) 

gf = 0(1 -3), (4.11) 

uniformly inp. This means that the series (4.6) for (1 - X)2 
fP(x) converges uniformly for all angles and allp. 

We are now ready to prove the essential result (4.2). 
Both amplitudes in (4.2) can be expanded in Legendre series 
so that 

(1 - X)2 [f P(x) - e2i;(p) f C (x) ] 

(4.12) 

This series converges uniformly for allp. Now, it follows 
from the results of Ref. 1 (p. 328) that for any fixed I, 

(4.13) 
p--oo 

Since the series (4.12) converges uniformly inp we can inter
change the summation with the limit p- OC). It immediately 
follows that (4.12) goes to zero asp-OC), and our proof is 
complete. 

5. BOUND ON THE FIRST DIFFERENCE AS, 

It remains to prove that A msf = 0 (I - m) as 1_ OC), uni
formly inp for m = 1,2,3,4. In this section we treat the case 
m = 1 in detail; that is, we prove that 

Asf=O(/-I), (5.1) 

uniformly in p as 1_ OC). In the next section we sketch the 
prooffor the higher differences, referring the reader to Ref. 7 
for further details. Throughout these two sections we shall 
make repeated use of the "large 0" symbol, as in Eq. (5.1). In 
all cases the bound will apply as 1_ OC) and will be uniform in 
p. 

The partial-wave S matrix Sf (which we abbreviate to s, 
from now on) can be found from the normalized radial wave 
function tP/(r). This function satisfies the radial equation 16 

tP;' = (2V per) + 1(1; 1) -1 ) tPl> (5.2) 

and the boundary conditions 

tPl-+const X r' + I (as r-o), 

and 

(5.3) 

The first difference AS1 can be expressed as an integral 
of wave functions using an integral identity first published by 
Calogero. I? We let tPI(r) and tP2(r) denote two functions sat
isfying equations of the form 

tP;'(r) = Ui(r)tPi(r) (i = 1,2), (5.5) 

and let F (r) be any function (such as F = 1 or F = r - n) for 
which the integrals and limits in Eqs. (5.6) and (5.7) below 
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exist. Finally we denote by G (r) the integral 

G (r) = { dr' (U I - U2) F. (5.6) 

It is an elementary (though tedious) exercise to verify, using 
successive integrations by parts, that 

fC drtPltP2 [F'" -2(UI + U2)F' - (U I + U2)'F 

+ (U I - U2)G 1 = [tPltP2{F" - (UI + Uz)F} 

- (tPltP2)'F' + 2tP; tP;F + (tP; tP2 - tPltP;)G]O' . 
(5.7) 

Calogero calls this useful, if inelegant, identity the general
ized Wronskian relation, since it implies, as a special case, 
the standard Wronskian relation. IS By making suitable 
choices for the functions tPI' tP2' and Fwe can use (5.7) to 
prove the desired bound, (5.1). 

We first write the identity (5.7) for the case that 
tPI = tPl + I , tP2 = tPl' and F = 1. With these choices most of 
the terms in (5.7) are zero, and it is easily checked [using the 
asymptotic forms (5.3) and (5.4)] that (5.7) reduces to 

ASI = - 4i 1"" dr tPl + I tPl V' (5.8) 

(where we omit the superscriptp from V P and V' denotes 
dV /dr as usual). This is the starting point for our bound on 

Asl • 

Applying the Schwartz inequality to (5.8) we see that l9 

IAS,I<4(f ItPl+II 1 1V'1 f ItP/1 2 1V,!Y!2· (5.9) 

Now, we know from (3.2) that I V'I <M /,z (whereMisinde
pendent ofr andp). Thus (5.9) will imply the desired result if 
we can prove that 

(5.10) 

In order to prove this we shall prove more generally that 

In =In(l) fltP,1 2/,n 

(5.11) 

where. as usual, the bound applies as I-OC) and is uniform in 
p. 

To prove (5.11) we use the generalized Wronskian rela
tion (5.7) with tP I = tPl and tP2 = tPr. If we first take F = 1. 
then (5.7) reduces to 

1 = 2 f ItPtl2 e (I; 1) - V' ) . (5.12) 

Since. by (3.2). I V'I<M Ir. this equation implies that 

1 = 0(1)12 + 0(12)13' (5.13) 

where as usual 0 (1) denotes a number that is bounded (uni
formly inp. as 1-+ OC) and we have introduced the convenient 
notation20 

f=O(g). 

to signify that 

f= o (g) and g = OU). 
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If we again take rf!1 = rf!, and rf!2 = rf!r in (5.7), but 
choose F = r- n (n;;.2), then we find 21 

JI~12 

= f 1~12 (2V- V'r --+ 
n -1 

_n_ (21 + 1)2 - n2). 
n -1 4~ 

(5.16) 

Again using the bound (3.2) on Vand V' we obtain the 
relation 

(5.17) 

for any n;;.2. 
The two relations (5.13) and (5.17) are sufficient to 

prove the required bound (5.11). It is convenient to define a 
quantity I n such that 

In =/1-nJn, 

in terms of which (5. 13) reads 

1 = O(l-I)J2 + 0(1)J3, 

(5.18) 

(5.19) 

while (5.17), with n = 2 and 3, gives the two relations 

J 2 = O(l-I)J3 + 0(1)J4 (5.20) 

and 

(5.21) 

From the Schwartz inequality it is clear that 

J~ <./3 J5• (5.22) 

Inserting this into (5.21) we obtain a quadratic equation for 
V J5 in terms of V J3• Solving this we find that 

J5 = 0(1)J3, (5.23) 

and hence from (5.22) that 

J4 = 0(1)J3 • 

Next (5.20) implies that 

J2 = 0(1)J3 , 

(5.24) 

(5.25) 

and then (5.19) thatJ3 = 0(1). Inserting this in (5.25), we 
find 

12 = 0(1), 

and thence immediately 

J" = 0(1), (5.26) 

for all n for which the integrals exist (Le., 2<.n<.21 + 2). 
From (5.18) it now follows that In = 0 (II - n). In par

ticular, this implies the bound (5.10) which, as discussed in 
connection with (5.9), implies that .ds, = 0 (I-I) as required. 

6. BOUNDS ON HIGHER DIFFERENCES 

The proof that .d ms, = 0 (I - m) for m = 2,3,4 is analo
gous to that for the case m = 1, though significantly more 
complicated. We define a sequence of auxiliary functions 
rf!'!'(r) such that 

rf!?=rf!" 
while 

rf!';' + I = (rf!'!'+ I)' - rf!'!' + (I + 1)rf!'!'+ I Ir. 
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From the asymptotic form (5.4) of rf!, it follows at once by 
induction on m that 

r--+oo 

In other words, the asymptotic form of the auxiliary func
tion rf!'!' tells us the mth difference.d ms, in much the same 
way that that of rf!1 tells us s, itself. 

Ifthe potential is zero, then all of the auxiliary functions 
rf!';' (m;;. 1) are zero. (This follows from the recurrence rela
tion for Riccati-Bessel function.) In general rf!'!' satisfies an 
equation like the radial equation (5.2) but with an inhomoge
neous term that is a linear combination offunctions rf!r' with 
m' < m, From this equation one can derive an identity analo
gous to the generalized Wronskian relation (5,7). From this, 
one can obtain integrals for the.d m s, and thence bounds 
analogous to the bounds (5.19)-(5.21) (although somewhat 
more complicated). And from these, one can derive the re
quired bound.d 1»s, = 0 (I - m) as described in detail in ref. 
7. With this, our proof is complete. 

7. CONCLUSION 

We have shown that for smooth screening functions 
a P(r) (satisfying the conditions of Sec, 3) the screened Cou
lomb amplitudefP approaches the pure Coulomb ampli
tude, times the expected phase factor, 

[J P(cosO) - e2j~(p) f C (cosO)]-o (7.1) 

as p- 00. This limit is pointwise and uniform for 
-1 <.cosO.;;; 1 - E" (any E" > 0) and for energies in an finite 

closed interval excluding zero.22 
Our proof can easily be extended to the case of a Cou

lomb potential plus a smooth short-range potential. Howev
er, it should be emphasized that we do have to require that 
the short-range potential is smooth [in the sense that the 
complete screened potential satisfies conditions (3.2)]. 

Finally, we should mention that for the case of a repul
sive Coulomb potential our method yields an estimate of the 
rate at which the limit (7.1) is approached. For this we must, 
of course, specify how the screening function a P(r) depends 
on p. A very natural way to do this is to suppose that a P(r) is 
in fact a function of rip, 

aP(r) = a(rlp). 

With this assumption, our method shows that the difference 
in (7,1) is 0 (p-1/2) as p_oo. From this it is easily seen that 
the differential cross section satisfies the same bound 

(dU)P _ (dU)C = o (p-1/2) 
dfl dfl ' 

(7.2) 

as p_ 00 . If the potential is not repulsive, then the left side of 
(7.2) goes to zero, of course; but we, as yet, have no estimate 
of its rate of convergence. 

'I. R. Taylor, Nuovo Cimento B 23,313 (1974). 
2M. D. Semon and I. R. Taylor, Nuovo Cimento A 26, 48 (1975). 
3M. D. Semon and I. R. Taylor, I. Math, Phys. 17, 1366 (1976). 
4M. D. Semon and J. R, Taylor, Phys. Rev. A 16, 33 (1977). 

D. M. Goodmanson and J. R. Taylor 2206 



                                                                                                                                    

'We follow the notation of Ref. I and use units with Ii = m = p = I (where 
m is the mass and p the momentum of the scattered particle). 

"The requirement that I/J = 0 when £) = 0 simply excludes discussion of 
forward scattering, which is well known to be infinite for Coulomb scatter
ing. We required I/J (cos£) to be "smooth" in the sense that it has a continu
ous second derivative. 

'D. M. Goodmanson, "Coulomb Scattering as the Limit of Screened Cou
lomb Scattering," thesis submitted to the University of Colorado in partial 
fulfillment of requirements for the Ph.D. degree, 1978. 

"A. M. Veselova, Theor. Mat. Fiz. 3, 326 (1970). 
"E. O. Alt, W. Sandhas, and H. Ziegelman, Phys. Rev. C 17,1981 (1978). 
"'G. Bencze, Nucl. Phys. A 196,135 (1972); S. P. Merkuriev, Yad. Fiz. 24, 

289 (1976). 
"See, for example, Higher Transcendental Functions, edited by A. Erdelyi 

(MaGraw-Hill, New York, 1953), Vol. II, p. 198. 
"The simplest way to prove the two pointwise limits (2.3) and (2.5) is per

haps the following: The function (I - X)2 f C (x) in (2.5) is well behaved 
and certainly has a normal Legendre expansion. The coefficients in this 
expansion are given by the usual formula, 112(21 + I) times the integral of 
(I - x)2f C(x) times P,(x). This integral is given in Ref. 13, Eq. (7. 127) and 
yields the coefficient (2.6). We can then divide Eq. (2.5) by (I - x) and, 
provided - I <x < I, we can rearrange terms to give (2.3). 

"I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products 
(Academic, New York, 1965). 
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'41t is easily checked that the corresponding Coulomb coefficient g~ defined 

in (2.6) is given by a corresponding expression involving the differences 
.dillsf'. 

"The notation a, = 0 (b,) as 1-- 00 means that there is a constant K such 

that la, I < K I b, I for I sufficiently large. 
'"We use units with Ii = m = p = I. Note that what we call Vhere was 

denoted by V 12 in Ref. 7. 
I7F. Calogero, "Generalized Wronskian Relations" in Studies in Math

ematical Physics, edited by E. Lieb, B. Simon, and A. S. Wightman (Prin
ceton U.P., Princeton, N.J., 1976). 

'"f[; drifJ,ifJ2(U, - U2) = [ifJ;ifJ2 - ifJ,ifJ; 1;· 
'"From now on all integrals are over r, running from 0 to 00. 

2()We have been unable to find an accepted notation for this convenient idea. 
Order relations likef = 0 (g) can be multiplied together, but not divided. 
One can also divide by the relationf = 0 (g). In parjicular, [0(/ ")]-' 
= 0(/ "). In Eq. (5.13) we use the obvious result that 21 (I + I) = 0(/2). 

2'The condition n)2 is needed to ensure convergence of the integrals at the 
upper limit. The integrals diverge at their lower limit if21 < n, but this does 
not matter since we are interested in bounds as 1 __ 00 • 

nBy using units with p = I we have obscured the fact that our bounds are 
uniform inp (on any compact interval excluding zero). However, it is easy 
to check that this is so. 
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The pr~ble~ of dec~ying states and resonances is examined within the framework of scattering 
theory III a ngged Hilbert space formalism. The stationary free,"in," and "out" eigenvectors of 
formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to 
be analytic functions ofthe energy eigenvalue. The value of these analytic functions at any point of 
regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. 
The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the 
singularities of the "out" eigenvector family are the same as those of the continued S matrix, so 
that resonances are seen as eigenvectors ofthe Hamiltonian with eigenvalue equal to their location 
in the complex energy plane. Cauchy theorem then provides for expansions in terms of 
"complete" sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such 
expansions to the survival amplitUde of a decaying state, one finds that resonances give discrete 
contributions with purely exponential time behavior; the background is of course present, but 
explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing 
in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the 
singularities ofthe continuation are the same as those of the "out" eigenvectors. The free, "in" and 
"out" eigenvectors with complex eigenvalues and those corresponding to resonances can be 
approximated by physical vectors in the Hilbert space, as plane waves can. The need for having 
some further physical information in addition to the specification of the total Hamiltonian is 
apparent in the proposed framework. The formalism is applied to the Lee-Friedrichs model and 
to the scattering of a spinless particle by a local central potential. 

1. INTRODUCTION AND SUMMARY 

Recently, there has been a revival of interest in the 
study ofthe dynamical behavior of unstable states and reson
ances in quantum mechanics, based on technically an con
ceptually different approaches (see, e.g., Ref. 1 and refer
ences cited therein; for a different approach, in the context of 
nonequilibrium statistical mechanics, see Ref. 2). One of the 
purposes of these investigations is the study of the time be
havior of the survival probability of an unstable system, in 
order to compare the classical and quantum predictions and 
reconcile their apparent contradictions. As is well known, 1 a 
purely exponential decay law for the survival probability of 
an unstable system is forbidden in quantum mechanics with
in the Hamiltonian formalism, since deviations from expo
nential behavior are necessarily bound to occur at short as 
well as at long times compared to the mean life. 3 A line of 
research has been developed in which unstable states have 
been considered from the point of view of the theory of open 
systems, in so far as their interaction with the environment 
(e.g., the measuring devices) is assumed to playa significant 
role in their evolution. Within this scheme, one can justify 

"'Supported in part by DOE Contract No. EY -76-S-05-3992, by NATO 
Research Grant No. 1380, by CNR Contratto di Ricerca No 77.01543.63, 
and by INFN, Sezione di Milano. 

h'Pennanent address: Istituto di Fisica dell'Universita, via Celoria 1620133 
Milano, Italy, and INFN, Sezione di Milano, Italy. 

the derivation of a semigroup law for the evolution of the 
density matrix representing the unstable state, thereby ob
taining for the survival probability an exponential behavior 
at all times, in agreement with the classical prediction. I This 
derivation is based on physical arguments concerning the 
reduction of the density matrix of the system due to the inter
action with the environment. In this context, the Markovian 
approximation leading to a semigroup law for the density 
matrix and consequently to an exponential decay law, may 
be justified by the usual argument based on the separation of 
two typical time scales for the system and the surroundings. 4 

In S matrix theory, the treatment of unstable states and 
resonances has been based on the association of such states to 
second sheet poles of the analytic continuation of the S ma
trix in the lower half-plane across the cut determined by the 
absolutely continuous spectrum of the Hamiltonian. In this 
paper we conform to this point of view as a working hypoth
esis, even though there is no logical reason for its general 
validity. For example, it is possible to construct models in 
which a resonance appears, whereas the analytically contin
ued S matrix has no poles in the unphysical sheet.s Converse
ly, the Friedrichs model6 with a nonanalytic potential pro
vides an example of a resonance model in which the S matrix 
is not even analytically continuable.7 Resonances appear 
also as singuarities of the continuation of an appropriate 
family of matrix elements of the resolvent or of operators 
connected to the resolvent.8

-
15 Such treatments apply equal-
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ly well in two different classes of models in both of which the 
Hamiltonian is envisaged as a sum H = H 0 + Vof a "free" 
part plus an "interaction" V. For the sake of simplicity, con
sider the case of a two-body resonance. On the one hand, one 
can consider the system from the point of view of a typical 
scattering problem. Then Ho is the Hamiltonian one would 
ascribe to the two particles if they were noninteracting and V 
represents their interaction potential which may give rise to 
peaks in the scattering cross section, which are interpreted as 
quasibound states. The mean life of these resonant states is 
given by lIro, if ro denotes the full width at half maximum. 
This behavior of the cross section is ascribed to the presence 
of a pole of the second sheet continuation of the S matrix at 
the point Zo = Eo - i(r 012). In an alternative approach, 
which suggests itself more naturally when one wishes to de
scribe long-lived unstable states, one considers Ho as the hy
pothetical Hamiltonian of the system plus its decay products 
in the absence of the interaction V which is responsible for 
the decay. In these models, H O has one or more eigenvalues 
mo embedded in the continuum. As V is switched on, the 
corresponding stationary states may become unstable and 
the eigenvalues are absorbed in the continuum. Granted 
suitable analyticity properties, the poles of the resolvent re
duced to the proper eigenstates of H 0 move off the real axis to 
points Zo = Eo - i(r 012) into the second sheet, close to the 
unperturbed energies mo. There are of course physical situa
tions in which both features of the above description appear, 
for example in the case of scattering of electrons off He· 
atoms, where the cross section has peaks occurring at the 
energies of the autoionizing states. A simple treatment 
which unifies the two models outlined above has been pro
posed some time ago by Horwitz and Marchand, 14 based on 
the notion of decay-scattenng system. The problem of eigen
values embedded in the continuum which may dissolve un
der the action of a perturbation was first considered by 
Weisskopfand Wigner l6 in connection with the study of the 
width of spectral lines. Its first mathematically rigorous 
treatment was given by Friedrichs in a particular model6 and 
subsequently developed in a general context, in connection 
with the theory of spectral concentration. IZa.b.17 The Frie
drichs model is equivalent to the Lee model IS in the first 
nontrivial sector, with an unstable Vparticle. The theory of 
dilation analytic potentials, 10.11.19 has allowed to interpret 
resonances as isolated eigenvalues of a suitable non-self-ad
joint analytic continuation of the Hamiltonian, thereby pro
viding also a natural dense set of vectors inthe Hilbert space 
(the analytic vectors of the group of dilations) for which the 
expectation values of the resolvent can be continued to the 
second sheet and exhibit poles exactly at the location of the 
resonances. As we shall see, a physically motivated selection 
of the matrix elements of the resolvent which are to be con
tinued is of crucial importance. 

In the analysis of the behavior of an unstable system 
described by a normalized state vector (fJ prepared at the time 
t = 0, the main object of study is the survival amplitude 

A (t) = «(fJ, exp( - iHt)(fJ ), t;;.O, (1.1) 

where H is the total Hamiltonian of the system. In two pre
ceding papers, 20 .21 we have carried out a detailed study of the 
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structure of (1.1) in a simple analytic resonance model. As
suming the existence at the point Zo = Eo - i(r 012) of a sim
ple pole of the second sheet continuation in the lower right 
quadrant of the matrix element «(fJ, R (z)(fJ ) of the resolvent 
(H - zt l and deforming the integration contour, one ex
presses the survival amplitude as a sum of two contributions: 

A (t) = Ao(t ) + A r (t ). (1.2) 

They have respectively the following forms: 

Ao(t) = boexp( - iEot )exp[ - (ro/2)t], (1.3) 

and 

Ar(t) = L exp( - izt)b (z) dz. (1.4) 

The purely exponential term (1.3) arises from the residue of 
the S matrix at the pole Zo and, if the resonance is sufficiently 
narrow, it dominates the survival amplitude over a long 
range of intermediate times 1'1 < t < 1'2' with 1'1 and 1'2 being 
respectively very short and very long as compared to the 
mean life lIro of the unstable state. On the other hand, the 
background integral (1.3), which is performed along a com
plex contour r running below the location of the pole, is 
responsible for the deviations of the decay law from the pure 
exponential at short (t < 1'1) and long (t > 1'2) times (estimates 
of the time parameters 1'1 and 1'2 have been calculated in 
various models: se Refs. 3a, 20, and 1, and references quoted 
therein). In the special case of the Friedrichs model, using a 
procedure of analytic continuation which formally corre
sponds to a deformation of the spectrum of the Hamiltonian 
in the complex plane, we have shown in Ref. 21 that the 
representations (1.2)-(1.4) of the survival amplitude can be 
interpreted in a formal way as an expansion of the unstable 
state over a "complete set" of generalized eigenvectors of the 
Hamiltonian, which corresponds to a continuum of complex 
eigenvalues z along the contour r plus a "discrete" and like
wise complex eigenvalue Zo at which the second sheet con
tinuation of the S matrix exhibits a pole. In this way, it is 
natural to associate the unstable particle to the pole 
Zo = Eo - i(r 012), with mass Eo and width r o, and ascribe 
to it the corresponding generalized eigenvector F(zo) of the 
Hamiltonian. It is the purpose of this paper to give a rigorous 
mathematical foundation to this interpretaton in terms of 
complex eigenvalues and eigenvectors of the Hamiltonian in 
the framework of the theory of self-adjoint operators in 
rigged Hilbert spaces. 22

-
25 We do this in a way which pro

vides an immediate technique for the analytic continuation 
of the resolvent across the absolutely continuous spectrum, 
so that we are able to associate to each other isolated singu
larities of the continued resolvent, "pure exponential" con
tributions to the survival amplitude of decaying states and 
complex eigenvalues of the Hamiltonian H which are char
acterized by the fact that they are isolated singularities of 
analytic families of eigenvectors of H. In order to get rid of 
the arbitrariness in the location of such singularities, we tie 
our formalism to S matrix theory, thus providing also a "de
formalization" of the formal theory of scattering. 

Even though physicists have liked to think intuitively of 
resonances as states associates to "complex eigenvalues" of 
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the Hamiltonian, it was not until Grossman's paper ap
peared9 that such an idea was given rigorous ground. Later, 
Baumgartel showed explicitly how, whithin the rigged Hil
bert space formalism, one can associate resonances to eigen
vectors of the Hamiltonian, with complex eigenvalues, for a 
large class of perturbations. 13 Our approach is close to his. 
The main difference is that for us the solution of the eigenval
ue equation outside the position of the resonances is of rel
evant importance. 

The general framework is laid down in Sec. 2. There, we 
show that by extending a self-adjoint operator A to the dual 
of a suitable nuclear space, it is possible to associate to A 
various "complete sets" of generalized eigenvectors corre
sponding to complex eigenvalues. Even if the spectrum of A 
is absolutely continuous, these complete sets will in general 
contain both a "continuum" as well as "discrete" contribu
tion, the latt!'r arising from singularities of the analytic fam
ily of eigenvectors. 

In Sec. 3, we apply this formalism to nonrelativistic 
scattering theory. We consider a Hamiltonian of the form 
H = H O + Von a Hilbert space d¥' and a suitable nuclear 
space <P densely and continuously embedded into d¥'. We 
assume <P to be in the domains of H 0 and H and that both H 0 
and H map <P into itself continuously. Then, under suitable 
assumptions regarding the analyticity properties of the ei
genvectors of the absolutely continuous parts of the opera
tors H 0 and H extended to the dual space <P " we show that 
the second sheet singularities, in the lower half-plane, of the 
S matrix and of the resolvent of H, as a continuous operator 
from <P to <P', are the same as the singularities of the second 
sheet continuation of the stationary scattering states. When
ever these singularities are poles ZO, which can be interpreted 
as resonances of the system, certain coefficients of the Laur
ent expansion of the eigenvectors of H about Zo are them
selves eigenvectors (and possibly associated vectors) of H 
with Zo as eigenvalue. They form the "discrete" part of a 
suitable complete set of eigenvectors of the restriction of H to 
its subspace of absolute continuity, with complex eigenval
ues. These "discrete" eigenvectors are the stationary states 
of H which are responsible for the leading exponential decay 
of the resonant wave packet. Therefore, they can be inter
preted as describing the decaying state, much in the same 
way as the stationary scattering states can be viewed as re
presenting an incoming or outgoing particle in the idealized 
limiting situation of a well-defined value of the magnitude of 
the momentum. 

In Sec. 4 ad 5 we implement the above theory in the 
cases of the Friedrichs model6 and of the scattering of a spin
less particle by a local central potential, with suitable as
sumptions on the corresponding potentials, by providing ex
plicitly nuclear spaces <P which fit all the required purposes. 
We show in another paper26 that the same formalism goes 
through for the class of degenerate potentials, which have 
applications in nuclear physics. The theory can also be ap
plied to other interesting models. 27 

Section 6 is dedicated to some concluding remarks and 
particularly to the physical consequences of the choice of the 
rigged Hilbert space. 

A short summary of our results is contained in Ref. 28. 
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2. ANALYTIC FAMILIES OF EIGENVECTORS OF SELF
ADJOINT OPERATORS 

In this section we deal with the topic of complex eigen
values for self-adjoint operators in rigged Hilbert spaces. We 
show that under certain conditions the completeness expan
sion in terms of generalized eigenvectors of a self-adjoint 
operator may be rewritten in terms of eigenvectors relative 
to complex eigenvalues. This will be the starting point for 
our treatment of resonances and/or unstable states. Con
cerning rigged Hilbert spaces (or Gel'fand triples) and gen
eralized eigenvectors see, e.g., Refs. 22-25. 29 In order to im
plement our formalism, we need to recall and reformulate a 
few concepts relative to these topics. 

Let d¥' be a separable Hilbert space with inner product 
(h,k), linear in k and let J:h_h be an antilinear unitary in
volution (conjugation) on d¥'. A bilinear form is defined on 
d¥'by 

(h Ik) = :(h,k). (2.1) 

All nuclear spaces we consider in this paper are barreled and 
complete,30 a fact that will be henceforth understood with
out further specifications. Let <P be a nuclear space continu
ously and densely embedded into d¥' via the linear map /. 
We assume <P to be invariant under J, and J to be continuous 
with respect to (wrt) the topology of<P. We denote by <P' the 
(topological) dual of <P endowed with the weak topology, 
and if <pE<P and FE<P 'we write (F l<p) or (<p IF) for the image 
of <p under F. d¥' is continuously, densely, and linearly em
bedded into <P ' by the map /' defined by: 

(/'h l<p) = :(h 1/ <p) = (h,/ <p). (2.2) 

Therefore, we have a rigged Hilbert space <P C d¥' C <P " 
where both embeddings / and /' are linear. As J maps <P 
onto itself continuously, we can extend its action to the 
whole of <P ' by J:F-F. where 

(FI<p) = :(Flq;), V<pE<P. (2.3) 

The bar over complex numbers denotes ordinary complex 
conjugation. The above formula actually defines the exten-

sion of J, because /' h = /' Ii. j is an antilinear continuous 
involution on <P '. 

Next, let A be a densely defined linear oprator in d¥' 
with domain D (A ) and adjoint A *, such that D (A ):> <P, 
D(A *):><P,A<PC<P,A *<PC<P, and both A and A * are con
tinuous wrt the topology of <P. The transpose A ' of A is de
fined on <P' by: 

(A'FI<p)=:(FIA<p) V<pE<P, VFE<P'. (2.4) 

When d¥' = en, A ' is actually represented by the transpose 
of the matrix A, when J is the componentwise complex con-

jugation. A. • 

The extension A of A is defined on <P ' accordmg to: 

(AFI<p) = :(FIA *q;) V<pE<P, VFE<P'. (2.5) 

This definition is justified by noting thatA/'h = /'Ah, 
V hEll (A ). It has to be remarked that, if A is symmetric and 
hEll (A *), then A/' h = /'A *h. Indeed, V hEll (A *) and 
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VepEeI>. the following identities hold: ii. the complex conjugate of fl. and is a family of left (right) 
A -- -- - - eigenvectors forA *.eachG(A )withcorrespondingeigenval-(A/'h lep) = (/'h IA *q;) = (/'h lAg;) = (h.Aep ) 

ueA. 
= (Aip,h) = (g;,A *h) = (A *h .ep) = (/'{ *h lep)· There- Of particular relevance to us are the isolated singulari-
fore. if A is symmetric. it follows thatP = A and. similarly. ties of analytic functions with values in eI> I. To this purpose 
A *' = A I. we recall the following definition. 

Definition 2.1: Let JY' and eI> be as above and A be an Definition 2.3:22.30 We say that Ao is an isolated singu-
operator in JY' satisfying the assumptions following (2.3). larityforthefunctionF(A ).F(A )EeI> '. if3p > Osuch that. for 
We say that the complex number A (respectivelY.Il) is a r(ght any given 'PEel>. the function (F(A )I'P ) is analytic in the an-
(respectively. left ) eigenvalue of A corresponding to the right nul us 0 < IA - Aol <po and it is singular atAo for some 'PEep. 
(respectively)eft ) eigenvector F(A )EeI>' (respectively. Classification of singularities is obvious. 
G (p)EeI> , ifAF(A ) = AF(A) [respectively. A 'G (Il) = pG (,u)]. When Cis a simple closed rectifiable positively oriented 

This definition is justified by the usual convention re- curve (scroc) inside the region fl of analyticity of the func-
garding matrix multiplication in the ~nite-dimension~l case. tion F(z) and zo~C. the integral 
The relation between right and left eigenvalues and elgen- (l/21Tl')f c [F(z)/(z _ zo)"] dz. n an integer. defines. in the 
vectors is given by the following proposition. weak sense. a vector in ep '. because of our assumptions on 

Proposition 2.1: Let A be a right (respectively, left) ei- eI>. 30 Therefore. if Ao is an isolated singularity for the function 
genvalue of A correspon~ng to the right (res~ective~y. left? F (z). analytic in the annulus 0 < IA - Aol <p, from the ordi-
eigenvector F (A ). Then F (A ) is ~ left (respectlve~y. ng~t) el- nary Laurent expansion 
genvector 004 * with correspondmg left (r~specttvely. r!ght) ('P IF (A » = 1.,';' ~ _ '" C

n 
('P )(A - Ao)". 'PEel>, one has that 

eigenvalue A. The same statement holds with A and A each C
n 

('P) is given by ('PI C
n 

) with C
n 

Eep '. and thatn.30: 
interchanged. 

ProofSupposethat (F(A )IA *g;) = A (F(A )I'P ) foraIl 
'PEep. Then. 

(A *'F(A )I'P ) = (F(A )IA *'P ) = [(F(A )IA *g;) ] 

= A (F(A )Ig;) = X (F(A )I'P)' 

The remaining statements are proved analogously. 
Corollary: Let A be as above and symmetric. If A is a 

right (left) eigenvalue corresponding to the right (left) eigen
vector F (A ). thenF (A ) is a left (right) eigenvector with corre
sponding left (right) eigenvalue X. 

Next. we recall the definition of eI> 1 -valued analytic 
functions22

.
3o and draw a few easy consequences from it. 

Definition 2.2: A function F(A) defined in a region 
fl C C and with values in eI> 1 is said to be analytic in fl if. for 
any given 'PEel>, the ordinary function orA. (F(A )I'P ). isana
lytic in fl. 

The following proposition follows immediately from 
the definition and from the principle of identity of analytic 
functions. 

Proposition 2.2: LetF (A ) bea function with values in eI> " 
analytic in the region fl. LetA; = 1.2.3.· ... be a sequence of 
points in fl with proper accumulation point within fl. As
sume that Vi. A; is a left (right) eigenvalue of an operator A as 
above corresponding to the left (right) eigenvector F(A;). 
Then VAEfl. A is a left (right) eigenvalue of A corresponding 
to the left (right) eigenvector F(A). 

To make life simpler later on. we shall say that a func
tionF(A )with values in eI> '. analytic in a region fl. is a family 
of right (left) eigenvectors of the operator A. analytic in fl, 
whenever for any AEfl. P(A) is a right (left) eigenvector of A 
with A as right (left) eigenvalue. 

From Definition 2. I, Proposition 2.1, and well-known 
facts about analytic functions. Proposition 2.3 follows. 

Proposition 2.3: LetA. eI>. JY'be as above, and such that 
there exists a family F (A ) of right (left) eigenvectors. analytic 
insomeregionfl. Then.thefamilyG (A) = P(X) is analy tic in 
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F(A) = (2.6) 

C = _1_ ( F (A ) dA, 
n 21Ti Jc (A _ Ao)" + 1 

(2.7) 

whenever C is a scroc encircling Ao and inside the given an
nulus. The series is weakly convergent. 30 When F(A ) is a 
family ofleft or right eigenvectors for an operator A as above. 
one expects the coefficients of the Laurent expansion about 
the isolated singularity Ao to have properties similar to those 
of the coefficients of the expansion of the resolvent about its 
singularities. Indeed. we have31 Proposition 2.4. 

Proposition 2.4: Let Yr. eI>, A be as above, and let F (A ) be 
a family of right (left) eigenvectors for A. Assume F(A ) is 
analytic in some region fl and let Ao be an isolated singular
ity. Then, the coefficients of the Laurent expansion (2.6) of 
F(A ) about Ao satisfy equations 

(2.8) 

or 

(2.9) 

according to whether the eJ$envectors F (A) are right or left. 
Proof The operators A and A ' are continuous on eI> ' wrt 

the weak topology. Then. from (2.7) we have 

Ac = _1_ ( AF(A) dA, 
n 21Tl1. (A _ Ao)" " 1 

so that, if the F (A ) are right eigenvectors, 

Acn = _1_ ( AF(A) dA 
21Ti1- (A - Aor +- 1 

_1_ ( F (A) dA + ~ ( __ F~(A~)_ dA 
21TiJc (A - Ao)" 21TiJc (A - Ao)" ~ 1 

= C n - 1 + AoCn . 

Equation (2.9) is proved analogously. 
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Remark: When Cn -I = 0, it follows that Cn is a right 
(left) eigenvector and AD an eigenvalue. This happens in par
ticular for the first nontrivial coefficient, when AD is either 
regular or a pole for the family F (A ). In general, we state31 

definition 2.4. 
Definition 2.4: Let df", cJ>, A be as above and let Cn , n 

integer, be a sequence in cJ> ' such that (2.8) or, respectively, 
(2.9) holds for every n for some AoEC. Then, ifCn and Cn _ 1 

are nonzero, we say that Cn is a right (respectively, left) 
associated vector of A. 

Remark: Let Cn , n integer, be a sequence in cJ> ' as in the 
preceding definition and assume that the series 
F(A) = }:,:~ _ 00 Cn (A - ,10)" is weakly convergent in an an
nulus!.? = 1,1 10<,1 -,101 <pJ. Then,accordingtowhether 
(2.8) or (2.9) holds for all n, F (A ) is an analytic family in!.? of 
right or left eigenvectors of A. 

The Gel'fand-Maurin theorem22
.
23 can be reformulat

ed in terms of left and right eigenvectors. This requires the 
existence of a suitable conjugation, a fact which we shall 
assume once for all in the following. 32 

Theorem 2.1 (Gel 'land-Maurin): Let df" be a complex 
separable Hilbert space, A a self-adjoint operator on df" with 
domain D (A ) and let Y be the generalized Fourier trans
form associated to the direct integral decomposition of df" 
wrt A [0' (A ) denotes the spectrum of A ]: 

df" -~ = ( df"(A ) dp(A ), (2.10) 
JaJ(7(A) 

Y:h-h (A ) = 1 h i(A ) J, h (A )EJf"(A ), 
i = I ,oo.,dimdf"(A ), (2.11) 

(h (A ),k (A»A = I h i(A)k i(A), 

[Y(Ah) 1 i = Ah i(A), if hED (A ). 

(2.12) 

(2.13) 

Then there exists a (not necessarily unique) nuclear space 
cJ> CD (A ), densely and continuously embedded in df", which 
is mapped by A continuously into itself and such that Y can 
be implemented by a system ofleft eifenvectors G '(A ) of A in 
cJ> ' in such a way that 

(2.14) 

for all CPEcJ> and p-almost everywhere (a.e.). Since Y is uni

tary, this system is complete: 

(cp,1/!) = 1 (A) dp(A ) + (G i(A )Icp >< G i(A )11/!) 

V cp, ¢EcJ>. (2.15) 

The vectors Fi(A) = Gi(A) are right eigenvectors and the 
completeness relation (2.15) can be rewritten in the equiv
alent form: 

(cp I1/!) = l(A) dp(A)+ (cp IP(A» (G '(A )11/!) 

V cp, ¢EcJ>. (2.16) 

Remarks: (i) In the following, we shall restrict ourselves 
to the case when the operator A has no singular continuous 
spectrum. Then (2.15) writes 

(cp,1/!) = I (G}lcp) (G}I1/!) 
j.l 
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+ i dPac(A)I (G~c(A)I1/!) (G~c(A)I1/!) 
a Qc(A ) i 

Vcp, ¢EcJ>, (2.16') 

where the vectors G j are proper eigenvectors of A, viz., 
AG; = AjG;, and where in 0' ac (A) we have 
G ~c (A ) = G '(A ) Pac -a.e. In particular, it follows tht if Pis 
the orthogonal projection onto the subspace jV'ac of absolute 
continuity of A then for all CPEcJ> 

(2.17) 

It has to be noted that (2.17) holds even though it might 
happen that PcJ> ct:: cJ>. (ii) Given a nuclear space cJ> densely 
and continuously embedded in jV', which is mapped into 
itself continuously by a self-adjoint operator A, in general 
there might be solutions to the eigenvalue equation 
A ' G (A ) = AG (A ) in cJ> ' which correspond (a) to eigenvalues 
not in 0' (A ) and (b) to eigen val ues in O'(A ) whose correspond
ing eigenvectors play no role in the above theorem [an exam
ple of (a) is provided by df" = L 2(lR), A = - id /dx, cJ> the 
space 9 22

,23 of Schwarz test functions; an example of (b) is 
given in Sec. 5]. 

For our purposes, we need a sufficient condition which 
ensures that given jV', A, cJ> as in the remark above, there are 
solutions in cJ>' to the (left) eigenvalue problem for A yielding 
eigenvalues in 0' (A ) with corresponding eigenvectors which 
implement the generalized Fourier transform as in Theorem 
2.1. An answer to our needs is provided by the following 
proposition. 

Proposition 2.5: Let df" be complex separable Hilbert 
space, A an essentially self-adjoint operator in df" with do
main D, and cJ> CD a nuclear space densely and continuously 
embedded into df", such that the restriction A t cJ> maps cJ> 
into itself continuously. Let G (A) be a function on some 
closed set 0' C lR with values in cJ>' and letp be a finite regular 
Borel measure concentrated on 0' such that 

(a) A 'G (A) = AG (A) p-a.e., 

(b) (cp,1/!) = 1 (G(A)lcp)(G(A)I1/!)dp(A) Vcp, ¢EcJ>. 

Let Y:df" -L 2(0', p) be the extension to df" of the operator 
Y:cJ>-L 2(0', p) which associates to CPEcJ> the function 
cp(A )EL 2(0', p) by the rule cp(A ) = (G (A ) Icp ) p - a.e., and as
sume that 

(c) Y(cJ» is dense in L 2(0' ,p); 

(d) [yeAh )](,1) = A [Y(h )](,1) p-a.e., VhED. 

Then, 0' is the spectrum of A, and y, cJ> and the family G (A ) 
are a possible choice for the implementation of the general
ized Fourier transform, nuclear space and left eigenvectors 
of Theorem 2.1. 

Proof It follows from (b) that Y is an isometry of cJ>, 
endowed with the norm inherited from df", into L 2(0', p). Its 
unique extension Y is unitary by (c). The operator 
Q = YAy-1 in L 2(0', p) with domain Y(D) is essentially 
self-adjoint, and acts as a multiplication operator, by (d). 
The operator of multiplication by A in L 2(0'...:Jl) with domain 
D = 1 h (A )IS (7 A 21h (A )1 2 d p(A ) < 00 J :JY(D) is self-adjoint 
and an extension of Q, so it coincides with the closure Q C of 
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Q. It follows that u is the spectrum of Q and hence of A. Then 
the statement of the proposition follows from (a) and the fact 
that Q C is already given in its spectral form. 

Remarks: (i) Note that condition (d) does not necessar
ily imply condition (a). (ii) In specific instances, it might be 
more convenient to verify condition (b) with a nonfinite u
finite regular Borel measure. However, this is equivalent to 
some finite regular Borel measure v so that, performing the 
substituitions Ii-wand G (A )-( v' dill dv)G (A ), we recover 
(b) as stated in the proposition. (iii) For simplicity, we have 
confined ourselves to the case of simple spectrum, the exten
sion to the general case being straightforward. (iv) Having 
assumed the existence of a conjugation h_ii on 7t" mapping 
If> onto itself con!!.nuously and introducing the right eigen
vectors F (A ) = G (A ), we can replace (b) with 

(b') (ipI1/l) = 1 (ip IF(A»(G(A)11/I) dli(A) Vip, ¢Elf>. 

(v) The functional calculus holds, so that iffEL "'(u, Ii) and 
ipElf> we have 

[Y(f(A)ip )](A) = f(A )(G (A )Iip) Ii-a.e. 

or, formally, (G (A )If(A )ip ) = f(A )(G (A )Iip ) even 
thoughf(A)ip may not belong to If>. 

(2.18) 

Now we turn to the expansions in terms of generalized 
eigenvectors corresponding to complex eigenvalues. In this 
and the next section conditions allowing such expansions 
will be assumed. Sections 4 and 5 deal with explicit examples 
where they are satisfied. Let A, If>, Ii, I Fj, F (A ) J, I Gj , G (A ) J 
be a self-adjoint operator, a nuclear space, a regular Borel 
measure and right and left eigenvectors, respectively, such as 
to implement Theorem 2.1: for the sake of simplicity, we are 
assuming that the spectrum of A is simple and we drop the 
subscript "ac" from the families of eigenvectors pertaining 
to the absolutely continuous spectrum U ac (A)-A. We as
sume that A is not empty and denote by P the orthogonal 
projection of 7t" onto 7t"ac , the subspace of absolute continu
ity of A. We have d liae (A ) = h (A ) dA, where dA denotes the 
Lebesgue measure. We assume that the function h (A ) is the 
restriction to A of a function h (z) analytic in a region il I with 
il InA a subset of R with nonempty interior and that the 
family G (A ) is the restriction toA ofa family G (z), analytic in 
a region il2, with il2nA an infinite set with a proper accumu
lation point in il2. Then, F (A) is the restriction to A of the 

family F(z), analytic in il2. Let Ao be a subset of A and A I a 

curve such that AouA I is a scroc and AouA I C (il Infl2nil2) c 

(the superscript c denoting closure). Moreover, assume that 
G (z) is continuous on AouA I' Set r = (A \Ao)uA I (see Fig. 
1). Then, if ip, ¢Elf>, from 

(ip 11/1) = L (rp IFj)(Gj I1/l) 
j 

+ i (ip IF(A» (G (A )11/I)h (A) dA, 

we obtain 

(ip 11/1) = L (ip IFj) (Gj 11/1) 
j 
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+ 1 (ipIF(z»(G(z)11/I)h(z)dz+R(A;ip,1/I;h), 

(2.19) 

where R (A; ip, 1/1; h) is the contribution from the possible 
singularities SI' S2'''' of the integrand in Int(AouA I)' the in
terior of the region bounded by AouA I' Since A contains at 
least an accumulation point, it follows from the corollary to 
Proposition 2.1 and from Propositions 2.2 and 2.3 that the 
F(z) and G (z) appearing in the integrand at the right-hand 
side (rhs) of(2.19) are respectively right and left eigenvectors 
of A with complex eigenvalue z. In particular, if the only 
singularities ofF (z), G (z)andh (z) in Int(AouA I) are isolated, 
say z/ = 0,1,2, ... , we haveR (A; ip, 1/1; h) = - 21Til:/Res(z/), 
where Res(z/) is the residue of (ip IF(z» (G (z)11/I)h (z) at 
z = z/. This is evaluated in terms of the coefficients of the 
Laurent expansions of (ip IF(z)) and (G (z) I 1/1) , that is to say 
of F (z) and G (z), and of h (z) about Z/. Therefore, it follows 
from Proposition 2.4 that 

R (A; rp, 1/1; h) = - 21TiI I (ip 1~(zJ) (Lj (z/)11/I)a/z/), 
/ j 

(2.20) 

where ~(z/) and L/z/) are right and left eigenvectors and 
associated vectors of A with corresponding eigenvalues z/, 
and aj(z/) are complex coefficients. Iffis a function analytic 
in il3 ::::.> A and bounded on the spectrum, in analogy to (2.19) 
one has 

(ip If(A )1/1) = If(A,)(ip IF,) (G, 11/1) , 
+ if(Z)(ip IF(z»(G(z)11/I)h (z) dz 

+ R (A; ip, 1/I;f;h) Vip, ¢Elf>. (2.21) 

Here the third term at the rhs contains also the contribution 
of the possible singularities off The extension to the case 

Z or >.. 

A 
/ 

FI G. 1. The region n ,rJ1pii" the deformation r of the integration path A 
for the completeness of the eigenvectors, and the isolated singularities S, 
and S, of the integrand in the completeness relation for the eigenvectors. 
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when the path r is unbounded is trivial, provided there are 
no contributions to the integrals at infinity. 

Formulas (2.19)-(2.21) provide, for self-adjoint opera
tors, expansions in terms of "complete sets" of generalized 
eigenvectors and associated vectors corresponding to com
plex eigenvalues. We see that besides the proper eigenvec
tors, there are in general additional "discrete" eigenvectors 
and possibly associated vectors [see (2.20)] which contribute 
to the "complex completeness", which arise from the contri
butions of the isolated singularities in Int(Aou/l[). We have 
here, for a self-adjoint operator, a sort of infinite dimensional 
analogue of the Jordan canonical form for nonself-adjoint 
matrices: whereas the canonical form of a self-adjoint matrix 
is diagonal, the extension of a self-adjoint operator to a 
rigged Hilbert space may allow for the appearance of "com
plete sets" formed by eigenvectors and associated vectors, so 
that, in addition to the diagonal canonical form, there also 
"canonical"triangular forms. 

As an example of application offormula (2.21), which is 
relevant to the quantum decay problem, letf(A ) 
= exp( - iAt) and let F(z) and h (z) be holomorphic in 

Int(AouA [) and G (z) have a first order pole at a point 
z = zoEInt(AouA I)' Then 

( Pcp lexp( - iAt) P¢) 

= lexP(-izt)(CPIF(Z»(G(Z)I¢)h(Z)dZ 

-21Tiexp( - izot)(cp IF(zo» (C,(zo)I¢)h (zo) \/cp, ¢E<P, 
(2.22) 

where [compare (2.7) and Proposition 2.4] 

C1(zo) = _1_ r G (z) dz, (2.23) 
2m' J 

is a left eigenvector of A with corresponding eigenvalue Zo' 
Another important instance of application of (2.21) is 

providedbythechoiceoff(A ) = (A - t tl-R (t;A ). Inthis 
case, if t does not belong to the spectrum nor to the closure of 
Int(AouA,) we have 

(q·!R (t;:A )1/') = I ~I- (cp IFi)(G,I¢) 
, J't - f; 

. I 
+ 1 z __ I; (cp IF(z»(G(z)I¢)h (z) dz 

+ R (A; cp, ¢; _1_; h) \/q), l/JE<P. 
z-I; 

(2.24) 

The rhs of (2.24) is well defined also when I;E(Ao "CJ, (A ») 
ulnt(AouA ,) [CJ, (A ) denoting the singular spectrum of A ] and 
defines a function in the plane cut along r, analytic every
where except at the singularities of R (A; cp, til; l!(z - 1;); h). 
This shows that the (bilinear) matrix elements of the resol
vent between vectors 'f', l/lE<P can be continued analytically 
as functions of 1;, across {Ao "CJ, (A ») into Int(AouA I) and 
exhibit therein the same singularities that F (z), G (z) and h (z) 

do. When I; is in the region {Ao "CJ, (A ») ulnt(AouAl)' the 
expression (2.24) can be put in a more transparent form, 
which shows explicitly that the resolvent itself can be contin
ued analytically as an operator in .:f(<P, <P '), the space of 
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continuous linear operators from <P into <P '. Indeed, let cp, 
JjJE<P and consider the matrix element 

(cp IR (I;;A )¢) 
1 

= -t Aj - t; (cp If}) (Gj It/!) 

+ f _1_ (cp IF(A »(G (A )It/!)h (z) dA. (2.25) 
A A - t 

Due to our assumptions on the analyticity properties of the 
integrand, thelimitslim'Jlo (cp IR (x ± i1J;A )t/!) exist for allcp, 
JjJE<P and for all x in the interior of A 0 "CJs (A ). Then, since <P 
is barreled, the principle of uniform boundedness30 ensures 
the existence of the limits R (x ± iO;A ) as operators in 
,Y(<P,<P ') and the application of Plemelj formulas gives 

R (x + iO) = R (x - iO) +21TiIF(x»(G(x)lh (x)O.26) 

Therefore as an operator in !t'(<P, <P '), the resolvent can be 
continued acrossAo "CJs (A ) into its second Riemann sheet as 

(2.27) 

Furthermore, the singularities of the continued resolvent are 
those of F ( 1;), G (t;) and h ( t)· 

It goes without saying that the continuation (2.27) is 
possible provided that the interior of Ao "CJ, (A) is not empty. 

In conclusion, in the framework above one is able to 
associate to each other: (1) singularities of analytic families 
of eigenvectors of a self-adjoint operator; (2) eigenvectors 
and associated vectors with corresponding eigenvalues at the 
locations of the singularities; (3) discrete contributions to 
expansions in terms of "complete sets" of eigenvectors corre
sponding to complex eigenvalues; and (4) singularities of the 
continued resolvent. 

3. ANALYTICITY OF THE S MATRIX AND OF 
EIGENVECTOR FAMILIES OF THE HAMILTONIAN 

The analytic structure of the eigenvector families of a 
self-adjoint operator depends on the choice of the nuclear 
space <P (for more comments on this topic, see Sec. 6). This 
implies that, if one wants to associate the resonances of a 
given physical problem with the poles of the resolvent and of 
the eigenvector families of the Hamiltonian, and with dis
crete exponential contributions to survival amplitudes, one 
must choose <P in a proper way. An inappropriate choice of 
<P may indeed cancel the physical resonances and/or intro
duce spurious ones. In this section, to overcome this difficul
ty, we tie our formalism to the S matrix. We assume that 
resonances are associated to second sheet poles of the S ma
trix, in the lower half-plane. Poles of the eigenvector families 
and of the resolvent of the Hamiltonian, and discrete expo
nential contributions will be located exactly at such points. 

Suppose that we are given two self-adjoint operators H () 
and H on a Hilbert space W, which we may think of as the 
free and interacting Hamiltonians of a quantum system, say 
a free particle and the same particle interacting with a poten
tial. We denote by po and P the orthogonal projections onto 
the subs paces )( ~:c and.k ac of absolute continuity of H 0 and 
H, respectively. We assume the fulfillment ofconditions l7 

which ensure the existence and completeness of the MQSller 
wave operators, i.e., the strong operator limits 
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W ± = s-lim e-tHe-itH'pO, (3.1) 
t~+oo 

as partial isometries with initial space ~c and final space 
,;¥'ac. Then the following relations hold 

(i) W~ W ± = po, W ± W~ = P, 

(ii) PE (A. ) W ± = E (A. ) W ± = W ± E 0(A. ) 

= W ± EO(A. )P O, (3.2) 

(iii) e-iHtW± = W± e- iH '" 

where E O(A. ) and E (A. ) are the spectral families associated to 
H ° and H, respectively. The scattering operator S is defined 
as 

(3.3) 

We assume in the following that the singular continu
ous spectra of HO and H are empty. Let yo be the general
ized Fourier transform associated to the direct intergral de
composition of ,;¥' wrt HO: 

,70:,;¥' -+~ = ~ EEl f ,;¥'(A. ) dp,(A. ), (3.4) 
.. A 

where A =Uac (H ~ and where ~ is the transform of the 
singular subspace of HO, which will be of no interset to us in 
the following. There are two choices for the generalized 
Fourier transform associated to H, which are relevant to 
scattering theory and which we denote by ,7(+' and ,7(-', 
respectively. They are chosen in some definitive way and 
equal to each other on the singular subspace,;¥'s of H, 
whereas on ,;¥'ac they satisfy 

,7( ±)p = ,70poW~ , (3.5) 

so that 

,7( ± ):,;¥' -+,;¥'± = ~ EEl f ,;¥'(A.) d",(A.). (3.6) 
.. A 

The physical meaning of Y(+' and ,7(-' is wel1 known33: it 
follows from (3.5) and (3.2) (iii) that the restrictions of Y(+' 
and Y( -, to ,;¥'ac correspond respectively to the incoming 
and outgoing state expansions of the formal theory of scat
tering. In particular, there is afunctionA.-+S (A. ) = {Sii(A. ) I 
definedp,-a.e. on A =Uac (H) and with S (A. ) a unitary opera
tor in ,;¥'(A. ), such that 

[,7<-J( Ph )]i(A.) = Nf) Si)(). )[Y<·'( Ph)] )().) 'tfhEPr', 
)= I 

(3.7) 

where N (A. ) = dim,;¥'()' ). S i j(). ) is the usual expression of 
the S matrix in the H ° representation. Indeed, let g, hEPr'.c 
and setgU ) = W"'_ g, h(t) = W"'+- h [(i) and (t) stand respec
tively for initial and final]. Then from (3.3), (3.7), and (3.5) 
one has 

(g(f) ,Sh(l) = (g,h ) 

= i dp,(A.) ~ [,7<-J(g)nA.) [,7( - '(h )n). ) 

For our purposes we must now assume that a single 
nuclear space cP exists such that yO, Y(·', and ,7(-' are im
plemented via Theorem 2.1. We denote by G ~, F~, G n , Fn 
(omitting for simplicity the eigenvalue and degeneracy la
bles) the corresponding eigenvectors which pertain to the 
singular spectra of H ° and H and by G Di(). ), FDi(). ), 

G ( ± li(). ), F ± li(). ) the eigenvectors relative to the absolute
ly continuous spectrum. According to the commonly em
ployed terminology in scattering theory, we refer to the 
G ( ± li(). ), F( ± li(A. ) as "incoming" and "outgoing" eigen
vectors (stationary scattering states), respectively. In prac
tice, cP will be constructed in general as a space of wavefunc
tions in the HO-representation which have suitable 
"smoothness" properties, in such a way that the implemen
tation of yo is immediate. Then one is confronted with the 
problem of finding "in" and "out" eigenfunctions of H in cP , 
which implement Y<·' and Y'-'. To this purpose, one could 
for instance verify that such eigenfunctions meet the condi
tions of Proposition 2.5. The following proposition shows 
that checking these conditions for either a set of "in" or of 
"out" eigenfunctions is sufficient (obviously, whenever it is 
appropriate, the assertions in the statement and proof of the 
proposition must be understood as valid ",-a.e.). 

Proposition 3.1: Suppose that a nuclear space cP exists 
such that there exists in cP , a set of left eigenvectors of H, 
G ~ + )J and G ( + )i(). ) which implements,7(·' via Proposition 
2.5. Then there exists in CP' another family ofleft eigenvec
tors of H, G ~ - ») and G ( - )i(). ), defined on U (H), which im
plements ,7(-'. One has 

N~) 
(i) G ( - li(). ) = 2. S ij(). )G ( + )j(). ), (ii) G ~ - II = G ~ + ll, 

)=1 

(3.9) 

where {S ij(). ) J is the unitary matrix appearing in (3.7) . 

Proof That we must set G ~ - )1 = G ~ + )1 is a conse
quence of the definition of Y( -, and Y(·'. If lPECP we have 
from (3.7) and (2.17) 

N~) 
[Y(-'(PlP)]i().) = 2. Sij()')(G(+)j().)llP)· 

j= I 

By construction 

[~I} (G(+ )j(). )llP W ]112 = II[Y(+'( PlP )J(A. )/1.<, 

where 11·1/.< denotes the norm in ,;¥'(..i). Therefore, by 
Schwarz inequality, 

~[~I} ISij().W]1/2[tll I(G( + }j(A. )llP W] 1/2 
= /I [Y(+'(PlP)](..i )/1,1' 

(3.10) 

i so that the series ~r~~)S ij().)( G (+ »)(..i )llP ) is absolutely 
= dp(A.)? [,7<-'(g)r(). )Si

j
(). )[Y<·'(h )]i(A) convergent 'tflPECP. Then, weak completeness ofCP' ensures 

A (,J that ~f~'<I)Sij(A)G (+ )j(A) converges to an element 
= 1 dp,(..i) t; [Y°(gU» yCA. )S i j().) [yO(h(I)] j(..i ). G (- )i(..i ) of cP '. We have 

(3.8) (G<-)i(..i)IHcp) 
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= A (G( - )i(A )I<p), 't/<pE</>, 

so that G ( - )i(A ) is a family of left eigenvectors of H. Also, 
't/<p, ¢E</>, 

(<p,tf;) = I (G~+)/I<p) (G~ +)/Itf;) 
n.1 

+ i + (G ( + )i(A )I<p) (G (+ )i(A )Itf;) dJlac(A) 

= I (G ~ - )/1<p )(G ~ - )/1tf;) 
n,l 

+ I I (S-I(;1. »)iJ (G (- )j(A )I<p ) 
A i.j.k 

X (S-I(A»ik (G( -)k(A )Itf;) dJlac(A) 

= I (G~ - )1(A )Icp ) (G ~ - )/(A )Itf;) 
n,l 

+ i -t (G( - )j(A )I<p ) (G (- )j(A )Itf;) dJlac (A), 

so that the family ofleft eigenvectors (3.9) satisfies (b) of 
Proposition (2.5). Moreover, let h (A )E~i'" L 2(A, JlaJ be 
such that S A ~ih i(A ) (G ( - )i(A ) Icp ) dJlac (A ) = 0, 't/ CPE</>. 

Then, S A ~iS i j(A )h i(A ) (G ( + )j(A ) l<p ) dJlac (A ) = O. By 

hypothesis, this implies ~j S ij(A ) h '(A ) = 0 or h (A ) = O. 
Hence (3.9) also satisfied condition (c) of Proposition (2.5) 
where, by (3.10), Y = Y<-> (since Y' -) is a generalized 
Fourier transform, condition (d) of the proposition obvious
ly holds). 

Remark: (i) It is not assumed and it is neither true in 
general that p°</>C f/J and/or that Pf/JC f/J nor that 
W ± pOf/JCPf/J and/or that Sp°</>Cpof/J. However, on the 
basis of formulas (2.4), (2.5), and (3.5) we can still define the 

" transpose W'± and the extension W ± of W ± restricted 
respectively to the linear span of the G ( ± )i(A ) and of the 
FOj(A ) according to 

W'~ G(.i.)i(A)=GOi(A), (3.11) 

and 

(3.12) 

(ii) it is perhaps worthwhile to recall that in actual problems 
one works with some explicit representation of the space and 
operators treated here. For example, in the commonly used 
yo representation, in which the noninteracting Hamilton
ian is diagonal, vectors in JY (respectively, in f/J) are repre
sented by functions [yo(h)] i(A) in ~ = yO(m [respec
tively, (G?:\cp), (Goi(A )Icp) in cP = YO(f/J )], defined on 
a (H 0). Then, elements B in f/J I are "concretely expressed" 
by elements iJ in cP I. For instance, suppose the spectrum of 
H ° is simple and absolutely continuous. Then G O(A ) = D A' 

the ordinary Dirac delta function. 
We are now in position to outline the application of the 

methods of analytic continuation of eigenvectors developed 
in Sec. 2 to the characterization of resonant states. Depend
ing on whether one is interested in the transition amplitUde 
between two fully interacting states (as for example in the 
description of the decay of an unstable system) or in a scat-
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tering experiment, the two relevant formulas are obtained 
from (3.8) by choosing respectively g,hEPf/Jor g(f)' h(1) EP 0f/J. 
It is convenient to reexpress the integrals in terms of the 
Lebesgue measure by changing the normalization of the ei
genvectors upon multiplying them by the square root of the 
Radon-Nikodym derivative V d Jluc(A )/dA. Thus, assum
ing the existence of a conjugation as in Sec. 2 and using 
(2.17), we have: 

(P<p, Ptf;) = i dAI, (qf\F(- )i(A »(G( - )i(A )\tf;) 
A I 

= i dAI, (W/F(-)i(A»Sij(A)(G(+)j(A)\tf;) 
A i.j 

and 
't/cp, ¢Ef/J, (3.13) 

( pocpupSp°tf;(I)) 

= i dA.f; (cp(J) /Foi(A»Sij(A)(GOj(A)\tf;(I) 

't/CPuP tf;(I)Ef/J. (3.14) 

These two formulas, equivalent in Hilbert space notation, 
are quite different in the nuclear space approach, in that 
either the fully interacting states at finite time are required to 
be in P </> or the asymptotic free states at t = ± 00 are re
quired to be in pOf/J. In particular, when f/J is such as to allow 
for analyticity properties of the eigenvectors of HO and H, it 
is in general impossible to meet these two requirements si
multaneously [compare remark (i) above and the examples 
of Secs. 4 and 5]. 

We now assume that: (i) the free eigenvetors G Oi(A ) and 
FOi(A) are the restriction to A of families G Oi(Z) and FOi(Z) 
analtic in a region no, with.aonA a subset of R with non
empty interior (.aonA )0; (ii) the left incoming eigenvectors 
G ( + )i(A ) and the right outgoing eigenvectors F ( - )i(A ) are 
boundary values respectively of families G ( + )i(Z) and 
F( - )/(z) analytic ina domain .a 1 in the lower half-plane, 

with n ~ nA a subset of R with nonempty interior (.a ~ nA )0. 
Then the left outgoing eigenvectors G ( - )i(A ) are boundary 
values of the family G (- )i(Z) = P( -- )i(Z), analytic in iii' and 
they are related to the G (+ )'(A ) by Eq. (3.9)-(i), Now, in 
many cases the S matrix in the H ° representation, S'i(A ), is 
the boundary value from the upper half-plane of an analytic 
function which can be continued across n ~ nA into its sec
ond Riemann sheet in the lower half-plane to an analytic 
function S ;((z). Then, provided the convergence of the series 
(3.9}(i) preserves analyticity, the family G( - )i(Z) can be con
tinued analytically across (n ~ nA )0 to some domain .02 in
cluded in .a 1 to a family 

(3.15) 
J 

It analyticity properties in this domain are controlled by 
those of S;{ (z). Therefore, the singularities of S;i (z) in n 1 in 
the second Riemann sheet appear as corresponding singular
ities of the continuation of the left outgoing eigenvectors of 
H. In particular, a resonance associated to a second sheet 
simple pole Zo = Eo - i(ro!2) of the S matrix close to the 
real axis in the lower half-plane, appears as a corresponding 
pole of the family G 1(- )i(Z), for some value of the index i. 
Now, it follows from Proposition 2.4 that the first coefficient 
D (- )i(ZO) of the Laurent expansion of G II )'(z) about Zo is a 
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left eigenvector of the interacting Hamiltonian, with Zo as 
eigenvalue. Therefore, provided there is a nuclear space 4J 
which meets the required conditions for Hand H 0, to a reso
nance at Zo = Eo - i(r 0/2) is associated a set of left "outgo
ing" eigenvectors D ( - )i(zO) [and the corresponding right 
"outgoing" eigenvectors F( - )i(ZO)] of the interacting Hamil
tonian, with the complex eigenvalue Zo = E - i(r 0/2). Such 
objects have the same mathematical meaning of plane waves 
and of the stationary scattering states, namely, that of distri
butions on a suitable dense subspace of the Hilbert space. 
From a physical point of view, one requires that such eigen
vectors be approximable in some sense by means of vectors in 
F. And this is always true, because 4J and F are dense in 4J ' 
endowed with the weak topology (see also Sec. 6). 

Alternatively, starting from the relation 

F( + )j(A ) = L F( - )i(A )S ij(A, ), (3.16) 
j 

we could continue the family F< + )j(z) = (j< + li(Z), analytic 
in !iI' across [J ~ rIA into the lower half-plane to give a sec
ond sheet continuation F~,+ )j(z) = ~iF( - )i(Z)S;{ (z) of the 
right incoming eigenvectors, whose analyticity properties 
are again determined by those of S;{ (z). In this way, we 
could equally well associate to the resonances at Zo a set of 
right "incoming" eigenvectors C( + )j(zo) for somej [with 
corresponding left" incoming" eigenvectors G ( + )j(zo)] , 
where C< + )j(zo) is here the first coefficient of the Laurent 
expansion about Zo of F~/ lj(Z). 

Because of (3.9)-(i) and (3.16), the relations among the 
"in" and "out" stationary states associated to a resonance 
are 

(3.17) 

and 

C( + lj{Z ) = ~ F( - li(Z )ResS ij(Z) I _ . 
\'0",- 0 II Z-Zo 

(3.18) 

The association of a resonance at Zo with a set of eigen
vectors of H with Zo as eigenvalue is made especially clear 
when one considers survival amplitudes and scattering am
plitudes. Recalling (2.17) and (2.18), the survival amplitude 
of a state h = Pcp, where CPE4J, is given by 

(h,exp( - lHt )h ) 

= ( Pcp,exp( - iHt) Pcp ) 

= i dA exp( - iAt)~ (cp/F( - li(A» (G( - Ji(A )/cp). 

(3.19) 

With the notations of Sec. 2, let A 0 e [J ~ rIA and let A I be a 
curve in the lower half-plane such that A ouA I is a scroc and 
AouA I en ~, with G ~I- Ji(Z) assumed to be continuous on 
AouA I' Set r = (A '\Ao)uA I and assume that G ~I- Ji(Z) is 
analytic in Int(AouA I) except for a simple pole at Zo = Eo 
- i(r 0/2), close to the real axis. For simplicity, we exclude 

any other kind of singularity and, in particular, second sheet 
cuts (complex thresholds), which could be easily included in 
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Z or A 

FIG. 2. The domains {}, and {}20 and the deformation of the integration 
path from the spectrum A to the path r in the lower half plane. The singu
larity of the eigenvector family G\, '(z) atzo gives rise to a pure exponential 
contribution in (3.20). 

the background. We can deform the integration contour in 
the lower half-plane and obtain21 (see Fig. 2) 

(h,exp( - iHt )h ) 

= ( Pcp,exp( - IHt ) Pcp ) 

= L dz exp( - izt)~ (cp/F( - li(Z» (G~I- l(Z)/cp) 

- 21Tiexp( - iEot ) 

If h is a wave packet which is strongly peaked at the resonant 
energy Eo for those values of the index i for which D ( - li(ZO) 
#0, the amplitUde is dominated over a large range of time 
values by the exponential term at the rhs of (3.20), the back
ground integral along r being mainly responsible for the 
deviations from the exponential decay law at short and long 
times compared to the mean life 1/ r 0.

1
.
21 And we see that 

the purely exponential contribution to the survival ampli
tude in the "completeness expansion" (3.20) is precisely giv
en by the "discrete" set of complex energy eigenvectors 
! D ( - li(ZO) J whereas the "continuum" ! G ( - li(Z) J ZEr is re
sponsible for the background corrections. 34 Similarly, pro
vided the convergence of the series ~jSij(A )GOj(A) pre
serves analyticity, the series itself can be analytically 
continued in the second Riemann sheet in some domain [J3 

in the lower half-plane, included in [Jo, and it provides there
in a family G?{(z) = ~jS;{(z)GOj(z) of left eigenvectors of 
HO. Then we obtain for the scattering amplitude a formula 
analogous to (3.20) by deformation in the lower half-plane of 
the integration contour in (3.14) (of course, here the path r 
is not necessarily the same as before): 

( POq;(f),SpOlh) 

= L dz'f (iAn (F0i(z»S;{(z)(GOj(z)I¢(I) 
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- 21TiI (iAf) IFOi(zo»ResS~Hz) Iz~ z" (G OJ(zo) I 'ho ), 
i,j 

(3.21) 

where we have confined ourselves once more to the case 
when S;{ (z) is analytic in the interior of JUA except for a 
simple pole at z = ZOo We remark that relations (3.11) and 
(3.12) could be generalized in an obvious way by extending 

'" the definition of W'± and of W ± to complex values of A in 
the domain of analyticity of the eigenvectors, as well as to the 
resonance points. 

The situation is slightly more involved in the case of a 
multiple resonance, when some of the coefficients S;i (z) 
have at Zo = Eo - i(ro/2) a pole of order N> 1. In this case, 
it is well known and a simple exercise to check that the domi
nant (pole) part of the decay amplitude of the resonant state 
is of the form exp( - iEot )exp[ - (r 0/2)t ]P N _ 1 (t ), where 
P N _ 1 is an (N - I )th order polynomial. This can again be 
interpreted in our formalism as a "discrete" contribution in 
an expansion in terms of a "complex completeness" of the 
Hamiltonian, though in this case associated vectors playa 
role too [compare the discussion following formulas (2.19)
(2.21)]. Explicitly, expand aboutzo the right and left analyti
cally continued eigenvectors: 

F( - )i(Z) = ! C~ - )i(ZO)(Z - zo)", (3.22) 
n=O 

G \)- )i(Z) = ! D ~ - )i(ZO)(Z - zoy. (3.23) 
n= -N 

Then, the formula for the survival amplitude which general
izes (3.20) is the following: 

( Ptp,exp( - iHt )Ptp ) 

= L dz exp( - izt)~ (cpIF( -)i(Z»(G\)- )i(z)ltp) 

N-I (_ ort r 
- 21Ti exp( - iEot )exp [ - (r 0/2)t] I -'--~-

r~O r! 

and we may describe the resonance by the two sets 
[D ~ - )i(ZO) la ~ _ N., -I and [C~- )i(ZO) lp ~ O, ... ,N -I of left 
and right eigenvectors and associated vectors of H. 

Next we consider the resolvents of HO andH. With the 
respective choices of the families FOi(z), G Oi(Z) and F( - )j(z), 
G ( - )j(z), we see that formula (2.27) applies. This allows us 
to continue analytically R O(z) and R (z), as operators in 
.!i"(lP, lP') from the upper half-plane respectively across 
(ncf'lil )0 '\ Us (H~ and (n ~ nA )o'\us(H) into the lower half
plane, seen as part of the second Riemann sheet, to the re
spective regions of analyticity of the corresponding eigen
vectors. The respective continuations are 

R ~) (z) = R O(z) + 21Ti I IFOi(Z» (G Oi(Z) I, (3.25) 

and 

R II (z) = R (z) + 21Ti I IF( - )i(Z» (G \1- )i(Z) I 
i 

2218 J. Math. Phys., Vol. 21, No.8, August 1980 

= R (z) + 21TiI IF( - )i(Z»S Ij(Z)(G (+)i(z)l. 
i.j 

(3.26) 

Therefore, the singularities of Ru (z) are exactly the same as 
those of the continued S matrix (apart from the pathological 
situations in which poles of Sij(Z) might be cancelled by ze
ros of the eigenvectors), whereas R ~) (z) is regular at these 
singularities. 35 

We can sum up the above by saying that the eigenvalues 
and eigenvectors associated with the poles of the continu
ation into the second Riemann sheet of the analytic family of 
left outgoing eigenvectors can be interpreted as describing 
the location of resonances and the actual "stationary" reso
nant states. 

4. THE FRIEDRICHS MODEL 

In this and next section we show that the theory set 
down in Sec. 2 and 3 is not empty by applying it to the exam
ple of the Friedrichs model6 (present section) and to the scat
tering of a spinless particle by a local central potential (Sec. 
5), with suitable assumptions on the corresponding poten
tials. For pedagogical reasons, and due to its solvability, we 
shall treat the Friedrichs model in greater detail, whereas in 
the example of the central potential we shall only state the 
results, leaving the proofs to the reader. In this model, the 
Hilbert space JY is taken to be C Ell L 2(0, 00 ), so that a vector 
in JY is a pair Ii = (h o,h (A », where h °EC and h (A ) 
EL 2(0,00 )==L 2+ • The free and interacting Hamiltonians are 
respectively 

0) and H = (M
f 

El\, 
X· E x.) 

with M> 0, E a real number and/some function so that 

(4.1a) 

and 

Assumptions have to be made on the domains and on/in 
order to make H ° and H properly defined self-adjoint opera
tors and we will presently make those which are most suit
able for our purposes. 

We consider L 2(0, 00 ) as embedded into L \R)=L 2 by 
means of the projection P + according to (P + h )(x) 
= X[O,oo [(x)h (x), where X.1 is the characteristic function of 

the Borel set .:l of the real axis. We consider the dense sub
space Z CL 2 offunctions which are the restriction to R ofthe 
entire functions tp(z) with the property that for each tp there 
is some positive number b and some sequence {Bn} of posi

tive numbers such that(l + Izl)nltp (z)1 <Bnexp(b I Irnzl), Vn. 
This space can be endowed with a nuclear topology as fol
lows (Ref. 22, Vols. I, II). First, let Z (b ) be the submanifold 
of the entire functions for which the previous inequality 
holds with a fixed b. Then, define on Z (b ) the countable 
sequence of norms 
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IllP Ilk = SUp (l + IZl)k IlP (z) I exp( - b I Irnzl). (4.2) 
zEC 

In this way, Z (b) becomes a complete countably nonned 
nuclear space. If a> b, Z (a) ~ Z (b ), and the topology in
ducedbyZ(a)onZ(b ) coincides with that ofZ (b ). We have 

Z = u Z (a) and we endow Z with the strict inductive limit 
a>O 

topology of the spaces Z (a). Then Z is a nuclear space. The 
canonical embedding J' of Z into L 2, which associates each 
lp in Z to the L 2 class offunctions which are a.e. equal to lp on 
R is continuous. The operator J' + = P + J' is a one-to-one 
continuous linear map of Z ono a dense submanifold of L 2+ • 

Therefore, by the embedding J' + , a rigged Hilbert space is 
implemented: ZCL 2+ CZ'. We choose as conjugation on 
L 2+ the ordinary complex conjugation offunctions. It acts 

on Z according to lp(z) -+ ip(z) = lp (Z) and is continuous 
wrt the topology of Z. Then L 2+ is continuously, densely 
and linearly embedded into Z ' by the map J"+ is defined by 
</'+ h IlP ) = (h,J' + lp) = SO' h (x)tp (x) dx, hEL 2+ , ipEZ. 
Denote by L ~ and Z respectively the Hilbert direct sum 
C (B L 2+ and thetopological direct sum C (B Z. Z is the nucle
ar space which is the strict inductive limit of the complete 
countably normed nuclearspaces Z (a) = C (B Z (a), where 
the norms on Z (a) can be chosen for example as II(lP o,lp )IIk 
= (llP °1 2 + IIlP IiDI/2, with IllPlik'given by (4.2). If P + is the 

projection on C (B L 2 with range L 2+ and if j' defined by 
j'(lPo,lp) = (lp0,/ lp) is the canonical embedding of Z into 
C (B L 2, then P + )' =)' + is a one-to-one linear continuous 
map of Z onto a dense submanifold of L 2+ ' thereby imple
menting a rigged Hilbert space zcL 2+ CZ'. The elements 
of Z' are pairs G = (go,g), wheregoEC andgeZ'. The conju
gationonL ~ isnaturally(h O,h) -+ (i,o,h). ItleavesZinvar
iant and is continuous wrt the topology of Z. The corre
sponding linear embedding )"+ of L 2+ into Z' is given by 

(j"+ (h o,h )1(lP o,lp» = h alp ° + Soh (A)tp (A) dA. 
After these preliminaries, we require HO and H to have 

both domain Z and the potential functionfin (4.1) to belong 
to Z. Then, both HO and H leave Z invariant and act with 
continuity upon i (Appendix A). The action of H' and of Ii 
on an element D = (do,d)eZ ' is respectively given by 

H'(do,d) = (Mdo + €(d if),€dJ + xd), (4.3) 

and by 

H(do,d) = (Mdo + €(d iJ),€drl +xd), (4.4) 

We have that H ° and H, as operators in L 2+ with domain Z, 
are essentially self-adjoint (Appendix C). An immediate re
mark is that L 2+ is a direct integral decomposition associat
ed to H 0, 6 that is to say yo is the identity operator. Further
more, i is a possible choice for the nuclear space that 
implements it via Theorem 2.1. Indeed, the left eigenvectors 
of HO are GO = (1,0) and GO(A) = (0,8,1), namely, 
(G °I41) = <po and (G o(A )141> = <p(A )'v'41eZ so thatProposi
tion (2.5) trivially applies wrt Lebesgue measure on [0,00). 
Since the 8 function is analytic on Z, the eigenvectors G O(A ) 
relative to the a.c. spectrum are continuous boundary values 
on [0,00) of a family of eigenvectors G O(z) = (0,8z ) which is 
analytic everywhere. 

In order to study the eigenvectors of H, we introduce 
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the inverse of the partial resolvent6 

(Go,R (z)GO) -I = a(z) = z - M - c Loo I/(xW dx. 
z-x 

(4.5) 

This function has a cut on [0, 00 ) and is otherwise regular, it 
has zeros at most on the real axis, and under the conditions 
that/(O) = O,J(M)#O and that the coupling constant € is 
small enough, neither a(A) for A<O nor a(A ± iO) for A;;;oO 
vanish. 36 We assume these conditions to be satisfied. Then 
we have the following. 

Proposition 4.1: With the above assumptions on/, €, 

every complex number z is a left eigenvalue of H with associ
ated left eigenvector in Z' which for zt[O, 00 ) is given by: 

G (z) = (€ fez) ,c fez) . lex) + (jz), (4.6) 
a(z) a(z) z - x 

and acts on an element tj)eZ according to 

(G (z)I¢) = € fez) lp ° + c fez) roo l(x)tp (x) dx + lp (z). 
a(z) a(z) Jo z - x 

(4.7) 
For Z==AE[O, 00), the boundary values G ( ± '(A. ) acting ac-
cording to 
( G ( ± l(A ) I ¢ ) = € f (A ) lp ° + c I (A ) 

a(A + iO) a{A. + iO) 

X ('" l(x~ (x) dx + lp (A), (4.8) 
Jo A +10 - x 

yield the corresponding left eigenvectors. There are no left 
eigenvectors in L 2+ . The above eigenvectors are unique up to 
a complex factor possibly depending on z; in particular, the 
following relation holds: 

G (- )(A ) = a(A - iO) G (+ )(A ). (4.9) 
a(A + iO) 

In order to prove that (4.7) and (4.8) yield left eigenvectors of 
H one might proceed as follows. It is easy to check that 
Friedrichs fonnulas6 for the spectral decompositions Y( ± ) 

wrt H are expressed by operations which, for fixed A ;;;00, are 
continuous linear functionals upon i which agree with (4.8): 

[Y(±)(¢)](A) = (G(±)(A)I¢), ¢eZ. (4.10) 

Next, one checks that such functionals are indeed analytical
ly continuable to the whole complex plane, so that Proposi
tion 2.2 can be applied. However, in order to prove unique
ness, we need to solve the eigenvalue equation explicitly, and 
we do so in Appendix B. 

Corollary: When the above conditions onl and € are 
satisfied, to every complex number z there is associated a 
right eigenvector which, for zt[O, 00), acts on the elements of 
i according to 

(¢ IF(z» = € l(z) lp ° + C l(z) roc f(x)(jJ (x) dx + <p (z), 
a(z) a(z) Jo z - x 

(4.11) 
for Z==AE[O, 00), the boundary values F( ± )(A ) acting ac
cording to 

(¢ IF( ± )(A » = € I(A) <p ° + c I(A) 
a(A ± iO) a(A ± iO) 

X Loo f(x~ (x) dx + <p (A ), (4.12) 
o 4±IO-X 
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are the corresponding eigenvectors. There are no right eigen
vectors in L 2+ • The above eigenvectors are unique up to a 
complex factor possibly depending on z; in particular, 

F( - )(A ) = a(A + iO) F( + )(A ), 
a(A - iO) 

(4.13) 

holds. To prove the corollary, recall that F(z) = G (Z). 
Remarks: (i) The families of eigenvectors G (z) and F (z) 

are analytic in the plane with a cut on [0,00 ). Their boundary 
values on the cut, G ( ± l(A ) and F (± l(A ), A >0, are continu
ous. (ii) In particular, G (+ l(A) and F( - l(A), A>O, are 
boundary valuesfrom below respectively of the families G (z) 
and F (z), analytic in the lower half-plane. On the other hand, 
in this model, G (- l(A ) and F( + l(A ) are boundary values 
from above respectively ofthesame families G (z) andF (z), so 
that we can drop the superscripts ( ± ) whenever we are not 
dealing with the boundary values. (iii) The families of eigen
vectors F( ± )(A) and G (± )(A) do satisfy (a), (b), and (c) of 

Proposition 2.5. This need not be shown directly: it is enough 
to recall (4.10), which trivially implies that i, G ( ± )(A ) and 
F ( ± )(A ) implement Theorem 2.1 wrt H and !Fe ± ). Regard
ing condition (d) of the proposition, it follows trivially from 
the fact that i is already a domain of essential self-adjoint
ness of H. In particular, the spectrum of His [0,00) simple 
and the spectral measure is equivalent to the restriction of 
the Lebesgue measure to [0,00). As a matter of fact, the ei
genvectors (4.8) and (4.12) are so normalized that the associ
ated measure in (2.16) is Lebesgue. (iv) The superscript ( ± ) 
in (4.8) and (4.12) does not agree with the limiting proce
dures. Instead, it is apparent from (4.10) and Ref. 6 that the 
G (+ )(A ), F( + )(A ) and the G (- )(A ), F( - l(A ) are respec
tively the "in" and "out" states of the formal theory of scat
tering. (v) The projections po and P on the a.c. subspaces of 
HO andH respectively are trivially given by pofj = (O,h) and 
p = 1. It follows that i is invariant wrt both projections and 
their action is continuous wrt the nuclear topology of i. This 
particular feature simplifies formulas (3.13), (3.14), (3.20), 
(3.21), and (3.24) as we can drop P and take qJ(j)' rP(oEP°(/J. 

The families G (z) andF (z) can be analytically continued 
across the cut [0,00) and by Proposition 2.2 the continu
ations preserve their character of being eigenvectors of H. 
We shall be interested in the continuation of the family G (z) 
from the first quadrant across the cut into the fourth quad
rant of the complex plane, seen as part of the second Rieman
nian sheet. The continuation of a(z) is 

all(z)=z-M-c roc If(xW dx+2rriE21(z)f(z) 
Jo z-x 

= a(z) + 2rriE21(z)f(z), (4.14) 

and for all if; in 'i, the continuation of 
So [l(x)qJ (x)/(z - x) 1 dx is So [l(x)qJ (x)/(z - x)] dx 
- hi 1 (Z)qJ (z). Therefore, the continuation GIl (z) of G (z) is 

(GIl (z)l¢ ) 

=E f(z) qJ0+E2 f(z) roc dx1(x)qJ(X) 
a\l(z) all(z)Jo z-x 

a(z) ( ) a(z) (G( )1-) + --qJ z = -- z qJ . 
all (z) all (z) 

(4.15) 
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The last equality, which could have been inferred from (4.9), 
is not surprising, because of the uniqueness of the left eigen
vectors up to a z-dependent factor. 

Remarks: (i) a(A - iO)/a(A + iO) = S (A) is the S ma
trix in the HO representation.6 With the assumptions made 
forfand E, it can be continued across the cut to the function 
Sn (z) = a(z)/an (z), which is meromorphic in the cut plane 
seen as the second Riemannian sheet (see below). (ii) It is not 
a surprising fact that in i', together with "in" eigenvectors 
G ( + )(A ), Fe + )(A ), there must appear the "out" ones 
G e - )(A ), because of the preceding remark and of Proposi
tion 3.1. (iii) In this example, it is easily seen that it is not true 
that the nuclear space, i, is invariant wrt the actions of W + ' 

W _ ,andS. 
Whereas G (z) is regular everywhere in the cut plane, 

Gil (z) is not, in general. Indeed, a(z) has no zeros whereas 
an (z), while being regular in the cut plane, may vanish. 
Therefore, it follows from (4.15) that the only possible singu
larities of the family Gil (z) are poles which are in one-to-one 
correspondence with the zeros of the an (z). With the as
sumptions made for f and €, in any strip of the second Rie
mann sheet with 11m zl ';;:c, c fixed but otherwise arbitrary, 
there is at most a finite number of zeros of all (z). This fol
lows easily from the continuity of a(z) and an (z) at z = 0, 
and the fact that all (0) = a(O). Sincefis an entire function, 
the existence of a unique zero of all (z) in any given half-disk, 
jzlImz <O,lz - M I <!5}, providedc is small enough, is en
sured by Theorem 2.1 of Ref. 12b, and the position of the 
zero is an analytic function of c. 

We can now conclude that with the assumption made 
onf and €, the rigged Hilbert space i c L 2+ C i ' satisfies the 
assumptions made in Sec. 3 wrt to H ° and H, so that the 
conclusions drawn there hold true in this model. In particu
lar, a resonance at Zo = Eo - i(r 012), r o> 0, i.e., a pole of 
SII (z), is associated to left and right eigenvectors, and possi
bly to associated vectors, of H, with Zo as eigenvalue. These 
vectors are given by the Laurent expansion of Gil (z) about 
Zo' As stated above, if E is small enough, there is a simple pole 
close to M, and there appear no associated vectors. The left 
resonant eigenvector is 

D (zo) = a(zo) G (zo), 
dalI (z)/dz I z ~ z" 

(4.16) 

whereas the corresponding right eigenvector is simply F (zo)' 
In particular, the survival amplitude under the perturbed 
evolution law of the state G ° = (1,0), stable under the unper
turbed evolution, can be written as follows [compare (3.20)]: 

(Gole - iHtGO) 

= L dz exp( - izt )(GoIF(z» (GIl (z)IGO) 

- 2rri exp( - iEot) exp[ - (r 0/2)t 1 
X (GoIF(zo»(D (zo)IGO) 

= E2 f dz exp( - izt) l(z)f(z) 
r a(z)all (z) 

- 2rri exp( - iEot )exp[ - (ro/2)t ]E2 
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x l(zo)f(zo) 

a(zo) dan (z)/ dz I z = Zo 

= c r dz exp( - izt) 1(;: (Z» 
Jr a(z n(Z 

1 + exp( - iEot )exp [ - (F 0/2)t] d ()/d I ' 
an z z z = z" 

(4.17) 

where F is path in lower half-plane running below the loca
tion of the pole, as in (3.20) (see Fig. 2). As is well known, the 
exponential term at the rhs of (4.17) dominates the ampli
tude except at short and long times compared to the mean 
life 1/Fo, at which times the contribution of the background 
integral along F becomes important and is responsible for 
the deviations from the exponential decay law. Formula 
(4.17) was derived in Ref. 21, but the interpretation there in 
terms of eigenvector expansion was formal. _ _ 

The resolvents of n and n°, as operators in '!£(Z,Z ') 
can be analytically continued across the cut to yield mero
morphic functions in the second Riemann sheet (which here 
too is the cut plane), as indicated in Secs. 2 and 3. The con
tinuation of R O(z), R ~I (z) = R O(z) + 21TiIFO(z» (G O(z) I, has 
a pole at z = M only, because FO(z) and G O(z) are regular 
everywhere in the present model [of course, R ~I (z)pO has no 
poles]. On the other hand, the continuation of R (z), Rn (z) 
= R (z) + 21TiIF(z» (Gn(z)1 has poles precisely where 
GIl (z), i.e., where Sn (z), has. 

Therefore, in the Friedrichs model we have been able to 
associate to each other: (1) poles of the analytic continuation 
of the S matrix; (2) poles of an analytic family of eigenvectors 
of the total Hamiltonian H; (3) eigenvectors of H with com
plex eigenvalues equal to the locations of the poles; (4) poles 
of a suitable continuation of the resolvent of H, at points 
where the analogously continued resolvent of the free Ha
miltonian is regular. What is more important is the fact that 
expansions in terms of eigenvectors with complex eigenval
ues are valid, so that such poles and corresponding eigenvec
tors in the fourth quadrant are associated in an intuitive way 
to purely exponentially decaying contributions to the surviv
al amplitudes of unstable states. In this way. the formal treat
ment given in Ref. 21 is now completely justified in terms of 
rigged Hilbert spaces. 

5. SCATTERING OF A SPINLESS PARTICLE BY A 
LOCAL CENTRAL POTENTIAL 

We consider the nonrelativistic Schrodinger HamiIton
ianH=Ho+ V(r) = -(1/211,)..:1 + V(r).r= Ixl.fora 
spin less particle interacting with a local central potential. 
We assume the potential to be 00 but possibly at theorigin. 37 

We require that at the origin V (r) - 0 (r - 3/2 + £). € > 0. and 
that at infinity V (r) - 0 (r - 3 - Ii). /j > 0. Scattering theory for 
such potentials is well known33

; here we show how it can be 
recast into the rigged Hilbert space framework ofSecs. 2 and 
3. 

2221 

As usual. we write any function in L 2(ft) as 

t/l(x) = 2- I !,b'm (r)Y'm (x), 
r I.m 

J. Math. Phys., Vol. 21, No.8, August 1980 

(5.1) 

where i denotes the angular polar coordinates of x and 
Y'm (x) are the spherical harmonics. The converse relation is 

!,b'm (r) = r f dx Y'm (i)t/I(x) . (5.2) 

With these conventions, one has 

(!,b.q;) = ') roo dr !,b'm(r)q;'m(r)= I (!,b'm.q;'m)'m , 
~1 ~ 

for all!,b.q;eL 2(R). The function !,b'm (r) is in L 2+ • However, 
we shall denote L 2+ by cW"'m whenever it is envisaged as the 
space to which the I-wave component !,b'm belongs. Accord-

ingly. the inner product in L 2+ , (h,k) = Sodr h (r)k (r). is 
denoted by ('.')'m whenever it is intended between the com
ponents !,b'm' q;'m' Similar conventions will be made later on. 
The action of H on the I-wave component !,blm (r) is formally 
given by 

H,!,b'm (r)==(H!,b)'m (r) 
1 d 2 I (I + 1) 

= - 2p d,z !,blm (r) + 2pr !,b'm (r) 

+ V(r)!,b'm(r). (5.3) 

Remark: If H is defined on a core D (H) in such a way 
that (5.1) decomposes H, the formal expression (5.3) yields 
an essentially self-adjoint operator H" in cW"'m on the do
mainD (H,) naturally obtained fromD (H)bymeansof(5.2). 
Conversely. let the formal expressions (5.3) represent essen
tially self-adjoint operators in cW"'m with domains D (H,) for 
any I,m. Then the operator H, when defined upon the set 
! t/l(x) l!,blm (r)ED (H,). !,b'm (r) vanishing for all but a finite 
number of l.m J • is essentially self-adjoint. 

Now we determine a nuclear space that will be shown to 
implement the assumptions made in Sec. 3 wrt H ° and H. 
because of the known properties of the M011er operators for 
the class of potentials considered. Let Co (0,00 ) be the space 
of infinitely differentiable functions with compact support in 
the open set (0. 00). Envisage this space as the strict inductive 
limit of the countably many complete countably normed nu
clear spaces Co ([ 1/n.n]). n = 1.2.· .. , each of these with the 
topology of Ref. 22. Vol. II. As such. Co (0,00 ) is a nuclear 
space denoted §2J + . Here again we shall denote fiJ + by 
fiJ 1m whenever !,b'm is intended to belong to it. Consider the 
locally convex direct sum fiJ L = 1:~= a 1:~ = _ I EIl §2J 1m and 
the strict inductive limit 

tP = limfiJ L . (5.4) 

Then. tP is also a nuclear space. The conjugation q; _ ;p giv

en by the ordinary complex conjugation q;(r) _ q; (r) is 
continuous from tPonto tP. Then, formula (5.1) gives a natu
ral one to one correspondence between tP and a dense mani
fold in L 2(R3

) which. endowed with the transport topology, 
we again denote by tP. tP is a actually a closed supspace of the 
space §2J (R3

) of Schwarz test functions. and its topology co
incides with that inherited from this space. It is therefore 
embedded continuously into L 2(R3

). For any I.m the opera
tor H, maps §2J 1m into itself continuously. so that H is a 
continuous map of tP into itself. Remark that in tP there are 
only vectors with a finite number of non vanishing compo-
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nents lfJlm efP 1m' The restriction of HI to fP 1m is essentially 
self.adjoint iff I =F 0,38 so that H is not essentially self-adjoint 
upon cJ>. The same statements hold true for HO. 

We show that the spacecJ> meets the requirements of 
Sec. 3 wrt H ° and H. We choose for Hand H ° the following 
common domain of essential self-adjointness: 

D = {If(x) I ,plm (r)efP 1m for I =F O;,plm (r) 

vanishes for all but a finite number of I,m; ,poo(r) is C 00 , 
,poo(O) = 0 and 3R > 0 such that 

,poo(r) = 0 for r>R J. 
The singular continuous spectra are empty. 

We consider first the free Hamiltonian H 0. The normal
ized Riccati-Bessel functions 

jl(x) = X1l2JI+ 1/2 (x), 

whereJA (x) are the ordinary Bessel functions, satisfy the free 
radial Schrodinger equation 

1 d 2 A (k ) I (I + 1) A (k ) k 2 A (k) (5 5) - ""2; dr 1l r + 2p,r 11 r = 2p,il r, . 

and they define continuous functionals upon fP 1m' as locally 
summable functions. Then, the functionals G?m (k ) 
=(k,l,ml defined upon cJ> as 

(k,l,m Ix) = 100 

dr J~(kr)Xlm (r) 'fIxecJ>, (5.6) 

are continuous on cJ> and left eigenvectors of HO with eigen
value k 2/2p,. Furthermore, they are analytic in the param
eter k in the whole complex plane, so that they yield a family 
of eigenvectors of H ° which is entire analytic. The complete
ness relation holds 

(r,w) = roo dk L (k,l,mlx)(klmlw) 'fix, wecJ>. Jo 1m 

The map 

fP 1m 3 Xlm (r) -+ 100 

dr jl(kr)Xlm (r)eL 2+ (dk), 

has a dense image in L 2+ (dk) and hence the map 

YO:cJ>3X -+ [Y°(r)] 1m (k )=(k,l,mlx), (5.7) 

has a dense image in l:/,m $ L 2+ (dk). Therefore, conditions 
(a), (b), and (c) of Proposition 2.5 are valid for the family 
(k,l,m I, with A = (0,00), df.i(k ) = dk and Y = yo. Condi
tion (d) is expressed by the relation 

[YO(H°,p)Lm(k) = ~ [yO(,p)Lm(k) 'fI¢'ED and a.e, 

which is easily seen to hold by partial integration, noting that 
for all ¢'ED one has 

[YO(,p)] 00 (k ) = f 0' dr jl (kr),poo(r) a.e. 

Concluding, the family (k,l,m I is an entire analytic 
family ofleft eigenvectors of H ° in cJ> ' that implements Theo
rem 2.1. 

Remark: Note that, because the functions in cJ> have 
support away from the origin, the Riccati-Neumann func
tions nl(kr) = (kr)1t2NI+ 112 (kr) are also eigenvectors of HO 
in cJ> '. They provide an example of eigenvectors of a self-
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adjoint operator with corresponding eigenvalues in the spec
trum and yet playing no role in Theorem 2.1. 

Next, we consider the total Hamiltonian H. It is well 
known39 that the radial SchrOdinger equation HllfJl,k(r) 
= (k 2/2p,)lfJl,k(r) has a strong solution that behaves like 
(kr) I + 1/(21 + I)!! as r -+ O. This solution, called the regular 
solution,33 is entire analytic in the parameter k for any r 
under the assumptions made on V (r). In addition, it is not 
difficult to check by the usual expansions given for itl9 that it 
defines a left eigenvector of HI in fP 1m and that the expres
sion fO'dr lfJ/,k(r)Xlm (r) is entire analytic in k whenever Xlm 
e~ 1m' Thus we have an entire analytic family of left eigen
vectors of HI in iP 1m . 

The relation between the regular solution lfJl,k (r) and 
the normalized incoming solution ,pl,k(r) is given by lfJl,k(r) 
= (17'/2)1/2 fl(k ),pl,k(r). The Jost function33 f I(k) 
= !/( - k) is an analytic function of k in the half plane 
Imk > 0 and it is continuous for real k except possibly at 
k = O. Therefore, the functionals G~,;; l(k ) defined upon cJ> 
as 

< G~,;; l(k) Ix) = 100 

d~/,k (r)Xlm (r) 

= (2/17')1/2(1/ f I( - k» 
X 100 

drcpl,k(r)Xlm(r) 'fIxecJ>, (5.8) 

are left eigenvectors of H, boundary value for k > 0 of a fam
ily analytic in the lower complex k-plane. Denote by Gnlm 

the (left) bound states and by P the orthogonal projection 
onto the subspace Kac of absolute continuity of H. Then the 
family {G nlm ,G~,;; l(k ) I satisfies all conditions of Proposi
tion (2.5) and provides for the generalized Fourier transform 
Y + of Sec. 3. In particular, the G~,;; l(k) are the I-wave left 
incoming eigenvectors. We do not need to give a direct proof 
of these statements, as they follow from the existence and 
completeness of the M011er wave operators for the class of 
potentials under consideration.33 It suffices to note that con
dition (a) of the proposition holds as a consequence of the 
definition and that conditions (b) and (c) follow from the 
relation 

100 

dr¢I,k(r)Xlm(r) 

= }ir.ooo 1R drjl(kr)(W",+ PX)lm(r) 

= [YO(W",+ Pxllm(k) a.e. and 'fIxecJ>, 

and from completeness and unitarity ofthe M011er operators 
between L 2(R3) and Kac . As to condition (d), the proof of its 
validity runs exactly as it does for H 0. In conclusion, the left 
incoming eigenvectors (5.8) are boundary values on [0, (0) of 
a family of eigenvectors of H analytic in the half plane 
1m k < O. We are in the condition of applying Proposition 3.1 
so that the left outgoing eigenvectors are given by 

G j,; l(k) = s/(k)G~';; J(k), 

where s/(k) = !/(k)/ f I(k) is the usual I-wave S matrix. 
The corresponding right incoming and outgoing eigenvec
tors are given for k> 0 respectively by 
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<KIF)': )(k» 

= 100 

t/J1,k(r)Xlm(r)dr= (G~,;;-)(k)lx) VxetP, 

and by 

<KIF~,;;-)(k» 

= 100 

drifil,k(r)Xlm(r)dr= (G~':)lx) VxetP. 

The eigenvectors G~,;;- )(k) = F~;:; )(k ) are boundary values 
on [0,00 ) of a family of eigenvectors of H analytic in the half
plane 1m k > O. All conditions of Sec. 3 are met and the fam
ily G~,;;- )(k) can be continued across the real axis according 
to formula (3.15) in the same region asfl(k) can, whenever 
the potential is such as to allow for the continuation of the 
Jost functions. The singularities of the continued family 
G ~,;;- )II(k ) in the lower half-plane are poles located at the 
zeros of the Jost functions. They give rise in the manner 
described in Sec. 2 to eigenvectors (and possibly to associat
ed vectors) ofthe Hamiltonian, with complex eigenvalues, 
and appear as isolated contributions in (3.20). We remark in 
this context that with our choice (5.4) for the nuclear space 
tP we have here that PtPct. tP contrary to the situation en
countered in the Friedrichs model. Therefore, formulas 
(3.20) and (3.21) allow for the possibilty that h =/=rp, etc. 

The resolvents can also be continued and formulas 
(3.25) and (3.26) are valid [notice that 

l:/,m <KIF~,;;- )(k»(G \,;;- )II(k )Ieu) 

is analytic because the series contains a finite number of 
terms]. Here too the poles of R II (k ) are the zeros ofthe 
continued Jost functions. 

6. CONCLUDING REMARKS 

We summarize here what has been done in the previous 
sections and point out the relevant features of our treatment. 

It is well know from the work of Maurin, Gel'fand, and 
collaborators that given a self-adjoint operator A in a Hilbert 
space JY, there exists a (nonunique) rigged Hilbert space 
tP C JY c tP ' such that the dual A ' of A in tP ' has a complete 
set of eigenvectors with at least the points of the spectrum of 
A as eigenvalues. In general the eigenvalue equation for A ' in 
tP ' has also solutions outside the spectrum. This feature has 
often been considered to be a nuisance (from a mathematical 
point of view) and conditions have been given in order that 
the eigenvalue equation in tP ' has solutions corresponding to 
the points in the spectrum only.40 However, there are cases 
when it is desirable to have eigenvalues outside the spectrum. 
A first example of this fact was met by physicists in connec
tion with the reduction of self-adjoint representations of a 
noncom pact Lie algebra with respect to a noncom pact Abe
lian subalgebra. As shown for example by Mukunda and 
collaborators,41 this problem can be solved strictly within 
the framework of Hilbert space; essentially, the solution 
amounts to the fact that the direct integral decomposition of 
the carrier space of the representation with respect to the 
noncom pact generators is such that vectors belonging to the 
commom domain of all the relevant operators are represent
ed by functions which are analytically continuable. Of 
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course, in a Hilbert space setting eigenvectors are envisaged 
in a formal sense only. In order to solve the problem, while at 
the same time giving a rigorous meaning to eigenvectors, one 
has to use rigged Hilbert space techniques. This way first 
done. explicitly by Iverson42 and later independently by 
Lindblad and Nage1.43 

Also, for the description of resonances it is desiderable 
to have solutions of the eigenvalue equation outside the spec
trum.9•13 In our approach, which stems from earlier work of 
some of us about analytic continuation in the Lee-Friedrichs 
model, 21 we consider rigged Hilbert spaces tP C JY c tP ' such 
that both the unperturbed Hamiltonian H O and the per
turbed one H have eigenvalues in regions of the complex 
plane. Here we wish to point out that the eigenvectors with 
eigenvalues outside the spectrum of the Hamiltonian have 
the same physical concreteness as stationary scattering states 
or plane waves. Indeed, if G (zo) is such an eigenvector in tP ' 
with Zo as eigenvalue, it can be approximated, in a weak 
sense, by vectors in tP, i.e., physical wave packets, and the 
eigenvalue equation can be approximated analogously. To 
wit, 'IE> 0 and V<petP, 3t/JetP such that 
I (G(zo)lrp > - (t/Jlrp >1 <Eand IZo(t/Jlrp > 
- (t/J IArp > I < E. The families of eigenvectors that we deal 

with are also required to be analytic with respect to the eigen
value, considered as a parameter, in some regions of the com
plex plane. Once we assume that resonances are given by 
poles of the S matrix continued into the unphysical sheet, if 
we are able to connect the analytic structure ofthe eigenvec
tor family of the perturbed Hamiltonian to that of the S 
matrix, resonances appear as poles of the eigenvector family. 
The interesting fact is that the coefficient of the most singular 
term in the Laurent expansion of the eigenvector family about 
the pole Zo is also an eigenvector with Zo as eigenvalue. In this 
way, resonances appear as eigenvectors of H with complex 
eigenvalues. The family of eigenvectors of H whose analytic 
structure is linked to that of the S matrix turns out to be the 
one associated to the "out state" representation of the Hil
bert space. In this framework, a rigorous ground is given to 
the interpretation of the analytic continuation techniques of 
Ref. 21 in terms of expansions over eigenvectors with com
plex eigenvalues of the Hamiltonian. As we have eigenvector 
families which are analytic in some region, we can apply 
Cauchy techniques to scalar products between elements in 
tP. Such scalar products can be expanded in terms of com
plete systems of eigenvectors with complex eigenvalues of 
either H 0 or H. There appears an integral along a contour in 
the complex plane, plus discrete contributions due to the 
poles of the eigenvector family. The expansion of the surviv
al amplitude of a state in tP in terms of eigenvectors with 
complex eigenvalues breaks down into a sum of terms with 
exponential (or polynomial times exponential) behavior in 
time in correspondence to the singularities of the eigenvector 
family, plus a background integral, a fact with stresses again 
the connection between unstable states and resonances. We 
have seen also how the resolvents of H 0 and H, reduced to tP, 
can be continued across the absolutely continuous spectrum 
(provided the singular spectrum has good behavior) into the 
unphysical sheet. The continuation of the resolvent of H has 
the same singularities as the continuation of the S matrix; in 

Parravicini, Gorini, and Sudarshan 2223 



                                                                                                                                    

contrast, the continuation of the resolvent of HO is regular at 
these points. 

There is a criticism that could be made about the fact 
that we use a perturbed and an unperturbed Hamiltonian: 
namely, that since nature ignores the unperturbed Hamil
tonian, resonances should be entirely characterized in terms 
of the total Hamiltonian alone. However, we maintain that 
this cannot be the case: In addition to the total Hamiltonian, 
one needs some/urther inputfrom physics. This reflects itself 
upon the mentioned arbitrariness in the choice of r/> and on 
the fact that the analytic structure of the eigenvector family 
depends critically upon such choice. This feature can be easi
ly shown again in the example of the Friedrichs model. Let 
us consider a Hamiltonian H whose absolutely continuous 
spectrum is [0,00 ) and Lebesgue; it can be assumed to be 
simple. Then, the restriction of H to the subspace of absolute 
continuity is given by the operator of multiplication by x in 
L 2(0,00). Let us consider the operator HO given by: 

(HOh )(tt) = Mc f(tt) ("" f(x)h (x) dx 
a(tt + ;0) Jo a(x - iO) 

+ tth (tt) - cttf(A.) 

("" f(x)h (x) 

X Jo a(x - iO)(tt +;0 -x) 

+ £2 f(tt) r'" f(x) 
a(tt - ;0»)0 tt + ;0 - x 

X( xh (x) - ~xf(x) 

xi'" f(x')h (x') dX') dx (6.1) 
o a(x' - iO)(x + iO - x') 

where E, M,J are arbitrary provided they satisfy the condi
tions of Sec: 4. H 0 and H are then immediately recognized to 
be the Friedrichs unperturbed and perturbd Hamiltonians, 
respectively, in the "out state" representation. By means of a 
unitary transformation, they can be given the form (4.la) 
and (4.1b), respectively. In this representation, one can re
peat all the steps of Sec. 4 to obtain poles of the continued 
resolvent of H, exponential time behavior, etc., at the zeros 
of the function a II (z). However, this function depen,ds on the I 

APPENDIX A 

parameters E, M and on tlie function/, which can be ar
ranged in such a way as to have a zero of an (z) at any arbi
trarily given point of the fourth quadrant.44 Therefore, given 
H, one can choose rJ> which will depend on the parameters E, 

M and on the function/, in such a way that the resolvent, as 
an operator in !f(rJ>,rJ> '), can be continued across the spec
trum into the unphysical sheet with a pole at any given point 
of the fourth quadrant; to such a pole are associated all the 
mathematical features of an unstable state or a resonance 
and, of course, if the imaginary part of the pole is not too 
large, the physical features too. However, resonances are not 
seen with any energy and lifetime. This suggests that, for a 
given Hamiltonian system, not all the states in the corre
sponding Hilbert space are realizable in principle, but that 
there is a mechanism that selects the physical states; and this 
mechanism does not depend on the Hamiltoni(ln alone. Such 
a mechanism could possible be the following: The "natural" 
states for the system are those in the domain of the Hamil
tonian; on the other hand, the observer has in the same Hil
bert space a "natural" set of his own, depending on the struc
ture of the preparing and measuring devices, and at least in 
many instances, theSe can probably be described as states in 
the domain of Ii fictitious, unperturbed, Hamiltonian H 0. 

The observable states should then belong at most to the in
tersection of such two sets, the system's natural set and the 
observer's natural set of states, which perhaps could explain 
why resonances are not found everywhere in the complex 
energy plane. These considerations retlect themselves upon 
the arbitrariness of the choice of rJ> in the rigged Hilbert 
space, and on the dependence of the analytic structure of the 
eigenvector families upon such choice.45 In this paper, to 
overcome such arbitrariness, we have considered the ficti
tious Hamiltonian as given, and adhered to the point of view 
that resonances are associated with poles of the S matrix, 
being well aWare that this is not always the case.5 
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We show that: (a) i is invariant wrt the actions of HO and H; (b) both HO and H act upon i with continuity. 
First of all remark that, as/EZ, there is some positive number a and a sequence I Ck J, Ck > 0, such that (I + Izlt 

If(z) 1 <C
k 

exp(alIm zi). (a) Given any vectorlj1 = (.p0,.p) in i, there is a positiveb such that.pEZ' (b). Then, there is a sequence 
{Bk J, Bk > 0, such that (1 + Izl)k l.p (z)1 <Bk exp (b 11m zl). Therefore, (l + Izl)k I£.p° /(z) + zf/J.. (z)1 «1 + Izl)k 
I€.p °ll/(z)l + (1 + Izi)k +1 lcp (z)1 < IE.p °ICk exp (allm zl) + Bk -+- I exp (b 11m zi), so that HcpEZ (max [a,b». Setting € = 0 
gives H °cpEZ (b ). (b) In order that linear operator A:Z -- i be continuous it is necessary and sufficient:>o that (i) A transforms 
anyi (b )intosomeZ(c)and(ii)thattheactionA t i(b ):Z(b) -- Z(c2becon!inuous. In(a)itisshownthatHtr~nsform~any 
i (b )intoi (max [a,b J),sothatitsatisfiesproperty(i). Ifa > b, wehaveZ (a):JZ (b ) and the topology inducedbyZ (a)0J!Z (b) 
coincides with the topology of i (b ). Therefore, it is enough to prove that H satisfies property (ii) for b-,a. In this case, Z (b ) is 
invariant under H and if cpd (b ), we have 

llHlj1l1k = \M.pO + E (= /(x).p (x) dX\2 + sup (1 + Izi)2k exp( - 2b 11m z\) \ €.p ° I(z) + zcP (z)1
2 

Jo ZEC 

«IMCP 01 + E (= If (x) I l.p (x) 1(1 + IX!)k + 1 dX)2 + sup(1 + Izl)2k exp( - 2b 11m zl) I cP ° k 

Jo (1 + Ixl)k+1 ZEC (1 + Izi) 
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X exp(b IlmzJ)E/(z)(l +Izlt exp( - b IlmzJ) + --tp(z)(l + Izl) Z 12 
1 + Jzl 

< (IMtp 01 + [sup Itp(z)l(l + Izl)k+1 exp( - b IlmZI)] ciao I/(x)1 dX)2 
. ZEe 0 (1 + Ixl)k+1 

+ s;:g [(1 + Izl)2k exp( - 2b 11m zl)(c I I (zW(1 + IZJ)2k exp( - 2b 11m zi) + 

X [ Itp 01
2 

exp(2b 11m zj) + (1 + Izl)2ltp (zW] 
(1 + Izl)2k 

<[M2+(El'" I I (x) I dX)2][ltp oI2+ sup (1 + IZj)2(k+1) exp(-2b Ilmzl)ltp(zW] 
o (1 + Ixll+ 1 

zeC 

+ sup (c1 l(zW(l + Izl)2k exp( - 2b 11m zl) + Izl2 2) 
ZEC 1 + Izl 

X [Itp 01 2 + S!E (1 + Izl)2(k + I) exp( - 2b 11m zj)ltp (z)1 2] 

=Ak+llI¢iIlLI , 
where 

Ak = M2 + E (00 I (x) dx + sup (clf(z)iZ(1 + /Zj)2(k-1) 
Jo (l + IXj)k zeC 

X exp(-2b IlmzJ) + Izl2 ). 
(1 + Izl)2 

Setting € = 0 gives that HO also satisfies property (ii). 

APPENDIXB 

By (4.3), the left eigenvalue equation for H, 
H' G ( t) = tG ( t), G ( t) = (go,;,gs)' writes explicitly 

Mgos + €(gslf) = Sgos' (Bla) 

€gosl+xgs=sgs' (BIb) 

A particular solution of (B 1 b) is 

lex) ti =€gos --, s-x (B2) 

where, if S =AE[O, 00 ), we must interpret (B2) as signifying 
one or the other of the two boundary values lim1J J og). ± "/ . 

The associated homogeneous equation 
(S - x)g~ = 0, (B3) 

is the Fouriertransformoftheequation (S - i d Idx)gs = 0, 
where is is in !iJ', the dual of the space !iJ of Schwarz test 
functions. Since for every SEC the latter equation has as only 
solution exp(iSx) up to an arbitrary multiplicative factor 
(Ref. 22, Vol. I), the general solution of (B3) is of the form 

81 =a(S)8s' 'VtEC, 

where a( S) is an arbitrary t-dependent factor. Therefore, 
the general solution of (B 1 b) is 

E/(X) 
g,. = a( 08t- + gos -- (B4) , , t-x 

Substituting (B4) into (Bla) gives 

a( S)gos = a( S )c/( S)· (BS) 

Since a( t) does not vanish under our assumptions onf' and 
E we can solve (B5) for gos and substituting into (B4) gives 

G(O=a(S)(E/(t) ,c/(t) .l(x) + 8 ), 
a( S) a( S) S - x s 

'VSEC, (B6) 
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thus proving Proposition 4.1 [in (4.6) we have setae S) = 1]. 
Alternatively, using (4.4), one finds that the solution to the 
righteigenvalueequationforH,IfF(s) = SF(S),isgivenby 

F(S) = b(s)(EI(s) ,cl(O .I(s) + 8), 'VSEC, 
a( S) a( S) 5 - x 5 

(B7) 

where b ( S) is an arbitrary S-dependent factor. 

APPENDIXC 

In order to prove that i is a domain of essential self
adjointness for H, it suffices to show that the equations 
(H* ± t)h = Ohavenosolutionsbesidesh = OinD(H*).But 
this is an immediate consequence of the fact that H/'+ h 
= /\ H *h for all hED (H *) (see Sec. 2) and that none of 

the solutions (B7) of the eigenvalue equation 

IfF ( 5! = sF ( S) is in i 2+ • Indeed, the delta function t5 5 is 
not in L 2+ for any SEC, whereas the other term in (B7) is in 
i 2+ • Similarly, one finds that i is also a domain of essential 
self-adjointness for H O
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The problem of extremizing the slope of the imaginary part of either the forward or the backward 
scattering amplitude is treated as a variational problem with three constraints, one of which is the 
other slope and the other two 0' T and O'el.im • 

I. INTRODUCTION 

In the variational problem of extremizing the slope of 
the forward scattering amplitude of spinless particles the 
two constraints which have been used are the total cross 
section O'T and O'el.im' This last quantity is the contribution of 
the imaginary parts of the partial waves a l to the elastic cross 
section. Both of these constraints have the form of single 
series of al • Moreover, they are positive. There are not many 
quantities which can be expressed as a single series of a I only, 

which can be used as constraints of the type O'T and O'el,im • 

One such quantity, however, is the slope ofthe backward 
scattering. In this paper we have taken this as a third con
straint and applied the Lagrange multipliers method to ex
tremize the slope of the forward scattering amplitude. Alter
natively, if the forward slope is known the problem can be 
viewed as a bound for the slope of the backward amplitude. 
Because the new constraint has the form of an alternating 
series we have to introduce two types of ai's, even ones and 
the odd ones. The unitarity is imposed in the form of positivi
ness and boundedness on both at's. 

In Sec. II we define our constraints and with the help of 
the expressions found for at's by the application of the La
grange multipliers method and the unitarity, express them as 
functions of the parameters. Elimination of the Lagrange 
parameters makes it possible to express one of the four quan
tities as a function of the remaining three. We consider in this 
section the case a > 1, one of the possible values of a La
grange parameter (a > 1 or a < 1) which determines the be
havior of the imaginary parts of the partial waves. Calcula
tions are done both by summing the series and by integrals. 
The results are made consistent among themselves by con
sidering the inaccuracies introduced by the transition re
gions between the different summation domains. All formu
las thus reduce to the results of the two-constraint case. 

In Sec. III we consider the case a < 1 and derive the 
corresponding equations. Finally we discuss our results. 

II. BOUND WHEN a> 1 

We give the expressions for the following four quanti
ties in terms of the imaginary parts of the partial waves and 
define them as v, g, hand u. 

·'On leave from the Applied Mathematics Department, University of West -
ern Ontario, London, Ontario, Canada. 

h'Research supported in part by the National Research Council of Canada. 
"Equipe de Recherche Associee au C.N.R.S. 

dIm! I 1 V; -- = -2 -L!/(/+l)(2/+1)al=u,(I) 
dt Z= +1 2k k 

O'T = ~ L (2/ + l)a l g, (2) 
k 

O'el.im = :~ L (21 + l)a;=h, (3) 

dIm! I = ~ V; L!/(/+l)(2/+1) 
dt Z= -12k k 

X(-I)/+l al=V. (4) 

Three of these can be considered constraints to find a bound 
on the fourth one. With Lagrange multipliers a, P, and r we 
form 

u -ag- Ph-yv 

and differentiate with respect to a l • After redefining the pa
rameters, one finds 

aJ =a+r/(/+l)(-l)J+1 - PI (I + 1). (5) 

We introduce even and odd amplitudes 

a,+ =a-(P+r)/(/+l), 

a,_ =a-(P-r)/(/+l). 

The unitarity is imposed in the form 

O.o;;a l ± .0;;1; 

for a > 1 we have 

a, = 1 for 1< Lo, 

a, = 0 for I>L\, 

(6) 

(7) 

In between, aJ is given by Eqs. (6) and (7). Lo and LI will 
have different values for I = even and I = odd. We show 
them with L 0+ , L t for I even, and L 0- ,L 1- for I odd. They 
are given approximately by 

and 

Lo+(Lo+ +1)= a-I, Lt(Lt +1)= _a_(8) 
P+r P+r 

L 1- (L 1- + 1) = _a_ 
P-r 

(9) 

In Ref. 1, integrals over I were used instead of series, because 
of their simplicity and because the result does not differ 
much from the one obtained by series. But since the integral 
does not distinguish between even and odd I 's we have to use 
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series here, at least until the even and odd parts are 
separated. 

Aside from being longer, the series have their own prob
lems. Since in general the Lo and L )'s found from Eqs. (8) 
and (9) will not be integers, there are imprecisions intro
duced at the transition regions. Also, if one starts the sum
mation of the series in the second region with the integer 
which follows the last index in the previous region, instead of 
starting with the same index as one does with the integrals, 
the results become very complicated because the natural 
combinations of L 's as given by Eqs. (8) and (9) are not ob
tained and their replacement with the parameters becomes 
difficult. We therefore have started the series with the same 
integer as the index of the last term of the previous series. 
The inaccuracies so introduced can easily be traced by com
paring the end results with the two-constraint case and re
quiring that for y = 0 they reduce to the former ones. We 
have also repeated calculations with integrals after the even 
and odd parts of the series are separated. The calculations 
are terribly long, especially for the series. We therefore give 
only the results. We first define 

V~ u= -U= I 1(/+ 1)(2/+ l)a[ 
4k 3 [~even 

+ I 1(/+ 1)(2/+ l)a[, (10) 
[~ odd 

Lo+ Lu 

U = I I (l + 1 )(21 + 1) + I I (I + 1 )(21 + 1) 
[~ 1 

nm odd 
L' 

+ f I (I + 1 )(21 + 1) [a --. (/3 + y)1 (I + 1) ] 
Lot 

L, 

+ I 1(1 + 1)(21 + l)[a - (/3 - y)/(1 + 1)]. (11) 
L" 

After long calculations we find 

U = ~ /3 2 + r (3a2 _ 3a + 1) 
6 (/32 - r)2 

4 /3 - - (2a - 1) + 2. 
3 (/32 - r) (12) 

N ext we find g = (IT in terms of Lagrange parameters. We 
define 

k 2 

G = -g = I (21 + l)a[ + I (21 + l)a[, (13) 
41T even odd 

Ln' Lo 

G = I (21 + 1) + I (21 + 1) 
o 1 

even odd 

L,' 
+ I (21 + 1)[ a - (/3 - y)l (I + 1) ] 

even 

L, 

+ I (2/+1)[a-(/3-y)/(/+l)]. (14) 
L" 
odd 

Here the result is much simpler 

G = /3 (2a -1)-l. 
2(/32 - r) (15) 
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Next we find h = (Iel,im' We define 

H = ~h = I (21 + l)a7 + I (21 + l)a7-
41T even odd 

(16) 

Lo' Lu 

H = I (21 + 1) + I (21 + 1) 
o 1 

even odd 
L I' 

+ I(2/+1)[a-(/3+y)/(/+l)]2. 
Ln' 

even 
L, 

+ I (2/+1)[a-(/3-y)l(l+I)]2. (17) 

odd 

The result is 

H- 3a-2 /3 + !.a-2/3- ~. (18) 
- -3-/32_ r 3 3 

Finally we find v. We define 

4k 3 
V= --=v= I/(/+l)(2/+1)(-I)[+la[, (19) 

Vs 
L()' L 1) 

V = - I I (I + 1 )(21 + 1) + I 1 (l + 1 )(21 + 1) 
o 1 

even odd 
L, 

- I 1 (I + 1 )(21 + 1)[ a - (/3 + y)1 (l + 1) ] 

L, 

+ I 1 (I + 1 )(21 + 1) [a - (/3 - y)1 (I + 1) ] . 
L" 
odd 

(20) 

The result is 

V= ~ /3y (3a 2 -3a + 1) 
3 (/32 - r)2 

4 /3 (2a _ 1) - 2. 
3 (/32 - r) (21) 

Equations (12), (15), (18), and (21) are the results obtained 
with the series for the case a > l. After separating the series 
into the even and odd parts we also calculate the same quan
tities by integrating over I and find 

/3 
2 2 

u= +y (3a2-3a+l)-I, (22) 
6(/3 2 - rf 

G = /3 (2a - 1) - 1, (23) 
2(/3 2 - r) 

H = ~ /3 (3a - 2) - I, (24) 
3 (/32 - r) 

V = ~ /3y (3a 2 
- 3a + 1) -1. (25) 

6 (/32 - rf 
Equations (12), (15), (18) and (21) and (22), (23), (24), and 
(25) should be compared with the formulas for the two-con
straint case 

u= 3a
2 
-3a + 1 
6/32 

2a -1 
G=--, 

2/3 

2a -1 

3i3' 
u= 3a

2 
-3a + 1 
6/32 

2a -1 
G= ---, 

2/3 

I. A. Sakmar 

(26) 

(27) 
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3a-2 2a-l 
H = ----:;j3 + -3-' 

3a-2 
H= ---, 

3{3 
(28) 

V=o, V=o. 

Here the first set is obtained with series and the second set 
with integrals. Even though these equations also are not ex
act, one can see the additional inaccuracies introduced ( -1 
terms) by the separation of the even and odd amplitudes. 
These we eliminate by requiring that for y = 0 the three
constraint equations reduce to the two-constraint equations. 
The equations obtained from series are too complicated to 
eliminate the Lagrange parameters. We therefore use the 
results obtained with integrals. This set is 

1 {32+r 2 

u= 6 ({32-r)2 (3a -3a+l), (29) 

I 2 {3y 2 
V = 6 ({3 2 _ r)2 (3a - 3a + 1), (30) 

G= {3 (2a-I) (31) 
2({32 - r) , 

{3 
H = 3({32 _ r) (3a - 2). (32) 

Elimination of the Lagrange parameters leads to the relation 

u= J...(4G 2-6GH+3H 2) 
2 

+ J... 1 V2. 
2 4G 2 -6GH +3H 2 (33) 

For the case V = 0 we have only the first term, which is 
exactly Eq. (12) of Ref. 1 when we replace U, G, and H by 
their definitions (1), (2), and (3), together with (10), (13), and 
(16). In terms of physical quantities, Eq. (33) is equivalent to 

d InA I 1 [ T)2 6 T .-2] -- = -- 4(u - U U el im + 3 ifel im 
dt z ~ + 1 3211"uT 

" 

128r [ 1 ](dA I )2 
+ k 2sUT 4(UT

)2 -6uTuel ,im +3~I,im -;;t z~ -I ' 
(34) 

where A is the imaginary part of the amplitude. 

III. BOUND WHEN a < 1 

We now consider the case a < 1. In this case 

a,+ =a-({3+y)/(l+I) for I<Lt, (35) 

a, =a-({3-y)/(/+l) for l<L ,-. (36) 

L t and L I~~ are determined by setting both relations equal 
to 0 with the same considerations we discussed in Sec. II. We 
form 

L I· 

U = L l(l + 1)(21 + I)[a - ({3 + y)/(l + 1)] 

even 

L, 

+ L 1(1 + 1)(21 + l)[a - ({3 - y)/(1 + 1)]. 
,~ 1 

odd 

The result obtained by summing the series is 
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(37) 

L,' 

G= L (21 + l)[a - ({3+ y)/(l + 1)] 

even 

L, 

+ L (2/+I)[a-({3-y)/(/+l)]. 
,~ 1 

odd 

Summation of the series gives 

G = 1 {3 a 2 _ a. 
2 {32 - r 

Next we calculate H: 

L,' 

H = L (21 + l)[a - ({3 + y)/(1 + 1)]2 
,~O 

L, 

+ L (2/+ l)[a-({3-y)/(l+ l)f. 
,~ 1 

odd 

Again.the series gives 

H 1 {3 3 2 
= 3 {32 _ r a + t a - 2a {3. 

Finally V is given by 

L,' 
V = - L I (l + 1 )(21 + 1)[ a - ({3 + y)1 (I + 1) ] 

even 
L, 

(38a) 

(38b) 

(39) 

(40) 

(41) 

+ L 1(l+I)(2/+1)[a-({3-y)/(/+l)]. (42) 
,~ 1 

odd 

Summing the series we find 

v_I 2 {3y 3 4 y 2 

- 6 ({3 2 _ r)2 a - 3 {32 _ r a . (43) 

Next we calculate U, G, H, and V with integrals, after we 
separate the even and odd partial waves. The results are 

1 {32+r 3 

U = 6 ({3 2 _ r)2 a - a - ~({3 - y), (44) 

G 1 {3 2 
= - a -a+({3-y) 

2 {32-r ' (45) 

1 {3 
H = 3 {32 _ r a 3 

+ 2( {3 - y)[ a - H {3 - y) ], (46) 

1 2{3y 
V= - a 3 -a+ 4({3 ) 6 ({3 2 _ r)2 3 - Y , (47) 

These equations are still preliminary and contain the inaccu
racies discussed before. They should be compared with the 
two-constraint case results obtained both from the series and 
the integrals given below: 

1 a 3 1 a 2 1 a 3 

u= 6732- 373' u= 6732' (48) 

1 a 2 

G=--2 {3 , 

1 a 3 1 2 H= --+-a 
3 {3 3 ' 

1 a 2 

G=--2 {3 , 

1 a 3 

H=--. 
3{3 

I. A. Sakmar 

(49) 

(50) 
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The requirement that the three-constraint equations should 
reduce to the two-constraint equations for r = 0 gives the 
following sets: 

U =.l {32 + r a3 
6 uP - r)2 

1 {3 2 
- - a 

3 {32-r ' (51) 

1 {3 2 
G= - 2 .:2 a, 

2 /3 - r 
(52) 

V 2/3r 3 (54) 
= i 2 .:2 2 a . (/3 - r ) 

The set on the left is too complicated to eliminate the La
grange multipliers explicitly. But they give, in principle, a 
relation between U, G, H, and V to determine a lower bound. 
The second set can be solved explicitly and we find 

4 G 3 9 HV 2 

U= --+ --- (55) 
9 H 16 G 3 

When we replace the definitions of U, G, H, and V in this 
equation it is equivalent to 

d~ Iz~ +1 

= _1_ (U
T

)2 + 9(417Y ucl,im (dA I )2, (56) 
361r Uel,im 4k 2S (uTt dt z ~ - 1 

When the third constraint does not exist, this equation re-
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duces to the first term ofEq. (15) of Ref. 1, because (56) was 
derived from the simple second set (51), (52), (53), and (54), 
whereas Eq. (15) of Ref. 1 is derived from series. 

Our main results are Eqs. (34) and (56). Even though 
we have more precise results, the elimination of the La
grange parameters is complicated for them. The two equa
tions above can be used as bounds either for the forward or 
the backward slopes provided the other one is known. One 
possibility is to combine the global quantities like u T with the 
values of some constraint calculated from phase shifts and 
treat it as a parameter to check the consistency. As a bound 
for dInA / dt 1 z ~ + 1 (the way it is written, ucl,im cannot be 
replaced in Eq. (56) by the experimentally known quantity 
U el by using U el > ueI,im as was possible with two constraints 
only, because one of the uel,im 's is in the denominator, where
as the other is in the numerator. But if we consider Eq. (56) a 
bound for «dA / dt ) 1 z ~ _ 1 f, when the equation is solved 
for this, UeI,im can be replaced by U el ' because it appears only 
in the denominators. Now the value of «dA /dt) Iz= _I f as 
evaluated from phase shifts can be compared with the bound 
containing u T

, U el and (d InA / dt ) 1 z ~ + 1 . 
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Symmetries of the stationary Einstein-Maxwell field equations. VII. 
Charging transformations8

) 

William Kinnersley 
Department of Physics, Montana State University, Bozeman, Montana 59717 
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The group B of transformations which preserve asymptotic flatness is enlarged to include 
"charging", and other electromagnetic transformations. The new group B' can be applied to the 
Tomimatsu-Sato solution to produce an Einstein-Maxwell solution with nine free parameters. 

1. INTRODUCTION 

In paper II of this series, I we found the complete sym
metry group K' of the stationary axially-symmetric Ein
stein-Maxwell equations. We showed that K' has an infinite 
number of generators y<}), c~' l, 0"), r(k), each corresponding 
to a nonlinear transformation on an infinite set of potentials 
K(m,n), L ~m,n), M~m,n), N~";j"). Since that time we have devot
ed our attention mainly to the subgroup K = ! YAk) J which 
preserves vacuum. 

In III, we showed that some ofthe generators ofK could 
be "exponentiated", producing certain finite transforma
tions of the group, These transformations were applied to 
flat space to generate a series of new vacuum solutions, but 
unfortunately none of them were asymptotically flat. 

In IV, we found an infinite subgroup BCK oftransfor
mations which preserve asymptotic flatness. Although the 
exponentiation of the B transformations could not be done in 
general, we were able to do it in several particular cases, by 
making a simple choice for the initial metric. Thus, we used 
B to generate Kerr from Schwarzschild, and we also pro
duced a new five-parameter generalization of the {) = 2 To
mimatsu-Sato solution. 

In the present paper, we will return to consider the oth
er transformations of K' which do not preserve vacuum. 
These may be used to generate various electrified solutions. 
In particular, we will discuss a subgroup B' C K' which pre
serves asymptotic flatness, and show how it may be used to 
generate an electrovac generalization of Tomimatsu-Sato 
with nine arbitrary parameters. 

2. CHARGING TRANSFORMATIONS 

The action of the infinitesimal generators ofK' was giv
en originally in Eqs. (11.3.1)-(11.3.3) and Eq. (111.3.2). For 
example we had 

N(D,I) 
II 

N(D,2k - I) 
II 

M~D,I) 

N(2k - 2,1) N(2k - 2,2k - I) M~2k-2,1) 

p= 
II II 

L\D,I) L (D,2k - I) K(D,I) 
I 

L(k-I,I) 
I 

L (k-I,2k-l) 
I 

K(k-I,I) 

"'Supported by National Science Foundation Grants PHY76-12246 and 
PHY78-12294, 

(2.1) 

C~k) : K (m,n)_K (m.n) 

+ C.(k)X [M<;' + k -I.n) + 2i ~ K(m,s)Mif -s.n)] 

+ C(k)X [L }m.n+ k - I) _ 2i ~ L }m,s)K(k - s.n)], (2.2) 

o'k) : K(m.n)_K(m.n) + io'k)K(m + k.n) _ io'k)K(m.n + k) 

(2.3) 

with similar equations for the transformation of the other 
potentials. It is important to note that the ranges of summa
tion are s = 1, ... ,k - 1 in the second sum of Eq. (2.2), and 
s = 1, ... ,k in all the others. This means that K(D.n) and L <]i.n) 

do not ever occur in the transformations, and hence their 
values may be disregarded. 

However it is sometimes convenient to formally include 
them. For this purpose we choose to set all K (D.n) = L <]i.n) 

= 0 except for K(D,I) = !i. With this convention, the same 
transformation equations may be extended to hold for m = 0 
as well. The m = 0 equations then vanish identically, and 
their only function is to guarantee that the assigned values of 
K(D,n), L <]i,n) will remain unchanged. 

Exponentiation of crp 
Although the action of each generator encompases the 

entire infinite set of potentials, these exists in certain cases an 
"invariant subspace". That is, there will be a finite subset of 
potentials on which the action is closed. It is then possible for 
us to calculate a general expression for the exponentiation. 
This happens for n~) and C~k), and having done the first one 
in III, we now discuss the second. The transformation may 
be conveniently written in matrix form. Define the 
(3k - I)X(3k - 1) matrix 

M(D.k) 
I 

M(2k-2,k 
I 

K(D.k) 
(2.4) 
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(We have includedK(O,k ),L IO,k), to make the matrix square.) 
The infinitesimal transformation may be written 

dP =PAP+BP+PC, 
dA 

(2,5) 

where A, B, C are constant matrices. As we found in IV, the 
corresponding finite transformation is 

P_eBp [I - DP] - lee, (2.6) 

where 

D = L eAcAeAB dA. 

For k = 1, the matrices are 

A = ( 2~* ~ ), B = C~ ~ ) , 
C = (~ ~ ), D = (2~* ie~*)' 

and we find 

N\~,l)_..J - I [N\~")], 

where 

(2.7) 

(2.8) 

(2.9) 

..J = det[1 - DP] = 1 - 2ie"'Mf' ) - iee*N\~·'). 

(2.10) 

This is the Harrison transformation, already discussed sev
eral times elsewhere. 2 It is a charging transformation that 
maybe applied to any stationary solution. For example, it 
turns Schwarzschild into Reissner-Nordstrom. 

For k = 2, 

0 0 0 0 

0 0 0 0 0 

A= 0 0 0 0 0 

0 2ie* 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 

B= 0 0 0 

e* 0 0 

0 e'" 0 
(2.11 ) 

C=BI-

0 0 - icc'" 0 

0 iee* 0 0 0 

D= icc'" 0 0 0 0 

0 2ie* 0 0 0 

2k'" 0 0 0 0 

To simplify the result, we now assume that the initial metric 
is vacuum, with K (m,n) = L \m.n) = M \m,n) = O. We find 

M\o.,)_..J - I [eN\~·2) _ ie2e*(N\~"W\~,2) _ N\~·2W\~·l))], 
(2.12) 
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N\~·')-..J - I [N\~") - iee*(N\~·IW\II·2) _ N\~·2W\II·I»)], 

where 

..J = I - iee*(N\\·2) - N\~") + N\~·3») _ e2e*2(N\~·'W\~·3) 

- N\~·IW\~·3) + N\II·2W\~·3) _ N\~·2W\\·3) + N\\,IW\2
1
.2) 

- N\~·IW\\·2») + ie3e*3(N\~·IW\\.2W\~.3) + ... ) . 
(2.13) 

The last parenthesis, not written out, is det(N\,;,·n»). 
It is especially interesting to see what happens when the 

initial metric is flat space. Using the values of the potentials 
N\,;,·n) for flat space derived in previous papers, we find that 
ei' ) reduces to an electromagnetic gauge transformation 

Mlo")-const, 

while ei2) generates the static electrovac solution 

M\O,I)_ - 2iez..J - \ 

NI~")- - i..J - I, 

..J = I + 2ee*(p2 _ 2z2) + e2e*2p4. 

(2.14) 

(2.15) 

This solution is closely related to a twisting vacuum solution 
found earlier. It is the Bonnor transform l ofEq. (111.6.3). 

Higher eik )'s may also be exponentiated in this way, but 
the complexity rapidly increases with k, and the transforma
tions all lead to solutions which are not asymptotically flat. 

3. THE SUBGROUP B' 

We found in IV that the transformations 

{3 (k) _ ,,(k + 2) + ,jk) - (22 (II (3.1) 

preserve asymptotic flatness in the vacuum case. Further
more, the description of their action does not require the full 
set of potentials, but takes place instead on a smaller set 
which are certain linear combinations of the N~rr;t). We 
would now like to extend these· ideas to include electromag
netism. When applied to flat space, the infinitesimal trans
formations e~k ) produce weak electromagnetic fields. These 
are found to be 

elk) : CfJI - - ie(2r)kPk (cosO), 

eik): CfJ I -c(2r)k - IPk _ I (cosO). 

Therefore, the linear combinations 

b(k) = eik + I) _ ielk) , 

(3.2) 

(3.3) 

produce no electromagnetic field. They leave flat space in
variant; hence they will be transformations which preserve 
asymptotic flatness. 

To clarify the meaning of this assertion, we consider the 
case k = O. 

b (0) = ei' ) - ielO) (3.4) 

As we have seen, the first term ei' ) is the Harrison transfor
mation. But eil) by itself does not preserve asymptotic flat
ness in the present sense. In the flat regions it produces a 
gauge transformation on the potentials [Eq. (2.14)]. To 
maintain asymptotic flatness, with all the potentials at their 
flat space values, we must undo the gauge transformation. 
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This is accomplished by the second tenn - ic\O), which in
sures that M \0, 1)-0 at spatial infinity. 

To form a closed subgroup, we need to include also the 
d k ). These are some sort of generalized duality rotations, 
and also have no effect on flat space. From Eq. (11.3.4), the 
commutation relations of the subgroup B' = {/3 (k), b (k >, 
a(k)J ,are 

[/3 (k >, b (I)] = ib (k + I + I), 

[d k ), b (/)] = - ib (k+ I), (3.5) 
[b *(k), b (I)] = 2i/3(k + 1- I) - 6ia(k + /), 

[/3(k),/3(1)] = [/3 (k), d/)] = [ark), d/)] = O. 

To describe their action we define a "reduced hierar,;, 

chy" of potentials 

N 
- N(m.n) _ 'N(m - l.n) + iN(m.n - I) + N(m - l,n - I) mn - II I 21 12 22 , 

M = M(m,n) _ iM(m - I,n) 
mn 1 2' 

L = L (m.n) + iL (m,n - I) (3.6) 
mn t 2' 

and for m = 0, 

Non = N\~,n) + iN\~n - I), 

Man = M\O,n), (3.7) 

Lon = KOn = O. 

(Nmn is what we previously called P mn in paper IV). 
The infinitesimal transformations are 

(3.8) 

(3.9) 

Mmn-Mmn + (4bKm+k,n) + bNm,n+k +2ib* IMmsMk+l-s,n -2ib INmsKk+l-s,n' 

Here the various sums run from s = 1 up to s = k + 2 and 
s = k + 1 respectively in Eq. (3.8), up tos = k + 1 ands = k 
in Eq. (3.9), and up to s = k in Eq. (3.10). The terms in 
parentheses are absent when m = O. 

All of these transformations can be written in the same 
form as Eq. (2.5), where P is now the infinite matrix 

NOI N02 Mal M02 

Nil NI2 Mil MI2 

P= 
LOI L02 KOI K02 

(3.11 ) 

LII LI2 KII KI2 
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(3.10) 

I 
However the transformations making up B' do not have ~ny 
invariant subspaces. We have not found a general way to 
exponentiate them, and we must therefore turn again to a 
discussion of special cases. 

4. THE T-S FAMILY 

As we already pointed out in IV, the potentials for the 
{j = 2 Tomimatsu-Sato (T "':S) solution recur beyond 
m,n = 2. This feature permits us to replace P by a finite ma
trix and thus perform the necessary integration. Application 
ofB' to T-S then leads to a multiparameter family of related 
metrics. 

For nonrotating T-S, we had the potentials 

NOI = 4ix(x + 1) - 2, N02 = - 8iy(x + 1) - 2, 

Wimam Kinnersley 2233 



                                                                                                                                    

Nil = 16ixy(x+ 1)-2, N21 = -16i(x2+y2)(x+1)-2, 
(4.1) 

NI2 = 16i(x + 1) - I(X 2 - 1) - I(X3 + x 2 + y2 _ 3xy2), 

N22 = - 64iy(x + 1) - I(X2 - 1) - I(X _ y2), 

and the recursion relations 

NO.2, +" = 4'Non , n = 1,2, 
N2k + m.2' + n = 4k + 'Nmn , m,n = 1,2. 

(4.2) 

The relations ofEq. (4.2) were shown in IV to be preserved 
under (3 (k) transformations. Postulating similar relations for 
K m " , Lmn, and Mmn one can show that they are preserved 
under the entire group B'. Thus we are left to deal this time 
with a 5 X 5 matrix: 

0 NOI N02 MOl M02 

0 Ntl NI2 Mil MI2 

P= 0 N zt N22 M21 M22 

0 LII LI2 KII Kt2 

0 L21 L22 K21 K22 
(4.3) 

(The extra column of zeros has been added for convenience, 
to once more make the matrix square). 

As in the vacuum case, Eqs. (4.2) induce a recurrence 
among the transformations themselves. We find 

0 4a3 ao 
4a3 a z at 

(3 (2p) = 4P(1 - p)(3(O) + 4P-I(p)(3(2), 

(3(Zp + I) = 4P(1 - p)(3(1) + 4P - l(p)(3{3), (4.4) 

and similarly for b (k), (Jk). All we are left with is (3 (k), b (k ), 

a(k), k = 0, ... ,3. These generate a 16-parameter Lie group. 
(Recall b is complex.) However, even this reduced group is 
not completely effective in generating new solutions, because 
its action is not simply transitive on the space in question 
(the parameter-space of the solutions). Each solution in the 
family is invariant under a "little group", which turns out to 
have eight parameters. (For T -S itself, the little group con
sists of d°I, ... ,a(J) and the combinations b (0) = - 4b (Z) and 
b (I) = - 4b (3).) Thus there remain eight effective degrees of 
freedom. When the mass is counted as another parameter, 
and the unphysical NUT parameter discarded, we expect to 
be able to generate an eight-parameter asymptotically flat 
Einstein-Maxwell solution. 

For purposes of actual calculation, the simplest trans
formations to use are the combinations 

a o = (3 (0) + 4(3 (2), a I = (3 (I) + 8(3 (31, 

a z = (3 (0) + 8(3 (2), a
J 

= (3 (1) + 4(3 (3), 
(4.5) 

with similar replacements b (n)~n and a(n)-+sn. The action 
is 

dP 
- =PAP+BP+PC, 
dJe 

where 

- 2iao - 2ia3 
- 2ia t !i(ao - a2) 

(4.6) 

A= a o at !Caz - a o) 1i(ao - a2) !i(a3 - al ) (4.7) 

2iao * 2ia l * !i(a2 * - ao *) - 2(a2 + S3) - !(4a 1 + Sz - so) 

2ia 3 * !i(a2 * - ao *) V(al * - a3 *) - !(4a1 + S2 - so) !(ao -az +S3 -SI 

0 0 0 0 0 

0 8ia 3 2iao 400 4a3 

B= 0 8iao 8ia3 160 3 400 

0 ao* a * 3 i(4a3 + so) i(ao +S3) 

0 403 * ao* i(4ao + S3) i(4a3 + so) 

and C=Bt. 
The finite transformation is given by Eqs. (2.6) and 

(2.7). Even though the various transformations do not com
mute, we may ignore this fact in the integration. We may 
integrate using an arbitrary constant linear combination of 
the eight effective transformations. 3 However, for the sake of 
simplicity, we will not consider the general case. The vacu
um subgroup has been studied in IV. The ao is the Harrison 
transformation, and a I , a2 belong to the little group, so we 
consider only the remaining parameter a3 • 

Assuming that the initial solution is vacuum (but not 
necessarily nonrotating) we calculate 

NOI-+~ -I cosha [N01 - -h, i(Nol N12 - N02 N II )], 

MOI-+!~ -I sinha[N02 - -h,i(NoIN22 -N02 N 21 )], 

where 
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(4.9) 

I 
~ = 1 - ! i(cosha - I)Nol + -h, isinh2a(N21 - Nlz}' 

- nsinh2a(cosha-l)(NoINI2 -N02NII)' 

+ 2h sinh4a(N2lNI2 - N ll N 22 ), 

a = 403 • 

Using the T -S potentials listed in Eq. (4.1), we find 

No 
- 2i y sinha 

01-+ , 
(x cosha + 1)2 _ y2 sinh2a 

M 
4ix cosha 

01-+ , 
(x cosha + 1)2 _ y2 sinh2a 

'fj' = iNol + 1 
(x cosha - 1 f - y2 sinh2a 

(x cosha + 1)2 _ y2 sinh2a ' 

William Kinnersley 
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(4.10) 

(4.11 ) 
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/=?fl+¢)(p. x COS a-y sm a- . 
(

2 h2 2' h2 1)2 

(X cosha + 1)2 _ y2 sinh2a 

This is the Bonnor solution4 for a massive nonrotating mag
netic dipole. Using the potentials for the rotating T -S metric 
in Eqs. (4.9) and (4.10) will produce a new rotating general
ization of this solution. 

As shown in V, the Bonnor transformation is a discrete 
automorphism of our continuous group K. Its action on the 
group is closely mirrored in its action on the families of solu
tions we can produce. Thus, the Bonnor transform of Eq. 
(4.11) is the Kerr metric. In other words, a3 applied to the 
o = 2 T -S solution is the Bonnor transform of /3 (0) applied to 
the 0 = 1 (5chwarzschild) solution. This type of relation ap
pears to hold in general between T -5 solutions for any values 
of 0 and 20. 

The other metric we would like to use as an example for 
application ofB' is the Schwarzschild metric. Unfortunate
ly, so far we have not been able to find any simple set of 
recursion relations for the Schwarzschild potentials which 
would be preserved by all ofB'. Without this step accom
plished, neither the group action nor the matrix P can be 
made finite-dimensional. The remarks in the preceding para
graph tend to explain our difficulty. At least some of the 
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charged solutions which B' would generate from 5chwarzs
child are not expected to be simple. They would be Bonnor 
transforms of those rotating vacuum solutions which B 
would generate for 0 = 1. The T -5 solutions for noninteger 0 
are known to involve unfamiliar transcendental functions 
rather than polynomials. s We expect that the full group B' 
can be used without such difficulty whenever 0 is even. 
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It is shown that for any principal bundle over a Riemannian symmetric space G /Go which admits 
G as automorphism group, the canonical G-invariant connection satisfies the source free gauge 
field equations. Extending this to product manifolds V X G /Go and assuming the metric and 
gauge fields decompose in a natural way, this result is still valid and the Einstein equations with 
gauge fields as source may also be satisfied. For G /Go' this is so automatically, but with a 
cosmological term present. For dimV = lor 2, solutions are found, yielding metrics of the 
Robertson-Walker and Reissner-Nordstrom type. 

1. INTRODUCTION 

Nowakowski and Trautman l
,2 have shown that certain 

natural geometric structures give rise automatically to solu
tions of the source free gauge field equations. Specifically, if 
fl is the curvature of the canonical connections on a Stiefel 
bundle Vn,q (F)-+G n,q (F) then 

D*fl=O, (1) 

where the Hodge operation is taken with respect to the ca
nonical metric, Here F denotes the real numbers R, the com
plex numbers C, or the quatemions H, 

Vn,q(F) = Un(F)/Un_q(F) 

and 

Gn,q(F) = Un (F)lUn _q(F)X Uq(F) 

are the Steifel and Grassmann manifolds, with Un (F) 
= SO(n), U(n), or Sp(n) corresponding to F = R, C, or H, 

respectively. 
Since the Gp,q (F) are all particular types of Riemannian 

symmetric spaces, it is natural to inquire whether this result 
may be generalized, In Sec. II it will be shown that this is 
indeed the case. 

If G /Go is a Riemannian symmetric space, with G the 
full group of isometries, then the curvature of the canonical 
G-invariant connection on the Go-bundle G--G /Go always 
satisfies (1). It follows that if Go decomposes as 
Go = G 1 X G2, the induced canonical connection on the bun
dle G /G1-G /G1 X G2 obtained by projection also satisfies 
(1), In fact, on any G-homogeneous principal bundle 
E __ G /Go there is a canonical G-invariant connection which 
we show satisfies (1). 

"'Permanent address: Institute of Theoretical Phyics, Warsaw University, 
Hoza 69, Warsaw, Poland. 

"'Research supported in part by the National Sciences and Engineering 
Council of Canada and Ie Ministere de I'Education du Gouvernement du 
Quebec. 

More generally, we may consider a manifold which de
composes as a product V X G /Go with G acting only the sec
ond factor. Assume the metric has the form 

(2) 

whereg v is a metric on V,gM a G-invariant metric on G /Go, 
andfa scalar function on V. Such a decomposition of the 
metric will always hold if g is G-invariant and G /Go an irre
ducible Riemannian symmetric space, as will be shown in 
Sec. II. The connection on the bundle V XE--V X G /Goob
tained by pulling back the canonical connection form on E 
still satisfies (1) for such a metric, the dependence on direc
tions along V arising only in the metric and not in the gauge 
fields. 

One may next inquire whether gv andfin (2) may be 
determined as solutions to the Einstein equations 

R/1" - ~Rgllv = T/1v + Ag11v , (3) 
with the energy-momentum tensor T/1v of the canonical 
gauge field as source. 

For a metric of the form (2), the Ricci tensor R/1v and 
the energy-momentum tensor T/1v of the canonical gauge 
field also split into block diagonal form. If G is semisimple 
andgM is (up to a constant) the metric on G /Gocorrespond
ing to the Killing form on G, then the G /Go block for both 
R/1" and T/1v is a proportional togM • Therefore, if Vreduces 
to a point, Eqs. (3) are automatically satisfied for suitable 
choice of the cosmological constant A. For a product 
V X G /Go, Eq. (3)withA = Omaybesolved to determine the 
metric. 

This is done in Sec. 3 for the case dim V = 1 or 2, the 
resulting metrics being of the Robertson-Walker or 
Reissner-Nordstrom type, respectively. In low dimensions, 
the number of inequivalent Riemannian symmetric spaces is 
very small because of the degeneracies between the different 
types of low dimensional Lie algebras. The cases with dim V 
+ dimG /Go = 4 are given in Sec. 4, as well as some dicus-

sion of the applicability of the results for higher dimensional 
spaces to space-time. 
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2. CANONICAL CONNECTIONS AND GAUGE FIELD 
EQUATIONS 

For our purposes, a Riemannian symmetric space 
(RSS) will be taken to mean a Riemannian manifold M with 
a transitive group of isometries G such that, identifying M 
with GIGo, the Lie algebra g of G admits a symmetric 
decomposition 

g=go+JI, 

[go,go) ego, AdGoJI C JI, [JI ,JI) ego, 

(4) 

(5) 

where go is the Lie algebra of the isotropy subgroup Go at an 
arbitrarily chosen origin 0 and JI is an AdGo invariant sub
space complimentary to go in g. The space JI may be identi
fied in a standard way3 with the tangent space TMo. Through 
this identification, the metric on M determines an AdGo in
variant inner product on JI and conversely, any such inner 
product determines a G-invariant metric. All the results of 
the present section are equally valid for indefinite metrics, 
but we shall mainly be interested in the positive definite case. 

Regarding the projection G-G I Go as defining a princi
pal Go-bundle over M, the canonical connection form lUo is 
defined3 as the go part in the decomposition of the left-invar
iant Maurer-Cartan form on G. 

lU MC = g-Idg = lUo + lUI' (6) 

where the complement lU I has values in JI. Given any AdGo 
invariant inner product K on JI, the corresponding G-invar
iant metric gM on M may be defined by 

gM(X,y) = K (0 (X),O(Y), x,YETMp , (7) 

where 0 = <T*lU l is the pull-back of lUI' under any local sec
tion <T:Np -G defined in a neighborhood Np of pEG IGo. The 
expression is independent of the choice of <T because K is 
AdGo invariant. Expressing 0 relative to a basis! Ti J in JI as 

n 

0= 2: OTi , (8) 
i= I 

defines a left-invariant co-frame! 0 iJ. Provided AdGo re
stricted to JI has positive determinant, this determines a <T
independent orientation on GIGo and hence with the metric, 
a globally defined left-invariant volume formA. More gener
ally, ifG IGo is orientable, the sections <Tmay always be cho
sen so that for the transition functions this determinant is 
positive. If M is not orientable, it is always possible to replace 
it with an orientable G-homogenous covering space by re
placing Go by its connected component. Alternatively, A can 
be regarded as defined only up to a sign. The metric and 
volume define, in standard way, the Hodge star * dual. If M 
is nonorientable this must also be regarded as defined only 
up to a sign. 

Denoting by lU" = <T*lUo the pull-back of the canonical 
connection and 

{} " = dlU" + 1 [lU",lU"J , 

the pull-back of its curvature, we have the following 
theorem. 

Theorem 1: 

D*{}"=d*{}"+ [lU,*{}"] =0, 

(9) 

(to) 

where *fl" denotes the dual under any G-invariant metric 
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gM on GIGo· 
Proof Because of the Maurer-Cartan structure equa

tions and Eq. (5), we have 

fl" = - HO,O], (11) 

and 

DO = dO + [lU",O] = O. (12) 

From (11), we have, 

*{}" = 9(0, ... ,0) 

n -2 terms, (13) 

where 9 is an alternating multilinear map 

9:A m -2J1_go, 

which is adgo invariant because of the AdGo invariance of K: 
m -2 

[A,9(A I , .. .A n _ 2 »)= 2: 9(A I , .. ·,[A,Aj)'''.A n _ 2 ) , 

j~l 

VAEgo, A 1,..A n _ 2 EJ1. (14) 

This map may be expressed explicitly in tensor index nota
tion as 

9(Ti, ... Ti" ) = - 4(m -2)! TJY,' .. im 2 ftTk , (15) 

where TJ denotes the Levi-Civita tensor on JI with respect to 
the metric K, with raised indices obtained by contraction 
with K ij = (K -I)ij andfZ the structure constants in 

[T;.1J) =fZTk . (16) 

The AdGo invariance (14) follows from the fact that AdGo 
acts on JI by orthogonal transformations preserving the 
metric K. Using the fact that d is a derivation and (14), we 
have 

n -2 

= L (- 1)j+ I 9(0, ... DO ... 0) = 0 Q.E.D. 
j~ I jth term 

Now consider the more general case of any principal H
bundle rr:E_G IGo admitting a left G-action which com
mutes with the right H-action and projects to the standard 
left action on the base. Such bundles are completely charac
terized4

.
5 by the homomorphism qJ:Go-H defined by 

g'q = qqJ (go), goEGo, (17) 

where q is an arbitrarily chosen point qErr-I(O) and may be 
identified up to an isomorphism, with the bundle E", defined 
by factoring the trivial Hbundle G xH-G by the equiv
alence relation 

(g,h ) - (ggo,qJ (go- I)h ), 

gEG, hER, goEGo. 

(18) 

For each such bundle there is a canonical connection defined 
by the form 

lU", I [(g.h) I = Ad h -lqJ. olUol g + h -I dh, (19) 

where [(g,h)] is the point in E", determined by the equiv
alence class of (g,h ), qJ. :go-I) is the differential qJ at (TGo)' 
which defines a homomorphism to I), the Lie algebra of H. 
Although lUo is a form on G and h -I dh the Maurer-Cartan 
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form on H, the left and right translation properties of (uo 

imply the definition (19) of (uo passes to the quotient of G X H 
by (I 8) giving a well-defined G-invariant connection form on 
E", (see Ref. 5). Any local section a:Np_G corresponds 
uniquely to a section u:Np_E", defined by 
ii(p) = [(a(p),e)], under which the pull-back of (U", is 

_. CF 

a (U", = q;. 0(U • (20) 

Since q;. :go-9 is a homomorphism, Theorem 1 implies the 
following. 

Corollary 1: 

D*n; =0, (21) 

where n; = u'n", = q;. on CF is the pull-back of the 
curvature 

As discussed in the introduction by identifying G, Go, 
and Has Un.q(F), Un _ q(F)X Uq(F), and Uq(F), respec
tively, with the obvious homomorphism 

q;:Un _ q(F)X Uq(F)---+Uq(F), 

we recover the canonical connection on the Stiefel bundle 
and Corollary 1 becomes the Nowakowski-Trautman 
result.2 

Now consider a product manifold V X G /Go with met
ric g of the form (2). A sufficient condition implying such a 
decomposition of the metric is that g be G-invariant and 
G /Go an irreducible RSS. To see this, note that the general 
form of a G-invariant metric is obtained by solving the linear 
algebraic condition implied by invariance under the isotropy 
group Go along the cross section l:(v) = (v, eGo), veVand 
then determining g at an arbitrary point (v,bGo), beG by the 
invariance relation 

g (b l:(v» = (b -l)*g (l:(v» . (23) 

Expressing the tensor components of g in a co-frame of the 

type l,p a,() iJ, where l,p aJa ~ t •... dim V is a co-frame for V, as 

the linear isotropy conditions read 

RB = B, RDR T = 0, 

(24) 

(25) 

where R is the m Xm Jacobian matrix for goeGo at (TM)o 
defined by 

m 

Adgo(TJ = L Rji~' 
j~l 

Because of the AdGo invariance of K, R is (pseudo)
orthogonal 

RKRT=K, 

(26) 

(27) 

where K is the matrix representing K in the [ Ti I basis. Since 
(25) must hold for all goeGo, if AdGo restricted to J/ is irre
ducible, we must haveB = O,D 0:: Kleading to the expression 
(2) for the metric. This argument is actually valid for any 
reductive homogeneous space G /Go with a G-invariant met
ric (in fact, a G-invariant metric can only exist if G /Go is 
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reductive). But if G /Go is an irreducible RSS then AdGo 
restricted to J/ is necessarily irreducible3 and (2) is the most 
general form for a G-invariant metric on V X G /Go. 

Now denote by the symbols ;;J""ii", the canonical con
nection and curvature forms on V X E", - V X G / Go defined 
by pulling back (U", and n", from E", under the projection 
V X E", -E",. If i'i: V X Np _ V X E", is the section defined by 

ij(v,p) = (v,O(p», 

and ii ; =i'i* ii", ' we have 

*n; =/mAu Aq;.of!)J«(}, ... (}) , 

(28) 

(29) 

where Au is the volume form on V corresponding to the 
metric gu. Since/is a function on Vonly, it follows that: 

Corol/ary 2: Equation (21) is still valid if ii; is substi
tuted for n; and the dual* is taken with respect to the met
ric (2). 

3. EINSTEIN EQUATIONS 

Denoting by F,.,v the tensor components of the gauge 
field, referred to a local frame, the energy-momentum ten
sor is of the form 

T,.,v = k (Fj1.CF' FVT)~T - ~j1.vh (FKCF.F).T)g').gCFT , (30) 

where k is an AdH invariant form on 9. We shall henceforth 
specialize to the case where the manifold V XG /Gowithmet
ric (2), the bundle is V XE",-V X G /Go' Gis semisimple, 
gM is, up to a sign, the G-invariant metric corresponding to 
the restriction of the Killing form on G to J/ and the pull
back q;* k to go is proportional to the restriction of the Killing 
form to go' Choosing a co-frame {,p a,(} iJ where 
l,p ila ~ t •... dim v is any co-frame on V, the metric (2) takes the 
form 

(31) 

where kij is the restriction of the Killing form to J/ ex
pressed relative to the basis I Ti ] and E = ± 1. Taking the 
gauge field to be n; , the energy-momentum tensor T is of 
the form 

Km h A. aA. b m - 4 k () i(}j (32) 
T= 8/4 ab'l' 'I' +K--s.f2 ij , 

where K is a constant, while the Ricci tensor &i also has the 
block-diagonal form 

!?Ii = R ab (} a(} b + pkij (} i(}j , 

where 

VaVb/ 
Rab =rab -m--/-, 

and 

(33) 

(34) 

(35) 

Va being covariant differentiaion on V with respect to the 
Levi-Civita connection for hab and rab the corresponding 
Ricci tensor. It follows that if dim V = 0, T and !?Ii are pro-
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portional to g and therefore Eq. (3) is satisfied with 

1 = I, A = : [ I - ;]. (36) 

In general, setting A = 0, the Einstein equations 
become 

m 
rab -~rhab - IVaVbl+hab 

[~V V'i m(m -I) V IV'i + mE] + 1 c 2/2 c 4/2 

= Km h (37) 
8/4 ab' 

_ lr + m - 1 V V'i+ (m - I)(m - 2) V IV'i 
2 / c 2/2 c 

E(m -2) K(m -4) 
+ 4/2 = 8/4 ' 

(38) 

where r = rab h ab . 
Provided Val =/= 0, the second of these is implied by the 

first in view of the contracted Bianchi identities and covar
iant conservation of energy-momentum. 

If dim V = 1, we may use Gaussian coordinates, in 
which the metric is 

g = dt 2 + E/2(t )kij{} i{}i . 

Solving Eqs. (37) and (38) gives 
2 

Ef2(t) _ ~ _ __t __ 
- 2 2(m -I) , 

(39) 

(40) 

where the integration constant is absorbed into the definition 
of t. Note that m = 1 is excluded by the assumption that Gis 
semisimple. 

If dim V = 2 and Val =/= 0, we may choose coordinates in 
which the metric is ofthe form 

g=Fdt2-Gd~+ G~ kij{}i{}i. (41) 
2(m -I) 

Solving Eq. (37), we get 

F=~=I+~- 2M 
G ~ 7"'-1' 

where 

{

(m _1)2 

A = 3-m 

-4K Inr 

for m=/=3 

for m = 3 

and m is an integration constant. If Val = 0, Eq. (37) 
implies 

(42) 

E/2 = K/2, (43) 

and the solution to Eq. (38), which now defines the scalar 
curvature on Vas 

r= 2/K, (44) 

is 

(45) 

or 

F= 1!G=~/K, 

unique up to a change of coordinates. 
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4. EXAMPLES AND DISCUSSION 

Up to factorization by discrete groups, the compact, 
irreducible RSS' are6

: the Grassmann manifolds (over R, C, 
and H); the compact simple Lie groups, the quotient spaces 
SU(2n)/Sp(n), SU(n)/SO(n), Sp(n)!U(n) (for n>3), and 
SO(2n)!U(n) (for n>4); and the quotients ofthe compact 
expectional groups by their maximal subgroups. To each of 
these, there corresponds a noncom pact analogue obtained 
by analytic continuation. An arbitrary RSS may be decom
posed canonically into products involving the above types 
together with R n. However, the irreducible RSS of dim..;4 
are, up to discrete identifications, isomorphic to the Grass
mann manifolds SU(2)!u(I), SO(4)/SO(3), 
SU(3)/S(U1 X U2), SO(5)/SO(4), or their noncompact ana
logue SU(I,I)!U(I), SOo(3,1)/SO(3), SU(2,1)/S(U1 X U2), 

and SOo(4,1)/SO(4). For these, the canonical connection 
and metric have been discussed in Ref. 4, therefore we shall 
only discuss the interpretation in the present context. 

For dimV = 0, m = 4, the spaces SO(5)/SO(4) and 
SOo(4,I)/SO(4) are respectively the sphere and pseudos
phere with canonical SO(5) and SO( 4,1) invariant metric. 
The bundle may be identified with that of orthonormal 
frames and the gauge field with the Riemannian curvature 
for the Levi-Civita connection. In terms of gauge fields, with 
the identification SO( 4) - SU(2) X SU(2), this is the (unique) 
SO(5) invariant instanton plus anti-instanton configuration 7 

or its analytic continuation. The space SU(3)/S(U1 X U2) is 
CP 2 with Fubini-Study metric. This and the gauge field for 
the canonical connection is given explicitly in Ref. 2. The 
corresponding quantities on the noncompact analogue 
SU(2, 1)/S(U2 X U1) may be obtained by analytic 
continuation. 

For dim V = 1, m = 3, the orbits are again either the 
sphere SO(4)/SO(3) or pseudosphere SO(3, 1)/SO(3). The 
metric (39) becomes precisely the Robertson-Walker me
trics for the closed (E = ± 1) or open (E = -1) universefor 
the compact and noncompact cases, respectively. For a posi
tive energy density, we must haveK > O. The expression (40) 
is the same as for a universe filled with electromagnetic radi
ation, but the interpretation is different, since the source is a 
non-Abelian gauge field. If, for the compact case the bundle 
is identified instead as 

R XSU(2)XSU(2)--R X SU(2) X SU(2)/SU(2).:1 , 

where SU(2).:1 is the diagonal subgroup, and the base is also 
identified as R X SU(2), then under the obvious choice of 
section a:g-(g,e) we obtain 

wherewMc is the Maurer-Cartan form on SU(2). This is just 
the "meron" solutionS expressed in a curved space which is, 
however, conformal to Minkowski space. The noncompact 
analog is R X SI(2,C )-R X SI(2,C )/SU(2) for which the 
gauge field is obtained by analytic continuation of (46). 

A higher dimensional generalization of this example is 
obtained by replacing SU(2) by any compact, semisimple Lie 
group. The resulting gauge field, still given by (46) satisfies 
the source free field equations with respect to the Killing 
metric and may be interpreted as a higher dimensional ana
logue of the meron. 
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FordimV = 2, m = 2, the manifold is V XSU(2)1U(1) 
or V xSU(l,l)/U(1). For the first, with € = +1, Eq~ .. (31) 
and (32) define the Reissner-Nordstrom metric, where 
again K> 0 for positive energy. However, the exterior field 
must be interpreted as that of a magnetic monopole, sym
metric about r = O. For the noncompact case, we have 
€ = -1, K < 0 and we must reinterpret the r as a timelike 
coordinate (for r sufficiently large) and t a spacelike one. The 
gauge field and metricgM is obtained again by analytic con
tinuation. The case with constantJ, given by Eqs. (43)-(45) 
gives the Bertotti-Robinson9 metric as its analytic 
continuation. 

Finally, a word about the relevance of the higher di
mensional cases to solutions offield equations in space-time. 
It has been shown in Refs. 1 and 2 that a class of immersions 
CP l_Cp m pull back the canonical connection on the Hopf 
bundle over cpn to yield magnetic monopole solutions of 
strength n. The Einstein equations on V X CP 1 (dim V = 2) 
will also be satisfied provided the contsant K defining the 
energy-momentum tensor is suitably redefined. These im
mersions have a natural group theoretic interpretation in 
terms of irreducible representations SU(2}--+SU(n) suggest
ing that other immersions exist, determined by group homo
morphisms, which also pull back the canonical connections 
on higher dimensional spaces to yield new solutions of the 
field equations on space-time. An alternative approach in
volves dimensional reduction5

.
10 whereby the submersion of 
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a higher dimensional manifold defined through a group ac
tion preserving the connection and metric projects solutions 
of the source free gauge field equations to solutions of the 
coupled gauge and Higgs scalar fields equations on the mani
fold of group orbits. These approaches will be further devel
oped elsewhere. 

ACKNOWLEDGMENT 

The authors would like to thank Prof. A. Trautman for 
helpful discussions relating to this work. 

'A. Trautman, Int. J. Theor. Phys. 16,561 (1977). 
2J. Nowakowski and A. Trautman, J. Math. Phys. 19, 1100 (1978). 
's. Kobayashi and K. Nomizu, Foundations of Differential Geometry 
(Interscience, New York, 1963), Vol. 1. 

4G. Bredon, Introduction to Compact Transformation Groups (Academic, 
New York, 1972), Chap. 2. 

'J. Hamad, S. Shnider, and L. Vinet, "Group Actions on Principal Bundles 
and Invariance Conditions for Gauge Fields," preprint CRMA-899 
(1979). 

"S. Helgason, Differential Geometry and Symmetric Spaces (Academic, 
New York, 1962). 

'R. Jackiw and C. Rebbi, Phys. Rev. D. 14, 517 (1976). 
"V. de Alfaro, S. Fubini, and G. Furian, Phys. Lett. B 65,163 (1976); Phys. 
Lett. B 72, 203 (1977). 

"C. Misner, K. Thorne, and J. Wheeler, Gravitation (Freeman, San Fran
cisco, 1973), p. 845. 

,oJ. Hamad, S. Shnider, and J. Tafel, "Group Actions on Principal Bundles 
and Dimensional Reduction," preprint CRMA-918 (1979). 

J. Harnad, J. Tafel, and S. Shnider 2240 



                                                                                                                                    

On a new solution of Einstein's equationsa
) 

c. Hoenselaers b 

Department of Physics, Montana State University, Bozeman, Montana 59717 

(Received 27 June 1979; accepted for publication 28 September 1979) 

An analysis of a stationary axisymmetric solution of Einstein's equations recently derived by 
Hoenselaers, Kinnersley, and Xanthopou10s is given. We derive the metric of the full 
space-time, the invariants of the Weyl tensor, the first few multipole moments, and discuss the 
stationary limit surfaces and the axis. 

1. INTRODUCTION 

The method for dealing with the symmetries of the sta
tionary axisymmetric Einstein-Maxwell equations original
ly devised by Kinnersley and Chitre has proven very power
ful in the otherwise rather tedious search for new solutions. 
RecentlyI.2 we were able to publish several new stationary 
axisymmetric solutions of the vacuum Einstein equations. In 
this paper we shall analyze the new solution of Ref. 1. For 
details of its derivation the reader is referred to Ref. 2 and the 
papers cited therein. 

2. THE SOLUTION 

The solution in which we shall be interested is given in 
polar coordinates r = (p2 + Z2)112, tantt = zip, wherep and 
z are Weyl canonical coordinates by the Ernst potential 

5 = (Jla, 

a = r4 
- b 2 (1 - cos4tt ) 

+ i[2br(cos2tt - sin2tt) - a?costt ], 

(J = a? - 2brcostt - 2ib 2sin2tJcostt . 

The full four-dimensional metric is 

ds2 = ~ [e2Y(dr + rd{) 2) + r sin2ttd~2] 
f 
-f(dt-wd~)2, 

and the various expressions are: 

(2.la) 

(2.1b) 

(2.2a) 

J=AIB, e2Y =Alr8
, W= -2sin2tJ(CIA), 

A = aa* - (J(J * = r8 - a2r6sin2tt 

+ 8abr sin2tt costJ 

+ 2b 2r4 siil2tt (9 sin2 tt - 8) 

+ b 4sin8tJ, (2.2b) 

B = 1 a + (J 12 = [r4 + ar3 
- 2brcostt - b 2(1 - cos4tt) J2 

+ [a? cost1 - 2br(cos2tt - sin2tt) 

(2.2c) 

C = ,7a2 
- rO(6ab costt _ a3) 

- r(2b 2(1 - 5 cos2tJ) + 8a2b costt ) 

- r4ab 2(1 - 21 cos2tJ) -'- ? 16b 3 cos3tt 
- r2b 4 sinott _ ab 4 sin6tt. (2.2d) 

")Partially supported by National Science Foundation Grant PHY 78-
12294 .. 

h)Present Address: Max-Planck-Institut flir Astrophysik, 8046 Garching, 
FRG 

We have written a and b instead of ao and a I as in Ref. 
1. 

For b = 0, 5 reduces to the expression for the extreme 
Kerr solution whereas the limit b-+oo gives 

5 = i (1 + costt)2 - (1 - costt )2, (2.3) 
(1 + costt )2 + (1 - costt )2 

another well known solution which can be obtained from the 
Voorhees metric; by the interchange x+-+y. 

3. WEYL INVARIANTS 

For any vacuum metric (2.2a) the tetrad components of 
the Weyl tensor4 

C2 = - + (2JJ~ + ~ (JIf)2), 

Co = ~ ( ~ Jif J* If - ~(JpiJ* If + J*pJIf»), 
8 f P 

C -2 = - + (2J*J*1f + ~ (iJ*If)2). 

1f=(a-(J)/(a+(J), (3.1) 

give rise to two spin invariant quantities which are for our 
case 

(3.2a) 

12 = C2 C _ 2 - 9C6 = 36[rI2/(a + (J)5] b 2 sin2tt. 
(3.2b) 

They become infinite only if a + (J = 0 (see below). In the 
limit r-+O their value depends on the limit of x = r - I sintt, 
but there is no way to choose x such that 11•2 become infinite. 
This behavior is very similar to the one of the Tomimatsu
Sato {) = 2 solution5 and suggests that, as it is the case there, 
r = 0 as approached from above or below are in fact surfaces 
(see Sec. 7). 

4. STATIONARY LIMIT SU~FACES AND 
SINGULARITIES 

The at -Killing vector becomes a null vector on the 
surface 

A=O. (4.1) 

At first glance this appears to be an 8th order polynominal 
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FIG •• 

FIG.2 ..... 

nG.3 ..... 
A-2.5 a •• 

FIG, • . .... 

FIGS. 1-4. These show a cross section through the infinite redshift surface and the location of the singularities (indicated by the "x") in Weyl coordinatesp 
(horizontal axis) and z (vertical axis). 

which cannot be solved analytically. However, upon intro
ducing the variables x = r ~ 1 sin11, y = r ~ 1 cos11 (4.1) be
comes for ,*0 

(1 + b 2X4)2 - x2(4by - a)2 = 0, 

from which one finds for b=l=O the parametric form of the 
stationary limit surface 

p = D ~ 1·16b 21 x 3
1 , 

z = D ~ 1.4bx(ax - 1 - b 2X4), 

D= 16b 2x 4 +(ax_l_b 2x 4
)2. 

For b = 0, the solution of (4.1) is, of course, the circle 
r = a sin11. 

(4.2) 

As it has been mentioned above, the singularities are given 
by 

a +/3= 0, (4.3) 

and hence lie, cf. the definition (2.2b) of A, on the stationary 
limit surface. The real and imaginary part of this equation 
can be combined to yield a biquadratic equation whose solu
tion is 

r = b tan11 [sin11 ± (cos211 + 1)], (4.4) 

with the ± sign for 1151T/2. Upon substituting this expres
sion into the imaginary part of (4.3) we get after some alge-
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bra a 6th order equation for sin11 which cannot be solved. We 
thus had to resort to numerical methods. 

In Figs. 1-4 we have plotted the shape of the stationary 
limit surface and the location of the singularities for various 
values of the parameters. 

5. MULTI POLE MOMENTS 

Following the definition of multipole moments of sta
tionary spacetimes given by Hansen6 we write 

¢=¢M+i¢J= -a*/3A -I (5.1) 

for the combined mass and angular momentum potential. As 
an appropriate coordinate near "infinity", the point A in the 
conformally completed three manifold, we take R = r - 1 

and choose n = R 2e ~ Y as conformal factor. This gives 

d(? = dR 2 + R 2d112 + R 2sin211e ~ 2YdqJ 2, 

~ = _ a*{3R 7(AR 8) - 3/4 (5.2) 

for the conformal metric and the transformed potential 
(5.1). On account of the rotational symmetry of our solution 
the multipole moments have to be multiples of the symmet
ric trace-free outer product of the axis vector with itself. The 
first few moments are 
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Mo = -a, 

M I = - ia2 + 2b, 

M2 = a3 + 4iab, 

M . 4 40 'b Z l0a2b 3 =/a - -/ - . 
3 

(5.3) 

For a::;i=O one can shift the origin of the coordinate sys
tem by z-----.z + 2b / a and find the multipole moments for the 
center of mass system. They are 

M~ = -a, 

M'I = -ia2
, 

M~ = a3 + 8b z/a, 

M~ =ia4
_ 20 (4ib 2 + 8b 3/a Z + 3a2b). (5.4) 

3 

I t is remarkable that in the center of mass system not only 
the mass dipole moment, but also the angular momentum 
quadrupole moment vanishes. 

6. THE AXIS 

We shall now concentrate on the axis, i.e., the two-di
mensional geodesic submanifold given by {} = 0,11'. As our 
solution is not symmetric under {}-----'11' - {}, we have to dis
tinguish between the upper ({) = 0) and the lower ({) = 11') 
part of the axis. For both the metric is 

del- = (Bo/r4)dr - (r4/Bo)dt 2
, 

Bo = r4 + 2a~ + 2(a2 
- 2b)r - 8abr + 8b 2, (6.1) 

and the upper and lower part are connected by b-----. - b. It 
can easily be shown that Bo vanishes nowhere. 

Solving the geodesic equation yields 

t=eBor- 4
, 

;:z = eZ + (r4/Bo)€, 

(€ = ± 1,0, e = const). (6.2) 

Concentrating on timelike geodesics (€ = -1) we fo
cus attention on the solutions of 

(6.3) 

the points at which a particle has to reverse its motion or 
come to a halt. These r-values are given by 

ro = k - I( - a ± V aZ + 4kb ), 

k = 1 ± V 2e - 2 - 1, (6.4) 

which indicates that a particle encounters a potential barrier 
of height 2, as there are no real solutions for r if e2 > 2. The 
allowed and forbidden regions of motion may easily be in
ferred from (6.4). We just mention that the lowest possible 
energy for particles on the outside of the potential barrier is 

e!~ =min( 2 ,1). 
(a 2/4b f + 1 

Comparing our results with the results Carter 7 obtained for 
the Kerr metric, we first note that the height of the potential 
barrier is the same in both cases (n.b., m = a, as our solution 
reduces to the extreme Kerr solution). It should moreover be 
mentioned that for b = 0 the two solutions r = 0 of (6.4) are 
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to be omitted, as Bo contains a factor r which drops out of 
the discussion and (6.3) reduces to a second order equation. 

From (6.2) it can be seen that an extension is necessary. 
This can, however, be effected in analogy to the case of the 
extreme Kerr metric, and we shall just sketch the procedure. 
Introducing double null coordinates u and v by 

~(u + v) = F(r): = f(Bo/r4
) dr, 

~(u - v) = t, 
we find for (6.1) 

del- = (r4/Bo)dudv. 

(6.5) 

As F (r) is monotonous for r> 0 and r < 0, r is given 
uniquely in terms of u and v, provided one specifies the sign 
of r. Using coordinates S, Tf, defined by 

u = COsS /sin35, v = cosTf/sin3Tf, 

we let an' {3 n denote the lines 

an:S = n11', Pn:Tf = n11' (n = 0, ± 1,. .. ), 

and Qmn the intersection of the strips bounded by an' an + I 

and {3 n , {3 n + I respectively. Qn.n is the image of region I 
(r> 0), while Qn + I,n is the one of region II (r < 0). We finally 
find for (6.1) 

del- = f§(S,Tf)dSdTf, 
4 

f§ = ~ (sinSsinTf) - 3(sin2S + 3COS25) 
Bo 
X (sinzTf + 3coszTf)· 

It can be shown that f§ is continuous and positive definite 
throughout M ., consisting of the union of the images of I 
and II. 

7. THE METRIC NEARr= 0 

If one wants to consider the metric (2.2a) for small r, 
i.e., for instance replace r-----.Ar and take the limit ,1--0, one 
has to rescale the other coordinates as well and perform an 
appropriate conformal transformation to obtain a nontrivial 
result. We thus scale the coordinates as 

r-----.Ar, rp-----.A - 4rp. t___o_A - 3t + 2aA - 4rp, 

perform a conformal transformation with 

{)=A 3
, 

and let ,1--0. The resulting metric is 

ds2 = B [sin4{}r - 8(dr + ~d{} 2) + rsin2{}drp 2 J 
- sin4{}B - I(dt - 4rdrp)2, 

B = (1 + COS2{})2 + 4cos2
{). (7.1) 

A look at the 5 -potential (2.1 a) shows that the terms in a and 
{3 containing b 2 are just the ones without r. (7.1) thus turns 
out to be the metric derived from (2.3). We have set the only 
remaining constant, b, to unity. 

It has been pointed out8 that (7.1) describes the region 
of the TS 2 metric near x = 1 and also arises from the undis
tinguished limit of that solution. 

We shall briefly discuss a few features of geodesics in 
this solution. The Hamilton-Jacobi equation becomes 
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r8 
£= ___ (S2 + r- 2s2 ) ____ _ 

B sin411·
r 

• .J rsin211B 

x [ - sin4t1/ 2 + 8sin411rel + re
2 

(B _ 16sin611 )], 
sin211 

(7.2) 

where we have already made use of the obvious separation 

S = £7 - et + kp + s(r,11). 

As the metric (7.1) is symmetric under 11-----+1T - 11 there are 
geodesics confined to 11 = 1T12. Hence setting s . .J = 0, 
11 = 1T12 one finds from (7.2) 

s r = r - 5V - (15e2 - £)r + 8elr - 12. 

The motion of a particle is thus confined to 
4e - (e2 + £)'12';;;(15e2 - £)1 - 'r.;;;4e + (e2 + £)1/2. Inter
estingly there is a circular timelike orbit for particles with 
unit energy at rc = 114. Furthermore one can show that null 
geodesics with 1 = 0 which reach r = 0 obey r-sin11. 

Returning now to the original solution (2.2a), one can 
show by a rather lengthy but straightforward calculation 
that again 

sin11 = ar (a = const), (7.3) 

is in the approximation of small r a solution of the geodesic 
equation for null geodesics with vanishing angular momen
tum. Those geodesics thus approach the axis as they come 
close to r = O. 

On the other hand, the metric (2.2a) restricted to the 
surfaces t,a = const becomes in the limit of small r, respec
tively large R = r - I, 

dcr = 8b 2(1 + b 2a4 )[dR 2 + (1 + b 2a4
) - 2drp 2], 

(7.4) 

i.e., the metric on the surface of a cylinder. Taking now a as a 
variable, i.e., different values of a label different geodesics, 
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one finds for (2.2a) restricted to r = const in the limit r-O 

dcr = 8b 2{(1 + b 2a4)da2 + [a 2/(1 + b 2a4
) ]dcp 2}. 

(7.5) 

It should be noted that both (7.4) and (7.5) are indepen
dent of whether cos11 goes to + 1 or - 1 in the limit. 

(7.5) shows that r = 0 is in fact a null hypersurface. One 
can furthermore show that it is not isometric to the pole of 
the TS 2 solution as given by Ernst! 

8. CONCLUDING REMARKS 

After the analysis of the foregoing paragraphs we may 
envisage the solution (2.2) as being generated by two rotating 
objects (maybe rings) with different masses and radii. Co
alescing those two objects leads to the extreme Kerr solu
tion. An interesting feature of our solution is the potential 
barrier which is encountered by a particle on the axis. For 
small b the barrier becomes narrower, not smaller. Even if 
one regards (2.2) for infinitesimal b as a perturbation of the 
extreme Kerr metric, this barrier remains. 
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The good cut equation (a2 Z = a) is the link between a physical asymptotically flat space-time 
(characterized by a) and its associatedH-space (characterized by Z and interpreted by Penrose as 
a nonlinear graviton). In this work a class of regular, nontrivial (a#O) solutions to the good cut 
equation is obtained by writing a in terms of a potential function ¢. 

I. INTRODUCTION 

It is not possible, in general, to find asymptotically 
shear-free null surfaces in real asymptotically flat space
times. If the space-time is analytically extended into the 
complex in the neighborhood of future null infinity, then 
complex asymptotically shear-free null surfaces can be 
found. This is how it is done: Use Bondi-type coordinates 
(u,;,t) on complex null infinity with u being complex Bondi 
time, and; and t being complex angular coordinates. (In the 
real space t = t, the complex conjugate of ;.) Choose 
u = z( ;,t) such that 

a2Z(;,t)=a(Z,;,t). (1.1) 

The function a(Z,;,t) is the analytic extension of the asymp
totic Bondi shear a(u,;';) of the Bondi null surfaces for 
which u = constant. Equation (1.1) is known as the good cut 
equation and its regular solutions are known as good cut 
functions. It describes the intersection of complex null infin
ity with the asymptotically shear-free null surfaces. 1

.
2

.
3 

The operator a is defined in terms of its action on spin
weighted spherical harmonics,4 

(1.2) 

Regular solutions of the good cut equations are those 
for which Z ( ;,t) is expandable in spherical harmonics. 
These regular solutions form a four-complex parameter set. 
These four parameters can be considered as local coordi
nates in four-complex-dimensional manifolds called H 
spaces. 1.2.3 Newman views these H spaces as containing in
formation on the related asymptotically flat real space-time 
and has suggested that they may be used to define the in and 
out states in an S-matrix formulation of quantum gravity. 
Penrose has shown that these same complex spaces can be 
obtained from the structure of a holomorphically deformed 
twistor space5

.
6 and interprets them as nonlinear gravitons, 

i.e., one-particle helicity eigenstates of a quantum theory of 
gravity. 

In the next section we show how the good cut equation 
can be written in terms of a potential function for the asymp
totic Bondi shear. In Sec. III we find a class of nontrivial 
solutions to this equation. 

II. GOOD CUT EQUATION IN TERMS OF A POTENTIAL 
FUNCTION 

A potential function ¢ (Z,;';) can be obtained for 
a(Z,;,t) in twosteps.7 Leta' bean operator that acts on spin-

weighted spherical harmonics according to Eq. (1.2), but 
with Z held fixed. Thus 

a'z = O. (2.1) 

First introduce the function L (Z,;';) defined by7 

a == a'L + LL,z , (2.2) 

where 

L = aL 
,Z:- az' 

and then the function ¢ (Z,;';) defined by7 

L = - a'¢I¢,z' (2.3) 

Now let a be an operator acting on spin-weighted spherical 
harmonics, but with Z not held fixed. The actions of a' and d 
on any spin-weighted functionf(Z,;,t) are then related by 

a'j = df - /z dZ . (2.4) 

Thus L can be written in the form 

L=dz-a¢I¢.z, 

andaas 

(2.5) 

a = aL - L.z(L - dZ). (2.6) 

Similarly, 

L,z = - d2¢,zl¢,z + ¢,zz a¢/(¢.z)2, (2.7) 

and 

aL = d2Z - a2¢ I¢,z + d¢ d¢,z/(¢,Z)2 . (2.8) 

After a little algebra, substitution of Eqs. (2.5), (2.6), (2.7), 
and (2.8) into Eq. (1.1) yields the following result: 

d[(¢.Z)2/d¢] = ¢.zz . (2.9) 

This is the good cut equation written in terms of the potential 
¢ for a and its first and second Z derivatives. Specifying the 
function ¢ (Z,;,t) leads via Eqs. (2.2) and (2.3) to a particular 
a, and to an equation for the good cut function Z ( ;,t) via 
Eq. (2.9). A simple but nonetheless nontrivial (a#O) class of 
solutions can be found using this approach, as is demonstrat
ed in the next section. 

111_ A CLASS OF SOLUTIONS TO THE GOOD CUT 
EQUATION 

If the potential has the form 

¢ = !Z2 + a(;';) , 

a = L aim y1m(;,t), 
I,m 

(3.1) 

(3.2) 
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the good cut equation (2.9) becomes 

i'[ZZI(Z i'Z + i'a)] = 1 . 
The regular first integral of this equation is 

ZZI(Z i)Z + i'a) = zli'z, 

which can be written in the form 

z2i)(Z 2Ir) = -2i)a, 

where, using the notation of Ref. 3, 

u + xt + yt + vtt 

1 +tt 
z= 

with 

uv -XY¥O. 

(3.3) 

(3.4) 

(3.5) 

The four arbitrary complex parameters u, v, X, Y can be 
considered as coordinates in H space. 

Equation (3.4) has the general regular solution 

Z2 = 2 f [( - V-I i)la i)-I+I~] +f3(t), (3.6) 
r 1= 1 i)z z 

where the sum is the particular solution to Eq. (3.4) written 
in terms of i)-I, the inverse operator to i). For example, the 
first few terms of the sum are 

f (_1)/-1 dla 3-1+[~ 
1=1 i)z Z 

ita Inzd2a (z Inz - Z)i)3a -- --+ 
zi'z (dz)2 (i)Z)3 

[(l/2)r Inz - (314)zZ]i)4a 
- (i)zt + .... (3.7) 

Applying i) to z as given by Eq. (3.5) yields 

X - (u - v) t - yt 2 
dz= _ 

1 +tt 
(3.8) 

which has zeros at 

- - (u - v) ± [(u - vf +4XY) 1/2 

~= 2Y (3.9) 

Thus the I th term in the expansion (3.7) has an I th-order pole 
at each of the two values of t given by Eq. (3.9). These must 
be eliminated if the solution for Z is to be regular. 

f3 = f3 ( t) is the singular solution of the homogeneous 
equation, chosen to make the entire solution regular, and 
must have the form 

where9 

with 

f31 = ({3 Q···C dl
a 

••• dlc )I(i)z)' , 

i)la = (1/1 + tt)[(l + ~t), - (~+ t), 

i(t-t), (l-tt)]. 

(3.10) 

(3.11) 

(3.12) 

f3 Q···C are / th degree three-dimensional trace-free symmetric 
tensors. Each has 2/ + 1 independent components that can 
be uniquely determined. The demand that Z be regular 
yields 21 conditions. The final component can be determined 
by requiring that the I = 0 part of the solution appear only in 
z. 
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As an example of an explicit solution, consider the spe
cial case 

(3.13) 

where a is expandable in terms of / = 0 and J = 1 spherical 
harmonics only, 

I I _ 

a = I I aim Ylm(~'~) 
I=Om=-1 

_ a + b~ + ct + d~t 
- 1 +tt 

(3.14) 

The corresponding solution to Eq. (3.4) is 

ZZ = 2i)a +f3(t). (3.15) 
Z2 zi'z 

The fact that f3 = f3 ( t) only can be used to find the 
particular form of f3 that will eliminate the poles in the first 
term o(the solution at t given by Eq. (3.9). Equation (3.15) 
can be-written as 

Z2 =zw, 

where 

w= 

and 

2i)a +f3z3z 

dz 

(3.16) 

(3.17) 

i)zw = O. (3.18) 

[This can be readily seen by substituting Z 2 given by Eq. 
(3.16) into Eq. (3.4) and using the fact that a2a = 0.] Now f3 
must be chosen in such a way that w (hence Z) is regular, i.e., 
such that w has the form 

1 I _ 

w= I I WlmYlm(~'~) 
I=Om= -I 
A +B~+Ct+D~t 

1 +tt 
(3.19) 

This can be accomplished by substituting Eqs. (3.5), (3.14), 
and (3.19) into Eq. (3.11) and solving for f3. Doing this we 
find that 

f3 = (A + Bt + ct + D~t)[X - (u - v) t - Yt2] 

- 2[b + (d - a) t - ct2](l + ~t) 
X! (u + X~ + yt + v~t)[X - (u - v) t - yt 2]J-1 . 

(3.20) 

The condition that /3 = /3 ( t) only, i.e., 

J/3 = 0 (3.21) 
J~ , 

and the condition that when a = 0, then (7 = 0, and the solu
tion to the good cut equation must reduce to Z = z yield the 
final results 

2[uv(d - a) + ucX - bvY] 
A = u + ~:':"':":'-----''-.:--:::::::---''-

v(uv -XY) 

2[vX(d - a) - bv2 + CX2] 
B=X+ , 

v(uv -XY) 

c= Y _ 2c, 
v 

D=u. 

Robert W. Lind 

(3.22a) 

(3.22b) 

(3.22c) 

(3.22d) 
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Thus we have proved the following theorem. The class 
of regular solutions to the good cut equation characterized 
by 

(3.23) 

is given by 

Z2 = (A + B; + ct + D;t) z (3.24) 
1 +;t 

with z given by Eq. (3.5), A, B, C, and D given by Eqs. (3.22). 
As an example, the Sparling solution quoted in Ref. 8 

has 

f/J = !Z2 + iA 112; /(1 + ~t), 
o-=A/(l +;t?Z3. 

Thus a = c = d = 0 and b = U 112. For this case 
2U 1/2y 

A=u- ----

and 

uv-XY' 
2U 1/2V 

B=X- ---
uv-XY' 

C=Y, 

D=v, 

2iA 1/2(y + v,..) z 
Z 2 = z2 - -----''---::..~.;........",.... 

(uv - XY)(l + ;t) 

IV. DISCUSSION 

(3.25) 

(3.26) 

(3.27a) 

(3.27b) 

(3.27c) 

(3.27d) 

(3.28) 

The good cut equation is the direct link between a phys· 
ical asymptotically flat space (characterized by 0-) and its 
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associated H space (characterized by Z). It is therefore im
portant to find regular nontrivial (0-#0) solutions to this 
equation. We have shown that the good cut equation can be 
cast into a different form by simply writing 0- in terms of the 
potential function f/J. We have also demonstrated that a class 
of regular nontrivial solutions can be readily obtained in this 
way. This work is being pursued further and it is hoped that 
this approach may lead to even broader classes of regular 
solutions or, at the very least, to a more general first integral 
of the good cut equation. 
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The stationary gravitational.equations in the presence of the electromagnetic fields, outside 
charged gravitating sources, are investigated. (i) The action integral of Kramer-Neugebauer
Stephani (K.N.S.) is derived from the Hilbert action integral by using new variational techniques. 
(ii) It is shown that the classification scheme for the system of partial differential equations of 
general relativity depends on the coordinate system used. In particular, if orthogonal coordinates 
are chosen for the associated space then the system of Einstein-Maxwell equations is a hyperbolic 
one. (iii) The eigenvalues of the Ricci tensor of associated space are expressed in terms of the 
invariants of stationary electro-gravitational fields. It is proved that if these eigenvalues are equal 
then the fields must belong to the class of Peres-Israel-Wilson (PIW) solutions. (iv) The global 
integrability of some of the stationary Einstein-Maxwell equations and the consequent 
equilibrium conditions of the "bodies" are investigated. (v) Boundary value problems for some of 
the field equations are pursued. It is proved that w=lnlg44 I is neither subharmonic nor 
superharmonic and the boundary value problem for this function does not yield a unique solution 
in general. A nontrivial solution of the stationary equations with w=O is given. A special 
boundary value problem is explicitly solved. (vi) The PIW solutions are generated from the 
charged Kerr-Tomimatsu-Sato-Yamazaki (KTSY) solutions. The complex axially symmetric 
harmonic functions of these PIW solutions can be obtained from the real axially symmetric 
harmonic functions of the static Weyl class of electrovac solutions by a complex scale 
transformation of the coordinates. 

1. INTRODUCTION 

In the last decade many papers have dealt with the topic 
of the stationary Einstein-Maxwell equations. In an impor
tant paper! KNS expressed these equations using two com
plex potentials. The KNS action integral has not yet been 
obtained from the usual Hilbert action integral in general 
relativity. In a simpler setting of axial symmetry and pure 
gravity, the problem was solved by Hoenselaers2 employing 
Routh's procedure from classical mechanics. In the third 
section of this paper, using Routh's procedure and a further 
generalization, the KNS action integral has been derived 
from the Hilbert action integral. 

In the classification scheme3 of a system of semilinear 
partial differential equations (p.d.e.s), the unknown func
tions are treated as scalars under a coordinate transforma
tion. But in general relativity the unknown functions are 
metric tensor components which undergo the transforma
tion of a second order tensor. That is why the classification 
scheme for the field equations does depend on the chosen 
coordinate system. FC?r example, it is usually accepted that 
the static or stationary field equations belong to an elliptic 
system. However, it was noted by Das4 that a subset of static 
vacuum equations in orthogonal coordinates forms a hyper
bolic system. In the fourth section of this paper, adopting 
orthogonal coordinates, it is proved that the system of sta
tionary Einstein-Maxwell equations is mixed or 
ultrahyperbolic. 

"'Both authors also belong to the Theoretical Science Inst., Simon Fraser 
Unviersity. 

One way to classify the stationary metric algebraically 
is to investigate the eigenvalues of the Ricci tensor pertaining 
to the associated· space. This approach was initiated5 by 
Kloster, Som, and Dasand also by Hoenselaers for the case 
of pure gravity. In the fifth section the eigenvalues of the 
Ricci tensor are obtained in terms of the invariants of sta
tionary electro gravitational fields. It is proved that the ei
genvalues cannot have the same sign. This result is used to 
show that in case all three eigenvalues coincide, the station
ary Einstein-Maxwell fields must belong to the PIW class. 
The classes cr;; 2 and cr;; 3 for which two eigenvalues are equal 
and three eigenvalues are distinct respectively remain open 
for investigation. 

Many authors6 have investigated the global integrabi
lity of static and stationary field equations and the conse
quent equilibrium of the "bodies." In the sixth section sever
al aspects of the known results are generalized. A finite body 
is defined as a region where at least one of the stationary 
Einstein-Maxwell equations is violated. Various properties 
of a "body," like mass density, twist mass density, stress 
density, etc., are described geometrically. Jump conditions 
on the bounding surface are provided. The most general inte
gral condition of "equilibrium" of a body is written. A rigid 
displacement A a is defined by the condition that the total 
stress-energy is zero. Examples of such displacements are 
p~ovided by the solutions of the p.d.e. o"PA,(aIP) = O. A solu
tion of this p.d.e. is furnished in terms of an arbitrary C 3_ 

differentiable vector field. In the axially symmetric case a 
special choice of this vector field (which is not C 3!) yields the 
known equilibrium condition that "the component of the 
total force along the axis of symmetry on each body is zero." 
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But in the general case if the vector field is chosen to have an 
arbitrary power series expansion, then it is not known how 
many independent equilibrium conditions emerge. 

In the next section the boundary value problems for 
some of the elliptic field equations are looked into. The crite
rion for the variationally naturar boundary conditions is 
derived. It is known8 that the function w==ln Ig44 1 is super
harmonic for the case of the stationary vacuum and subhar
monic for the static Einstein-Maxwell equations. For both 
of these cases the space-time is flat in case w is regular every
where. However, for the stationary Einstein-Maxwell equa
tions w is neither superharmonic nor subharmonic, in gener
al. This fact has prompted the present authors to find a class 
of nonflat solutions such that w=O. The boundary value 
problem for the semilinear elliptic equation for w (in case w is 
prescribed on the boundary) does not allow a unique solu
tion,3 in general. However, in special cases, for example the 
PIW class,9 the field equations boil down to the ordinary 
Laplace's equation and a boundary value problem of the first 
kind allows a unique solution. A particular problem, where 
the boundary surface is spherical in the base space E3 of the 
coordinates, is explicitly solved. After the solution has been 
obtained, it is found that in the physical Riemannian space 
the corresponding surface is not of constant curvature. In 
general, the boundary of a boundary value problem is not 
known in the physical Riemannian space before the solution 
of the problem. Investigations in this section show certain 
uncertainties exist even in the classical (unquantized) Ein
stein-Maxwell field theory. 

In the last section the axially symmetric PIW class of 
solutions is dealt with. The charged versions of KTSV solu
tions are known lO already. Each of these solutions gives rise 
to a PIW solution. This has been explicitly done here. The 
process is mathematically tricky (some singular transforma
tions are involved) and the uniqueness of the PIW solution 
thus obtained cannot be claimed. Although Yamazaki's so
lutions are not completely verified, nevertheless the corre
sponding PIW solutions as obtained here certainly solve the 
stationary Einstein-Maxwell equations. The complex har
monic potentials of the PIW solutions can be generated from 
the real harmonic potentials of the static electrovac solu
tions. The transformation involved is a complex scale trans
formation of the coordinates. This may be a rationale for the 
procedure of Newman et al. II 

2. NOTATIONS AND FIELD EQUATIONS 

The space-tim~ M4 is assumed to be a connected se
miRiemannian C; -differentiable manifold of signature -2 
which is endowed with a paracompact topology. It is also 
assumed that M4 admits a timelike Killing motion so that the 
metric form can be transformed into 

Here the Roman indices take the values 1,2,3,4, the Greek 
indices take the values 1,2,3, and the summation convention 
is adopted. The associated spaceM3 is Riemannian and it has 
the metric form <1>. Relative to a local chart, a point in M3 can 
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be mapped in a 1 : 1 fashion to the triple (x)==(x l ,x2,X3). The 
physical units are so chosen that c = G = (81T)"IK = 1. 

The electromagnetic field tensor Fab in M4 is adapted to 
the Killing motion (Fab.4 = 0). Thus one can conclude I that 
there exist potential functions A, B such that 

Iii' dxa I\dxb = A dx4 1\dxv 
r ab ,v 

+ [aII'A.vJ - ~e-w1Jl'vaB la]dxl' I\dxV, 

where 1\ denotes the wedge product and the comma denotes 
the partial derivative. A stroke denotes the covariant deriva
tive in M 3• The complex electromagnetic potential can be 
introduced by ¢ _ - A + iB. 

One can define two more vector fields: 

7"=le2'''1Jaf3r I' -2 Jf3r' 

Xa=1'a + (iK/2)(¢ *¢,a - M *,a)' 

where 1Jaf3r is the Levi-Civita tensor and 

~fflVdxl' I\dxv=d8 = all'lvJdxl' I\dxv. 

(2.2a) 

The gravitational equations (4)G4 a = 0 ensure the existence 
of a twist potential such that X a = X.a' One can define an 
electrogravitational complex potential F by 

F-e W 
- (K/2)1¢ 12 + ix. (2.2b), 

The remaining stationary Einstein-Maxwell equations 
can be reduced to the following system: 

aaf3= Gaf3 + ~e -2wRe[(F! + K¢¢ !)(F J3 + K¢ *¢J3) 

- ~af3(F! + K¢¢ !)(F II' + K¢ *¢ 11')] 

- Ke-wRe[¢ !¢J3 - q)gaf3¢!¢ 11'] = 0, (2.3) 

/-l=~2F - e-wF la(F,a + K¢ *¢,a) = 0, (2.4) 

V=~2¢ - e - w¢ la(F,a + K¢ *¢,a) = 0, (2.5) 

where~2V ~f3Vlaf3' 
The system of second-order quasilinear partial differen

tial equations has for the number of unkown, real functions 
10 = 6(gaf3) +2(F) +2(¢). The number of equations is 
13 = 6(aaf3) +2(/-l) +2(v) +3(coordinate conditions). 
But the equations are related by three differential identities: 

~f3If3=(K/2)fa, 

(2.6) 
fa _Re[{jtK- I + v¢ *)e -2W(F! + K¢¢!) _ 2ve - W¢!]. 

In case ~f3 = 0 the above identities yield 

[Re(/-lK- I + v¢ *)](e'''),a + [Im(/-lK- I + v¢ *)]1'a 

(2.6') 

This may be compared to the equation of motion for a dually 
charged dust in isometric motion, which can be written as 
follows: 12 

p(eW),a = 2eWReN41T e -w/2a*¢ !). (2.7) 

One can conclude that in a certain sensep=Re{jtK- I + v¢ *) 
and a =(41T)"1/2ew/2v* play the roles of the mass density and 
the complex charge density, respectively. 

3. THE VARIATIONAL DERIVATION OF FIELD 
EQUATIONS 

The stationary field equations (2.3)-(2.5) are derivable 
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from the action integral 1 

d = L [R + ~(Rer + 41T1¢ 12t2(r~ + K¢¢~) 
X(r la + K¢ *¢ la) - K(Rer + 41T1¢ 12t l ¢ ~¢ la]d3v. 

(3.1) 

However, the general Einstein-Maxwell equations are 
derivable from the Hilbert integral 

(4~ = r [(4'R - 41TFab (4'F ab ]d4v, J4)o 
where Fab =2A la,b I must be used. 

(3.2) 

The action integral (3.1) will be derived from (3.2) in 
the case of the stationary metric form (2.1), using certain 
variational techniques. 

In analytical mechanics a dynamical variable which is 
ignorable can be eliminated from the Lagrangian by Routh's 
procedure. One can go a step further to eliminate a variable 
for which the equation of motion has been integrated and 
obtain a modified Lagrangian. This modification can be gen
eralized to any field-theoretic Lagrangian, 

Suppose one has a conservative system of N degrees of 
freedom. The canonical Lagrangian which yields Hamil
ton's equations is the following l3

: 

L (qi, ... ,qN,PI"",PN,i/, ... i/') 

(3.3) 

where the capital Roman indices (except N) are summed 
from 1 to N -1. H is assumed to be a quadratic function of 
PA ,,,,,PN such that det(a 2H /apAapB)#O. Suppose the Nth 
pair of equations of motion, 

( 
aL )- _ aL = _ gil' + aH = 0, 
apN apN apN 

( 
aL )- _ aL _. aH _ 0 
a

'N a II' -PN + a -, q q qN 

are integrated to obtain the function 

PN = 1TN(t'~,PA)' 
One can modify the Lagrangian to 

L =L - PNij"'V - PNqN. 

(3.4) 

(3.5) 

Here and subsequently the equation (3.4) must be used to 
eliminate P /\'. It can be verified using the old equations that 

(
aL)- aL _ ( a1TN 11')-
agA - aqA - PA - aqA q 

+ ' H • + 
[(

a21T'V a21T" B 

a~at + a~JqB q 

+ JH + JH a1T II' ] = O. 
J~ apN JqA 

Similarly, the other equations are also equivalent. 
Now consider N twice-differentiable tensor fields ¢(l)' 

""¢(N) of arbitrary ranks in M3 which satisfy field equations 
derivable from the canonical Lagrangian 

!:t' [¢(l l '''''¢(N) ,1T(lla, .. . ,1T(N)a,¢( 1 )Ia '''''¢(N )In ] 

= 1T(A )n¢(A lin + 1T(N la¢(Nlla 
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(3.6) 
where the index A is summed from 1 to N -1. 

Suppose that the Nth field equations 

a!f' aPr' 
a1T(N)a = - ¢(N)la + a1T(N)a = 0, 

a!f' (N)a a:Jt" -a'" =1T la + -- =0, 
'1'(11') a¢(N) 

can be integrated to obtain a known function 

1T(N)a = p(N )a(X '" 1T(A )(3) ''I'(A)' . (3.7) 

The modified Lagrangian in which 1T(N)a is eliminated 
by substituting (3.7), can be written as 

:!f = !f' - 1T(N)a¢(N)la - 1T(N)a la ¢(N)' 

The new field equations 

( 
a!f' ) a:!f ( apfN)a) 

a¢(A )Ia la - a¢(A) = 1T(A)a - a¢(A) ¢(N) la 

+ ,a + (pa J _'P_+ P ¢(B)la [(
JpfN)a a (N){3 a2 (N)a 

a¢(A) a¢(A) a¢(A )a¢(B) 

(3.8) 

a2pfN)a ! a:Jt" a:Jt" ap(N){3] 
+ a¢ a (A){3 1T~~){3 (11') + -a'" + a-IN){3 -a'" = 0 

(A) 1T 'I'(A) 1T' 'I'(A) 

are true by virtue of the old equations. Similarly, the other 
equations are also implied by the old ones. 

Now the Hilbert action integral (3.2) will be considered 
choosing the stationary metric form (2.1). The equations 
Fab,4 = 0 are assumed to hold. A domain inside a coordinate 
neighborhood of M4 is chosen such that it can be mapped 
into(4)D = D X (x41t l <X4 < t21 CR 4,DCR 3. Then the Hil
bert action integral reduces5 to 

(4) d = - (t2 - t l ) L [R + !W,aWla - .:l2W - Q)e2'1'ap/a{3 

+ 41Te"'IF Fa{3 + 4a Fa{3A a{3 u 4,{3 

+ 2(ga{3a aA. - aU a{3 - e - 2,vga(3)A A I ]d v. A. 4,a 4,{3 3 

The term S D.:l2Wd3V can be dropped since it can be converted 
into a surface integral. The resulting Lagrangian does not 
contain the potential Aa explicitly. Therefore, ~ala 
= ay /aA{3 = O. The modified Lagrangian according to 

(3.8) is 

:!f = Y - 1Ta (3A al {3 =.Y' - a!:t' Fa{3' (3.9) 
JFa {3 

Now the field equations for Aa yield the first integral, 

Fp.v = ap.A4,v - avA4,p. - e - wT/p.va B la, 

where B is an arbitrary C 2-function of integration. 
This expression must be substituted in (3.9) to eliminate 

Fa{3' After a long computation one obtains the modified La
grangian as 

R + lw w la _ le2w /' r a {3 2 ,a 4 Japv 

_ K[T/p.v{3(avglLa - al'gva)A,a B 1{3 

+ e - W(A,a A la + B,a B la)], 

where A ==A4 . 
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Now the field equations for aa can be integrated to 
obtain 

/af3=e-2w1Juf3rTr =e-2"'1Jaf3r [X,r +K(BA,r -AB,r)]' 
(3,11) 

where X is an arbitrary C 2-function. 
Modifying the Lagrangian for the second time accord

ing to (3.8) one obtains 

2" = :2" _ a:2" rf3 _ a:2" aa, 
a/af3 aaa 

where (3.11) must be substituted to eliminate/af3, aa. After 
another long computation, using the definition _ 
</J = - A + iB and (2.2b) for r, one can finally reduce .Y 
exactly to the integrand of the action integral (3.1). 

4. THE CLASSIFICATION OF THE STATIONARY FIELD 
EQUATIONS 

It would be appropriate to recall some basic definitions 
for a system of p.d.e.'s. A system of second-order, quasilin
ear equations3 can be written as 

L M(U
B

) + d M ==A af3MBU!f3 + d M = 0, (4.1) 

where the k X k matrices A af3 = A f3a and the k-vector d Mare 
given functions of xa, uB

, u!. The characteristic determinant 
is defined as 

(4.2) 

where S (x) = ° is assumed to be a differentiable surface. In 
caseQ (S) = O:::?S,I = S,2 = S,3 = 0, thesystemiselIiptic. In 
case Q (S) = ° implies that there exist locally 2k distinct sur
faces S (x) = ° (characteristic surfaces), the system is totally 
hyperbolic. In case Q (S) = ° locally allows the existence of I 
surfaces S = ° such that ° < I < 2k, the system is either ultra
hyperbolic or parabolic. 

The usual transformations under a change of coordi
nate system are 

xa = xa(x), S (x) = S (x), uB (x) = uB (x), 
(4.3) 

aA{l aAy 
A{lvM _ ~~Aaf3M 

B - axa axP B' 

Therefore the characteristic determinant transforms as 

Q [S (x)] = Q [S (x)], (4.4) 

and thus the classification scheme remains unaffected by a 
coordinate transformation. But in general relativity the 
p.d.e. 's involve as unknown functions u B the metric tensor 
components, and the coefficient functions A af3M B involve 
the metric tensor and its first partial derivatives. These func
tions undergo transformations which are different than 
(4.3). That is why the classification scheme in general rela
tivity is coordinate-dependent. 

h . 14 d' For example, if one uses the armoOlC coor mate 
condition (g1/2~),/3 = ° for the associated space M 3, the 
field equations (2.3)-(2.5) go over to 

d'Y g<>f3(gflj,af3 + ... = 0, 

f.i g<>f3 r,a{3 + ... = 0, (4.5) 

v==ga{3</J,a{3 + ... = 0, 
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where the dots represent lower-order derivatives. Defining 
(u l ,u2, ... ,ul~==(g11,g12, ... ,Im</J ), the characteristic determi
nant for the above system is Q (S) = ~f3S,aS,/3 )10 and the 
system is elliptic since ~f3 is positive-definite. 

On the other hand, if one chooses orthogonal coordi
nates for M 3 , i.e., 

[g~l ~ [~ ° 0] ° . 
e2r 

(4.6) e2f3 

° the field equations (2.3}-{2.5) yield 

0'23=a,23 + ... = 0, 

0'31 P,31 + ... = 0, 

0'12=Y,12 + .. , = 0, (4.7) 

J-l==e- 2ar,11 +e- 2f3r,22 +e-2rr,33 =0, 

v==e- 2a</J,11 + e- 2f3</J,22 + e -2r</J,33 = 0. 

Defining (u l ,u2, ... ,u 7)=(a,{3, ... ,Im</J ), the characteristic de
terminant of the system is 

Q(S) = (S,I S,2S,3f [e -2a(S,I)2 + e -2{3 (S,2)2 

+e- 2r(S,3)2]4. (4.8) 

The system is therefore a mixed or uItrahyperbolic3 type 
with three characteristic surfaces locally given by S,I = 0, 
S,2 = 0, or S,3 = 0. The remaining equations from (2.3) are 

0'11 = e2a(e- 2f3Y,22 + e- 2rp,33) + ... = 0, 

0'22=e2f3 (e- 2a Y,11 +e- 2ra,II)+"'=0, (4,9) 

0'33 = e2r(e-2ap.11 + e- 2f3a,22) + ... = 0. 

In this coordinate system the diagonal equations 
0'11 = 0'22 = 0'33 = J-l = v = ° give a characteristic determi
nant which is just twice the expression (4.8) and thus yields 
the same classification. However, the choice of the system 
0'23 = 0'31 = 0'33 = J-l = v = ° yields Q (S )=0 and that pecu
liarity can be traced back to the choice of an overdetermined 
system so far as the principal parts are concerned. 

There exist no algebraic identities for the 10 equations 
(2.3}-{2.5), although there are three differential identities 
(2.6). Therefore one has to check the satisfaction of all the 
equations for an exact solution. 

The Cauchy problem for the system (4.7) has no solu
tion if the data is prescribed on a characteristic surface 
(S,I = 0, S,2 = 0, or S,3 = 0), unless the data satisfy some 
consistency conditions. In case these conditions are fulfilled, 
multiple solutions of the problem will exist. Even though the 
system (4.5) is elliptic, the initial data for it must also satisfy 
some consistency conditions. These conditions do not come 
directly from the system itself, but arise from the harmonic 
coordinate conditions, which must be satisfied by the initial 
data. 

5. EIGENVALUES OF THE RICCI TENSOR 

The associated space M3 can be classified algebraically 
according to the eigenvalues of the Ricci tensor Raf3' In case 
all three real eigenvalues of Raf3 coincide, the corresponding 
class of M4 will be called stationary-11I' For the stationary-
112 class, two eigenvalues coincide and the other one is dis-
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tinct. The three eigenvalues are all distinct for the class of 
stationary-'G' 3 solutions. 

For the purpose of determining the eigenvalues, six of 
the field equations are written as 

ii"v R"v + 2Re( 13,,13 * v - a"a* v) = 0, 

13" !e - bJ(r." + K¢ *¢,fL)' 

a -V 41Te - (,"12) A. 
11 'f' ,j1 • 

The eigenvalue equation is 

- det(R" v - A8\.) = ,1,3 - 11,1, 2 + 10 - 13 = 0, 

11=2(a* "a" - 13 *,,13"), 

(5.1) 

12= (a*'la,,)2 -la"a"1 2 + (13*,,13,,)2 -113,,13"1 2 (5.2) 

+ 21 a"f3p l2 + 21 a*"f3"1 2 - 4(a* "a")(f3 * vf3), 

13=2 I TI'"'ica"I3vI3 * ic 12 - 21 rJ"vicf3"a va* A 12. 

The above cubic equation can be solved for the real, 
invariant eigenvalues: 

AI = (lJ3) + 2 [(11/3)2 - (12/3)] 1/2COsJ, 

,1,2 = (11/3) - [(11/3)2 - (12/3)] 1/2(COsJ + V3sinJ), 
(5.3) 

,1,3 = (11/3) - [(lJ3)2 - (12/3)] \/2(COsJ - V3sinJ), 

cot(3J)=[13 - (1112/3) +2(lJW]! 4[(11/3)2 - (12/3)p 

- [13 - (1112/3) +2(lJWflI/2. 

In some sense the principal stresses of the stationary 
Einstein-Maxwell fields are given by !(A I - ,1,2 - ,1,3), 
!(A2 - ,1,3 - AI), !(A3 - Al - ,1,2)' 

For the stationary-'G' 2 class, Eqs. (5.3) reduce to 

Al = (lJ3) +2[(lJ3)2 - (12/3)]1/2, 

,1,2 = ,1,3 = (lJ3) - [(lJ3)2 - (12/3)P/2. 
(SA) 

For the stationary-'G' I class the eigenvalues simplify to 

AI = ,1,2 = ,1,3 = IJ3, (5.5) 

All the known solutions of the stationary Einstein-
Maxwell equations happen to satisfy 13 = det [R ",. ] = O. In 
this case the eigenvalue AI = O. 

The eigenvalues in (5.3) reduce to those given for the 
stationary vacuum cases by putting a" =0. In that case all 
the eigenvalues were nonpositive. However, in the electro
magnetic generalization, the eigenvalues (5.3) are not in gen
eral nonpositive. A theorem will be proved to that effect. 

Theorem 5.1: The eigenvalues of the Ricci tensor R "v 
as given in (5.3) are real and invariant with respect to coordi
nate transformations in M 3 , Furthermore, these eigenvalues 
cannot all have the same sign. 

Proof The first part of the theorem is well known. For 
the second part let eE ", (E = 1,2,3) be a set of orthonormal 
eigenvectors with eigenvalues A E' The invariant components 
are denoted by capital Roman indices for which summation 
is suspended. Thus R"veFv = AFeFI-" Writing aE + ibE 

(v2)a"eE", CE + idE=(v2)f3"eE", the invariant form of 
(5.1) is 
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Let u(E)=(aE,bE,cE,dE) and u(E)=(aE,bE, - CE, - dE)' 
Then there exists a nonzero vector U(4) = (a4 ,b4 ,c4 ,d4 ) in R 4 

which is orthogonal to the U(E)'S for E = 1,2,3. If [A] is a 
4 X 4 matrix which has U(E) as its E th row, one has the 
following: 

[A] [~ 
0 0 

~ ] [A ]' 
1 0 

0 -1 

0 0 -1 

[1' 
0 0 

~l ,1,2 0 

0 ,1,3 
(5.7) 

0 0 

where I a~ + b ~ - C~ - d ~ and (5.6) has been used. By 
way of contradiction suppose all the A E'S are positive. Then 
one can show that [A ] is nonsingular. For if 0 = L4 m· U , 1= I I (l)' 

multiplying by UtE) T from the right gives 0 = mEAE • Thus 
m l = m 2 = m3 = 0, and since U(4) is nonzero, m 4 = O. Now 
equation (5.7) shows that our supposition contradicts Syl
vester's inertial theorem. 15 

The above theorem is used to obtain the whole class of 
stationary-'G'I solutions in the next theorem. 

Theorem 5.2: The class of stationary-'G' I solutions of 
the Einstein-Maxwell equation is exactly the class ofPIW 
solutions.9 

Proof For the stationary-'G' I class, AI = ,1,2 = ,1,3' By 
the preceding Theorem 5.1 the eigenvalues must all reduce 
to zero. Therefore R"v = 0 and M3 is flat. This is precisely 
the criterion for the PIW solutions (also see Sec. 8). 

A geometrical consequences of this theorem is that M 3 

cannot be a space of (nonzero) constant curvature l6 (or an 
Einstein space, or a projectively flat space). 

A physical consequence is that stationary electrogravi
tational fields never generate (nontrivial, isotropic) pressure. 

6. GLOBAL INTEGRABILITY OF THE FIELD EQUATIONS 
AND THE EQUILIBRIUM CONDITIONS 

The integrability of the static and stationary field equa
tions and the implications for the equilibrium of sources 
have been discussed in many papers.6 In this section a more 
general treatment of this topic will be given. 

A massive, charged world-tube in a stationary space
time can be sliced by a time-constant hyperplane. This spa
tial slice can be mapped into a region jJ = f3uiJf3 c R 3. The 
region jJ will correspond to a regular, isometric body pro
vided the following assumptions hold. 

(i) jJ is a bounded, connected subset of R 3. The bound
ary Jf3 is assumed to be a continuous, piecewise-differentia
ble, orientable, closed surface (regular). A surrounding do
main D-jJ is assumed to be simply-connected. 

(ii) In the corresponding world-tube the isometric con
ditions (4)F ab

1b 
= ,4i'ab

1b 
= (4)G a

4 - K'4'F abF 4b = 0 hold. 
These equations, with appropriate conditions of differentia
bility, ~uarantee the existence of potentials E, X inside the 
body 13. 

(iii) Inside jJ one must have the strict inequality (J" a(3o",(3 
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+ IJllz + Ivlz > 0, or, at least one of the vacuum equations is 
violated. 

(iv) Inside and outside the body ii the differentiability 
classes of gaP , r, cP are respectively C 3

, C 2
, C Z. However, on 

ap the functions gaP,1' V , r,aP' cP,aP are allowed to have jump 
discontinuities. But the jump conditions 17 

O'apnP=[C], r,ana=[C), cP,ana=[C], 

are assumed to hold across the surface of discontinuity ap. 
For the extreme cases where ii degenerates into a sur

face, a curve, or a point, most of the above assumptions be
come meaningless. Nevertheless, describing O'aP' Jl, v by 
Dirac delta functions, the subsequent global integrability 
conditions can be made mathematically rigorous and phys
ically meaningful. 

Now the integrability conditions will be studied. Some 
of the stationary Einstein-Maxwell equations can be rewrit
ten as 

2A la,p J = Fap - -rJapyHY, 

2a la.p J lap = e- 2wrJapyrY, 

O'ap-Gap - Sap = 0, 

SaP= Ke - wRe [cP ':;.cP,/3 - !gapcP ";cP II'] 

(6.1a) 

(6.1b) 

(6.1c) 

- ~e -2"'Re[(r':;. + KcPcP ':;.)(r,/3 + KcP *cP,/3) 

- !gaper "; + KcPcP ,,;)(r II' + KcP *cP 11')] = O. 

The local integrability conditions for these equations are the 
following: 

HYly=e-"'Im(v) = 0, 

(e- 2"'rY)ly=e- 2"'Im(Jl + KcP *v) = 0, 

(6.2a) 

(6.2b) 

(6.2c) 

where the electrogravitational force fa is defined in (2.6). 
Under the differentiability assumptions for the functions in
volved, these local integrability conditions are identically 
satisfied outside bodies. These conditions can be generalized 
for the neighborhood of a body. Consider a regular, exterior 
surface.I that encloses a body ii. The relatively global inte
grability conditions of (6. la)-(6. lc) are respectively 

£HYnydzs = £[e-'"B,y -rJaPyaaA IP]nYd2s = 0, 

(6.2d) 

£e -2wrYnydzs = 0, 

£~YAanydzS = 0, 

(6.2e) 

(6.2t) 

where Aa is an arbitrary vector field. These are weaker than 
(6.2a)-(6.2c). For global integrability, the equations (6.2d)
(6.2t) hold for every closed, exterior surface:.I. 

In case there are jump discontinuities [HYn y ], 
[e -2"'rYny ] across the boundary ap ofa body, the equations 
(6.2d), (6.2e), by Gauss's theorem, imply that 

(6.3a) 

2253 J. Math. Phys., Vol. 21, No.8, August 1980 

r e- 2W Im(Jl + KVcP *)d3v + j [e- 2"'rYny ]dzS = O. 1 YaP 
(6.3b) 

The equation (6.3a) physically means that the sum of the 
total volume magnetic charge and the total boundary layer 
magnetic charge of a body ii is zero. Similarly (6.3b) means 
that the total volume twist-mass and the total boundary lay
er twist-mass add up to zero. These two equations need not 
hold in case the body has a wire (or string) singularity. In 
that case every enclosing surface would be perforated and 
Gauss's theorem need not apply. 

The integral condition (6.2f) can be expressed using the 
jump condition [~yny lap = [C], as follows. 

0= j ~YAanydzS = j ~YAanydzS = r (~YAa)lyd3V 
JrI YaP JP 

= L [ - S aYlyAa + ~y A(alydd3v 

= ~ L (Kfa A a + 2~YA(aIA) )d3v. (6.4) 

The above integral condition implies the equilibrium of a 
body in the most general language. However, for special 
choices of A a, the above condition can be simplified. Sup
pose A a is a displacement vector for a deformable body ii. 
One possible characterization of a "rigid" displacement is 
the requirement the total "strain-energy" vanish, 

L~YA(a,y)d3V = O. 

This condition is implied by the partial differential equation 

~YA(aIY) = rJyaPJllalPJly' (6.5) 

where AaEC I(P),JlaEC l(ap)nc~(p). The equation (6.5) 
is undetermined since it involves six functions and thus infi
nitely many solutions are expected to exist. For every "rigid" 
displacement A a, Eq. (6.4) reduces to 

f/aA ad3v = O. (6.6) 

Corresponding to each A a one can define an "infinitesimal 
rigid displacement" 8X a =€A a, where € is a small positive 
constant. The last integral goes over to 

fla8xad3V = o. (6.7) 

This is the statement of the principle of virtual work in gen
eral relativity for a charged, gravitating, "rigid" body in iso
metric motion. 

Now some special solutions of the p.d.e. (6.5) will be 
given. 

(i) In case lS there exists a Killing vector field Sa inp one 
can choose the solutionAa = Sa ,Jla EC 2( P). In this case the 
integrand in (6.6) vanishes identically assuming .Y scP 
= .Ysr =0. 

(ii) If A a solves l9 GaPA(aIP) = 0 = saPA(aIP) then it 
solves (6.5) with Jla = O. The general solution of G aP A(aIP) 
= 0 is GaPAp = rJaPYVIPlyJ' where VECZ(P) and otherwise 

arbitrary. If, furthermore, det[ Gl'v] #0, G I'~= [Gl'v)-I, 
then the equation 0 = S I'vAV.1 v) = Sl'vrJaPYvIPIYJI(vG - I')a 
should have infinitely many solutions for vp' To obtain non-

A. Das and S. Kloster 2253 



                                                                                                                                    

trivial equilibrium conditions, one should choose solutions 
Va such that 7J

a
{3Yv[{3IY J has at least one singularity on a/3. 

(iii) Suppose one has u ap =0, fl=i=O, v=i=o in /3. Further
more, let a linear holomorphic relationship r = rrp + 0 
(where r,o are complex constants) exist inside and outside,B. 

One can choose as solutions of(6.5) arbitrary A aEc 1(/3), 
fla EC 2( /3). Then the equilibrium condition (6.6) boils down 
to 

(Ir1 2 -2KRe8) L Re[flr~ ]e- 2,vA ad3v = O. (6.8) 

The above condition can be trivially satisfied by choosing 
I rl2 = 2KRe8 and outside /3 this class of solutions corre
sponds precisely to the PIW class (Sec. 8). The other integra
bility conditions (6.3a), (6.3b), by using the definitions after 
(2.7), reduce to 

V 41T r (Imu*)e - 3w12d3v +,{ [H Yny ]d2s = 0, 
J{3 ~{3 

K r (u*u - p2)1/2e - 2wd3v +,{ [e - 2w 7
y
ny ]d2s = O. 

J{3 ~r3 
In the dually charged dust model 12 the above conditions 
were satisfied by putting [HYn y ] = [e- 2w

7 Yny ] = 0, 
p2 = u*u. 

(iv) In the axially symmetric case, the WLP coordinates 
are assumed to exist in /3. One can choose a vector field Va 

= - (De -2uO,,3 which is not well defined on the x2-axis. 
One can construct A a = G - a /17JI'{3YV[{3 ~r i' which happens to 
have a removable type of singularity on the x 2 axis. If that 
behavior is removed, then Aa = Oa2 and satisfies6 G a{3 A(lIl{3) 

= sa(3A(al{3) = O. Putting this Aa into (6.6), one obtains 

L Re[(flK -I + vrp *)(r ~ + Krprp ~) - 2ve"'rp ~ ] 
Xe -2(w + u)xldx1 /\dx2/\ dx3 = 0, (6.9) 

on in other words "the x2th component of the total force on 
the body must vanish." In this symmetry there eixsts the 
Killing vector S" = 0 "3 = A". Substituting this vector into 
(6.6) the integral becomes the x 2th component of total mo
ment and that vanishes identically. 

In view of the arbitrary functions Va which can generate 
A a, (either in the axially symmetric or in the general case) 
there may be several independent relatively global integrabi
lity conditions of the field equations. The investigations of 
these conditions remain open. 

7. POTENTIAL THEORY AND BOUNDARY VALUE 
PROBLEMS 

The action integral for the stationary Einstein-Max
well equations (2.3)-(2.5) is given by (3.1). If one allows 
boundary variations for that action integral, then the follow
ing equation, besides the field equations, are also obtained: 

[g<>{301 ~r 1 - gaYol ~r 1 + (Rer + 41Tlrp 12t 2 

X Re[ (r 1{3 + Krp *rp 1{3)!Jr * 1 
- 2K(Rer + 41Tlrp 1

2t l Re(rp 1f3!Jrp *) In{J liJD 
= O. (7.1) 

The boundary conditions which satisfy (7.1) are called varia
tionally natural boundary conditions. One example is 
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I a 1 - r l{Jn - '" l{Jn - 0 (31' l,lO - {J laD - 'I' {3laD - . 

The field equations, together with a set of variationally natu
ral boundary conditions, constitute a self-adjoint problem 
for the semilinear system. 

The real part of the complex potential equation (2.4) is 

M -..:::lzw + e 2"'7lI r - Ke <"rp ~{ifJ" = O. (7.2) 

In case of stationary vacuum rp,lI =0 and ..:::l2W<0, and thus w 
is superharmonic. On the other hand, if M4 is static then 7" 
-0 and ..:::l2W>0 and thus w is subharmonic. In both these 
special cases if w is regular everywhere and attains a constant 
value K at infinity, then M4 is flat. H In the general case, how
ever, w is neither superharmonic nor subharmonic and its 
regularity everywhere does not imply flatness of M 4 • In fact, 
there exist nontrivial solutions of the stationary Einstein
Maxwell equations with w=lnlg44 1 = 0 everywhere. A class 
of these solutions is given by20 

(4 'gubdx(J ® dx h = - <P + (8 + dx4
) ® (8 + dx4

), 

<P = eZU(\'.x')(dx l ® dx l + dx2 ® dx 2) + (XI)2dx' ® dx\ 

8 = a(x l,x2)dx" 

,\f2H -H,II + (XltlH,1 + H,22 = 0, 

r = (D, ifJ = (KtI/2e iH
, (7.3) 

u = (l) Ixl [!(H,2)2 - (H,lfldx l - 2H. IH.2 dx2
], 

a = I Xl [ - H.zdx l + H.I dx2
]. 

One can pose a boundary value problem for the quasi
linear elliptic equation (7.2). The uniqueness of the solution 
is guaranteed by the following criteria"; (i) [aM laW.ar3 ] 

= [garll is positive definite and (ii) aM law = Ke "'ifJ *" ifJ I" 

- 2e" 2"'7" 7"<0. The second criterion is not necessarily 
true and the uniqueness ofa solution (7.2) cannot be expect-
ed in general. However, for the PIW class of solutions (Sec. 
8), the four quasilinear elliptic equations .reduce to two ordi
nary potential equations written in the complex language as 

(7.4) 

Here U (2K)1/2(y* + Krp t\ and \72 is the Laplacian in E 3 • 

The first boundary value problem (Dirichlet) will certainly 
have a unique solution. This solution can be used to con
struct the unique semi-Riemannian manifold M 4 • However, 
there is a peculiarity of the boundary value problems in gen
eral relativity. The continuous boundary values and the 
boundary itself are prescribed in the coordinate space E 3 · 

Before actually solving the problem, the corresponding 
boundary in the (physical) Riemannian space is completely 
unknown. An example might clarify this matter. Let the 
boundary be the surface of the sphere 

r = a/2 > 0, 

in the coordinate space E, using spherical polar coordinates. 
At this point the corresponding surface in the (physical) Rie
mannian space is unknown. The Dirichlet problem for the 
complex potential U attaining the continuous boundary 
value 

u(8,c/J) = 1 -2ima- I (3 +4icos8)-112, 
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can be written as the Fourier-Legendre series3 

U (r,O,l/J ) = 1 - ima -I L~o (2n + 1)(2ra -I YanPn (COSO)] , 

an = fT(3 + 4icosO') -1/2 Pn (cosO ')sinO 'dO', 

=(2n+l)-\-i/2)". (7.5) 

The above series is absolutely convergent in the interior of 
the sphere in E3 and uniformly convergent in any closed 
subset of the interior. Using the generating function 
(1 + t 2 -2tx) -112 = "1.:~ ot nPn(x), the series converges to 
the complex potential 

U(r,O,l/J) = 1 + m(~ - a2 -2iarcosOtI/2
• (7.6) 

The above generates the PIW subset of Kerr-Newman solu
tions. The boundary r = al2 still remains a sphere in the 
associated space M 3 , which is flat in this case. However, in 
the (physical) Riemannian space, the boundary surface is 
known now and given by the complicated line element 

de = a2 
{ (B + i - 2s2)(i - 2s2)/(1 - 4s2

)( i - r) I 
X(dO®dO) + a2s2[ {B 2 +2B G - S2) + G _2s2

) 

X G - S2) }I {B + i - 2s 2 j I (dl/J ® dl/J ), 

B=(mla)2 +2(mla){! _s2jI/2, 

s sinO. 

(7.7) 

It has been determined that this is not a sphere by the com
puter computations of R 1212/<illg12 - gl/)' Not only is 
there no uniqueness in the solution of boundary value prob
lems in general, there is no way of selecting a priori a geomet
rically prescribed boundary (like a surface of constant curva
ture) in the physical space. 

8. THE PIW CLASS OF SOLUTIONS 

The stationary Einstein-Maxwell equations (2.3)-(2.5) 
admit a flat M3 iff 

r= yl/J + (2K) -llyl2 + id, (8.1) 

where y, d are arbitrary complex and real constants, respec
tively. In this case field equations boil down t09 

V 2U= 0, 

curia = ilU I 2grad[ln(U * IU)], 

(8.2a) 

(8.2b) 

where U (2K)1/2(y* + Kl/J) -I and the above equations are 
in E 3• These equations characterize the PIW class. An alter
nate criterion for this class would be to require that the ei
genvalues of R a {3 are all equal. 

In the axially symmetric case one can use an oblate 
spheroidal coordinate system in E3 as specified by 

Xl = V (X,2 + a2)(1 - y2), x 2 = x'y, x 3 = l/J, (8.3) 

where Xl, x 2
, x 3 are cylindrical coordinates and a2 > 0 is a 

real parameter. In these coordinates the most general solu
tions of(8.2a), (8.2b) (except due to an infinite rod) are21 

U(x',y,a) 

= 1T - If> [X'y + tV (X,2 + a2)(1 - y2) cosl/J ]dl/J, 
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a", = 2Im[f [(1 - y2)U*U,ydx' 

+ (X,2 + a2)UU,!.dy] + A.,,,,], (8.4) 

ax· = A.,x·' ay • = A.,y .. 

In the above,fis an arbitrary holomorphic function of its 
complex argument and A. is an arbitrary C 2-function of inte
gration. The function A. can be absorbed in the metric. 

Some solutions of the stationary Einstein-Maxwell 
equations can be generated I from the stationary vacuum me
trics by the action of the eight-parameter group SU(2,1). 
Some PIW solutions can be obtained from a vacuum metric 
by a singular case of these transformations. Although a PIW 
solutions is thus obtained (this is a tricky process already) it 
cannot be claimed to be the unique PIW generalization of the 
vacuum metric. The known asymptotically flat stationary 
solutions \0 are of the class Kerr-Tomimatsu-Sato-Yama
zaki (in short, KTSY). The charged version has also been 
constructed. \0 In the following, a PIW subset of the charged 
KTSY solutions will be generated. The KTSY class is given 
by the Ernst potentials (x,y;p,q,8 ) = N I D, 

N= rtl {d(r)[px(x2_1)'-1 -iqy(l_y2y-l] 

X LtrC(8,r')F(82-r')]}, 

{j 

D - I C (8,r)F (82 
- r), 

r= 1 

d (r)={ [( -l)'-1(2r - 2)! ]/[2r- l(r - I)! n, (8.5) 

C(8,r)={ [22r - 18(8 + r -I)! ]1[(8 - r)!(2r)!] j, 

2 _ { [( -1)'8!(8 + 1)!.·.(215 -I)! ] } 
F(8 ,r)= [2rd (r + I)C (8,r)(2!3! ... (8 _ 1)!)3] det [Mst 1, 
M st [p2(x2 _1)s+t-1 +q2(1_ y2),+t-I]I(s+t_l), 

where x, y represent prolate spheroidal coordinates, 8 is a 
positive integer, and p, q are parameters. 

A corresponding PIW solution can be constructed by 
choosing 

U (x',y;a,8) = (ia1T) -I fTt {(ia)-I 

X [x'y + iV (X,2 + a2)( 1 - y2) cosl/J ], 1; l,i,81 - I dl/J, (8.6) 

and obtaining a", from (8.4b). 
It will be instructive to work out the integral (8.6) for 

the cases 8 = 1,2,3. The simplified versions of the integrands 
are the following: 

[ t(x,y;l,i,l)]-1 = (x + y) -I, (8.7a) 

[ t(x,y;1,i,2)]-1 

= [2x(x2 -1) +2y(1 - y2) ]I[(X4 -1) _ (y4 -1) 

+ 2xy(x2 _ y2)] 

= 2(x + y)-I -2(x + y)-3(xy + 1), 

[ t (x,y; t,i,3)] - I 

3(x + y)-I -6(x + y)-\xy + 1) 

(8.7b) 

+2(x + y) -S( _ x 2 +4xy _ y2 + 3x2y2 + 3), 

(8.7c) 
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All of the above functions are harmonic in prolate sphroidal 
coordinates. Moreover, the equation (8.7a) is the potential 
due to monopole, the equation (8.7b) is the potential due to a 
monopole plus a dipole, and so on. The corresponding com
plex potentials are furnished by the following: 

U(x',y;a,l) = (x' + iay) -I, 

U (x' ,y;a,2) 

= [2x'(X,2 + a2) -2ia3y(1 _ y2»)1 

[X,4 _ a4y4 + 2iax'y(x,2 + a2y2) ], 

U(x',y;a,3) 

(8.8) 

= [3(x' + iayt - 6iax'y(x' + iay)2 + 8a2(x' + iay)2 
_ 6a2x'2y2 _ 12ia3x'y + 6a4 ]/(x' + iay)5 

The function U (x' ,y;a, 1) generates a PIW subset of Kerr
Newman solutions. In general, the complex harmonic func
tion U(x',y,a,8) which gives rise to a stationary P.I.W. solu
tion can be generated from the real harmonic function 
[s (x,y; 1 ,i,8 )] -I which is associated with a static Weyl class 
electrovac solution. The transformation involved is a com
plex one, II namely, 

U(x',y;a,8) = (jas ( - ia -Ix',y; l,i,8)] -1. (8.9) 

In the limiting case lima_.o U (x' ,y;a,8 ) = 8 Ix', which yields a 
spherically symmetric static electrovac solution. (The state
ments of the last three sentences have been explicitly verified 
for 8 = 1,2,3.) 

It should be mentioned that the solutions 5 (x,y;p,q,8 ) 
for the Ernst's equation are not yet fully checked (except for 
8 = 1,2,3,4). Nevertheless, the complex harmonic functions 
U (x',y;a,8) in (8.6) will certainly generate P.I.W. solutions 
even if for some 8 the function 5 (x,y;p,q,8) is not an Ernst's 
potential. The reason is that equation (8.6) is a special case of 
equation (8.4). 
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Two distinct stationary axisymmetric Kerr-like neutrino-gravitational space-times are 
presented. They reduce to the Kerr solution when the neutrino field vanishes. In addition, the first 
solution possesses physical line singularities along the axis of symmetry; whereas the second 
solution is asymptotically flat and its locally bounded Riemann tensor is discontinuous at the 
equatorial plane. Both metrics are of Petrov type II and their neutrino fields belong to type [2N-
2S](2 -1) in the Plebanski classification. 

1. INTRODUCTION 

Recently a lot of interest has been generated in connec
tion with investigations into the possibilities of gravitational 
effects on the structure of elementary particles by solving the 
Einstein-Dirac equations. I

-
3 Neutrino-gravitation interac

tions are governed by the zero rest-mass Einstein-Dirac 
equations4 which can be expressed in the two-component 
spinor formalism as follows: 

Rpv = - i[UpAB,(<PA<PB';v - <pA;v<pB) 

(
An,. B' A B' ] + UvAB ' <p 'P ;1' - <p ;1' <p ), 

ifAB,<pA;p = 0, (1) 

Here {UpAB ' J..u = 1, ... ,4, are the generalized Pauli spin ma
trices and <p A, A = 1,2, are components of a one-spinor 
which describes the neutrino field, Exact solutions of equa
tions (1) are given by a number ofauthors (see Kuchowicz's 
review5 and references cited therein). These known solutions 
imply that spherically symmetric space-times are not com
patible with the presence of neutrino-gravitational fields 
which possess a shearfree geodetic null congruence,6-8 Fur
thermore, Madore9 proved that there exists no neutrino
gravitational field which is static and axisymmetric. In a 
recent paper, Herrera and Jimenez2 using asymptotic series 
expansions showed that the assumptions ofaxisymmetry 
and asymptotic flatness would ultimately lead to physically 
singular solutions of the Einstein-Dirac neutrino field equa
tions. One should note that all the results mentioned above 
on neutrino-gravitational space-times rest implicitly on the 
neutrino field being locally smooth 10 in an appropriate co
ordinate neighborhood where the corresponding metric is 
defined. 

In this paper we present two distinct twisting neutrino
gravitational solutions both of which are reducible to the 
Kerr metric when the corresponding neutrino field vanishes. 
In terms ofthe Kerr coordinates (u,r,8,cp), the first metric 
(G I) is stationary axisymmetric, locally smooth, and pos
sesses physical singularities along the axis of symmetry. 
These physical singularities are induced by the presence of 
the neutrino field. Thus the G 1 metric does not contradict 
the existing known theorems on neutrino-gravitational solu-

a'Part of the research was carried out in the Department of Mathematics, 
Monash University, Clayton, Victoria 3168, Australia. 

tions. In contrast with G 1, the second metric (G 2) represents 
a stationary, axisymmetric asymptotically flat neutrino
gravitational field and it is of class C 2 - .11.12 In this case the 
Riemann tensor remains locally bounded but it is discontin
uous at the equatorial plane. This is due directly to the exis
tence of a continuous locally bounded current 4-vector13 of 
the neutrino field which has a discontinuous 8-coordinate 
derivative. The apparent paradox between the G 2 solution 
and known results can be explained by the order of differen
tiability of the metric. 

2. REDUCED NEUTRINO-GRAVITATIONAL FIELD 
EQUATIONS 

The solutions in here are obtained by assuming that (i) 
the principal null congruence of the Weyl tensor coincides 
with the principal null congruence of the neutrino field 13 (we 
denote such a principal null vector by L); (ii) L is geodesic 
and shearfree with non vanishing twist; (iii) the neutrino field 
<p A is time independent; and (iv) these solutions reduce to 
the Kerr solution when the neutrino field <p A vanishes. As
sumptions (i) and (ii) imply that the Weyl tensor is algebra
ically special. In addition, if a space-time admits a Killing 
vector of the type K = au' , then, using a theorem by Kerr 
and Debney, 14 there exists local coordinates (u',r,;, ;) such 
that the metric is given by 

ds2 = 28<18 2
' _28<38 4 '. 

Here the basis I-forms are 

8 1 = dr+2 Im(pO~dO - U8 2
, 

8 2 = du' + bd; + iidt, 

8 3 = - eP(r - ipO)dt, 8 4 = 8 3, 

where 

U = R (2, + mr + poeM - <p 0tfj 0) 
?+p02 . 

(2) 

(3) 

(4) 

The tetrad variables pO, p, m, and M are real-valued func
tions of; and t The complex function b ( ;';) is defined by 

(5) 

R (2, is the Gaussian curvature of the 2-surface with metric 
dl 2 = e2p d; dt, i.e., 

(6) 
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TABLE I. Functions </J 0
• </J 0 </J 0

• N I • N2 and N3 in (u'.r.;. [) coordinates. 

</J 0 

</J 0 </J ° b 

NI 

N2 

N3 

G I Solution 

1]e;" I; - I (I + g-t) ]1/2 

1]2(1 + g-[) 
( ;;)112 

21]2( ;[)1/2 

(I + g-[) 

1]2( [)1/2(1 - g-[) 
( ;)112(1 + 1;;)2 

_ 2i1]2; -I [tan - I (;[)1/2 
_ 2 

_ (;;)1/2(1 - g-[) ] 
2(1 + g-;)2 

G 2 solution a 

1]e'"[HI + g-t)),/2. 0.;; I ; 10;;;2 
1]e;";-1[2(1+g-[)]1/2. 2<1;1<00 

2 -11]2(1 + g-;). 00;;; I; 10;;;2 

2-11]2(1+4 ;_). 2<1;1<00 

1]2(1 + 1;[) - I (;[ - 2(1 + g-[)ln(1 + g-[H (I - g-[)[ diln<g-[) + ~]}. 0.;; I ; 10;;;2 

1]2(1 + g-[)-I {4 -2 (I + g-[)In( 1+4 ;[) - ~I - g-[)[diln( 4 ;_ ) + ~]}. 2 < I; 1< 00 

1]2[ [2(1 + g-[)2] -I {(I - g-[) - ![ (I - ;:~ 2 }~(1 + g-[) - fdiln<g-[) + ~]}. 0.;; I ; 10;;;2 

1]2[[2(1+g-;?]-I{-(I- ;~)- ![(I- ;:f)ln0+4 ;;)+[diln(4 ;;)+ ~; ]}. 2<1;1<00 

i1]2[ [2(1 + g-[)2] - I {(I + g-[) _ 2(1 + g-;)2 [ 21n(1 + .if;) -ln2 ] _ [diln<g-[) + ~]} 00;;; I ; 10;;;2 
;; (I + ~;) 12 • 

i1]2[[2(1 + 1;;)2]-1 {_ (I -4 ~) + 2(1 + g-[)2 [ InrI + (41;[)] _ In2] + [diln(4~) + ~]} 2< I; 1< 00 
4 ;;;; [I +(4/;;)] ;; 12' 

"The function diln(z) in the G 2 solution is defined by known as the Dilogarithm function (see Ref. 19). 
"The neutrino flux!, = pp</J 04> °U'. diln(z) = - f~ [In(l + 1)/1] dl = ~:_ I [( -1)"/n2]z".lzI0;;;1.1t is 

TABLE II. Functions </J 0
• </J 0 

4>0 • N;. N; and N; in the Kerr coordinates. 

</J 0 

</J"</J 0 

N' I 

N; 

N; 

G I Solution 

lle ~I(dl 2,,) 

(sinO )1/2 

L 
sinO 

21]2 sinO 

21]2 sinOcosO 

21]2(sinOcosO - 0) 

G 2 Solution a 

1Jeln 
(I + COSO)1/2' OO;;;O';;!!.... 

7Je - ,Cd! -- II) 2 1T 
(1- COSO)1/2' -<0<'1T 

1]2 2 

1+ I cosO I 

{ 
I cosO I [ . (I - I cosO I ) r]} 21]2 (1- I cosO I) + [In(l + I cosO I) -ln2] + --- diln + -

2 1+ I cosO I 12 

{ 
sin20 [. (I - I cosO I) r]} 21]2 cosO (I - I cosO I) + [In(l + I cosO I) - In2] - diln + -

2 I cosO I 1+ Icosl 12 
21]2 cosO {(I _ I cosO I) + (I + I cosO I) [In(1 + I cosO I) _ (In2) I cosO I ] _ sin

2
0 [diln( I - I cosO I ) + ~]} 

I cosO I 1+ I cosO I 2 I cosO I 1+ I cosO I 12 

''The function diln(z) is the Dilogarithm function defined in footnote a in Table I (see Ref. 19). 



                                                                                                                                    

The complex function tP O( ;.() gives the neutrino field via 
the equations 

tP= -tP°p, tPA=tPt A, Lf'=af'AB,tAt B'. (7) 

Here (t A,'1/A) denote the basis of two-component spinors. 15 

The reduced neutrino-gravitational field equations corre
sponding to assumption (iii) and Eqs. (2) and (3) are 

(m + iM); = ieP/2tP°(e-P/2~~;, 

(e - 2Pp{;; ){;; = 0, 

e -2Pp0{;; _ 2R (2)pO = M, 

(ePl2 tP 0); = o. 

(8) 

(9) 

(10) 

(11) 

These equations can also be derived from the paper by Trim 
and Wainwright6 .16 by making appropriate assumptions. 
General solutions of the reduced field equations (8)-(11) are 
not available. However, assumption (iv) implies that the 2-
surfaces dl 2 = 2e2p d;dt has constant negative Gaussian 
curvature. In general one can then choose R (2) = -!. 

3. KERR-LIKE NEUTRINO-GRAVITATIONAL 
SOLUTIONS 

Integration of the above field equations withR (2) = _! 
leads to Kerr_NUT17,18 type neutrino-gravitational space
times characterized by four essential parameters: mO, MO, a 
and '1/. Here mO corresponds to mass, M ° is the NUT param
eter, a is the Kerr parameter while '1/ determines the neutrino 
field up to a constant phase change tP A -..eintP A, n = con
stant. Both the G 1 and G 2 metrics are given via Eqs. (2) and 
(3), where the unknown functions m, M, p, pO, po (;' b, and U 
are written as follows: 

m=mo, M=Mo+tP°~o, e- 2P =2(1+g-t)2, 

po = _ a( 1 -! ;t) + MO + N 
1+!;; I' 

° - at N 
p ;; - 2(1 + g-02 + 2' (12) 

b = iat + aiM ° 
2(1 + g-;)2 ;(1 + ~;) + N 3

, 

I mOr+Mopo 
U= --+ 

2 r + pO' 

The real-valued function NI and the complex functions tP 0, 

N 2, N3 are directly attributable to the presence of neutrino 
fields. Together with tP o~ 0, these functions are listed for the 
G I and G 2 metrics in Table I. 

Introducing angular coordinates e, ¢J by ; = 2ei </> 
X tan(e /2) and a new u coordinate by u = u' - 2M°¢J, one 
transforms (u',r, ;, t) to the Kerr coordinates (u,r,e,¢J ). The 
line element defined by Eqs. (2) and (3) then assumes the 
form 

ds2 = (r + pO') - I ! (Ll - a2 sinze )du2 + 2 [aR sin2e - HLl 

+ N ~ (r + pO') ]dud¢J - (R 2 sin2e +2 HN ~ 

- H 2Ll )d¢J 2 J + 2dudr - 2Hdrd¢J _ (r + pO')de 2, 

with 
(13) 
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H=asin2e +2MOcose +N;, 

Ll = r - 2mor + a2 
- MO' + N; (N; - 2a COse), 

R =r+a2 +Mo2 +N;(N; -20 COSe +2M~+aN;. 
(14) 

In Table II, thefunctionstP 0, tP o~ o,N; ,N ~,andN; forthe 
G I and G 2 solutions are listed. Note that N; , N ~ and N 3 
vanish when the neutrino field is set equal to zero. The re
sulting vacuum Kerr solution is in the form given by 
Kinnersley.18 

4. CONCLUDING REMARKS 

From Table II it is obvious that both G 1 and G 2 admit a 
pair of commuting Killing vectors, K I = au and K2 = a</>. 
Using the Newman-Penrose formalism 15 one can show that 
these solutions possess the properties mentioned in the open
ing paragraphs (see Appendix). Their Weyl tensors are of 
Petrov type II and their respective neutrino fields belong to 
type [2N-2S )(2.1) in the Plebanski classification.2o,21 These 
solutions are stationary axisymmetric. 

From Eqs. (A3), the asymptotic behavior22 of the non-
zero tetrad components of the Ricci tensor is 

tPII = tP~1 r- 4
, 

tP21 = tP~lr-3 + O(r-4) = ~12' 

tP22 = - e-2p[(ePtP~2);; + (ePtP~I); ]r- 3 + O(r-4), 

where tP~1 and tP~1 are given by Eqs. (A2). Consequently, 
at large r 

tPlltP22 - tPI2tP21 <0. (15) 

For a neutrino field subject to assumptions (i) and (ii), the 
energy momentum tensor assumes the form 

Tf'\' = 2tPzzL
"

L" + 2tPII [4L<pn,,) - gf'\'] 

+4tP2IL<pmv) +4tPI2L<piiiv) . 

Here the vector fields L ", nf', mf' and iii" are pseudo-orthon
ormal vectors dual to the basis I-form (3). Using a theorem 
by Wainwright,23 Eq. (15) implies that both G 1 and G 2 vio
late the energy conditions E I , E2 and E3 of Wainwright. 5 ,23 
Moreover, one can show that the condition 

Qf' (u)Qf'(u);>O (16) 

may not be valid with reference to these solutions, where 

Qf'(u) = Tf'''u' 

is the energy flow vector of the neutrino field with respect to 
an observer moving along a future-pointing unit velocity 
U

p
•
24 

The author would like to thank the referee's suggestions 
and for pointing out the work ofWainwright24 on the nonex
istence of physical solutions to the Einstein-Weyl equations 
in static space-times. 

APPENDIX 

In the Newman-Penrose formalism, 15 the non vanish
ing spin coefficients with respect to the basis I-form (3) and 
R (2) = constant are 
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P = - (r + ipl) ~ I, {3 = ! e - PNP, 
ii + (3 = 0, r = - !tf/~p2, 

Il = - R <2p - ~tf/~(p2 + PM + 4>~IP2j5, 
V = - !e~P(tf/~).;p2 - ie-Ppo;tf/~p3 - 4>~IPP 

+ e - P(4)~1 ).;p2j5 + 2ie - PpOt4>~IP3p. (AI) 

Here 

(A2) 

4>~1 = ..!....e~P(4)od>O)t . 
2 

The nonvanishing tetrad components of the Riemann tensor 
are 

tf/2 = - tf/~p3 + 24> ~ Ip3p , 

tf/3 = - e ~ P(tf/~)t;p3 - 3ie ~ Ppo t; tf/~p4 - 4> ~IP2j5 

+ 2e ~ P(4) ~l ).;p3p + 6ie ~ pp0.;4> ~IP4j5, 

tf/4 = - He~2P(tf/~); 1,;p3 - i[tf/~(e~2Pp0I;)1; 

2260 

+ 3e ~2Pp0t;(tf/~).; ],04 + 6e -2P(p0 I; )2tf/~p5 

-(e~P4>~I)I;P2j5+ [(e~2P(4>~I)t;)t; 

+ 2ie ~ Pp0t;4> ~l ],o3j5 + 2i[ 4> ~l (e ~2Pp0t;)t; 

+ 3e ~2Pp0t;(4) ~l)t; ],o4p - 12e ~2P(p0t; f4> ~IP5p , 
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+2e~2Pp0t;pO;4>?IP3j53] + complex conjugate. 
(A3) 
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In this paper we consider the problem of defining and constructing the general relativistic analog 
of the Newtonian homogeneous gravitational force field. With this purpose, the Newtonian 
definition of homogeneity is first reformulated in a manner suitable for nonflat space sections and 
is then shown to lead to a covariant characterization of static space-times admitting uniform 
gravitational force fields. This covariant characterization is both necessary and sufficient and is 
consistent with the necessary conditions of homogeneity introduced by Goodinson. Further, a 
whole class of static solutions of the Einstein-Maxwell equations, all admitting homogeneous 
gravitational force fields, is obtained and some of their properties are discussed. In particular, 
this class of electrovac solutions appears to exhibit the remarkable property that the me tries and 
the source electromagnetic fields are free of singularities. 

1. INTRODUCTION 

This paper is devoted to an analysis of the concept of the 
homogeneous gravitational force field in the general theory 
of relativity (GTR). The homogeneous gravitational force 
field is perhaps the simplest of all Newtonian gravitational 
fields and is invariably studied in all elementary introduc
tions to the subject. Even though the concept of a homogen
eous gravitational force field is very simple in the Newtonian 
theory, one cannot say the same thing in GTR. The problem 
of carrying over the concept of the homogeneous gravita
tional force field into GTR is not trivial and it would be 
interesting to study how far GTR can accommodate this 
Newtonian concept. 

With this aim, we introduce here a certain definition of 
a homogeneous gravitational force field in a static space
time, leaning heavily on the Newtonian definition. Confin
ing our attention only to static space-times, we then show 
that this definition of homogeneity can be cast into a covar
iant form yielding thus a covariant criterion which is both 
necessary and sufficient for the existence of a homogeneous 
gravitational force field in static space-times. In Sec. 3, using 
this criterion of homogeneity, we give a simple prescription 
to construct exact static solutions of the Einstein equations 
admitting uniform gravitational force fields. In the rest of 
this paper, we construct and analyze such a class of electro
vac solutions of the Einstein equations. 

2. THE HOMOGENEITY CRITERION 

In the Newtonian theory, a uniform gravitational force 
field is defined as a vector field which is homogeneous both 
in space and time. Since the gravitational force is regarded as 
an absolute "physical" force in Newtonian theory and is dis
tinguished from the forces of inertia which appear in nonin
ertial reference frames, this definition of uniformity or ho
mogeneity retains its meaning in all reference frames. 
However, in GTR, it is impossible to give an observer-inde
pendent meaning to the homogeneity of a gravitational force 
field because, here, the "gravitational forces" are essentially 
the accelerations of the observer himself. Thus, in GTR, the 

concept of homogeneity can be defined only with respect to 
an observer and this problem has been discussed recently by 
Goodinson. 1 In the same paper,l Goodinson has also given a 
set of necessary local conditions in order that the gravita
tional 3 force measured by an observer may appear homo
geneous to him. 

Here, we introduce a definition of homogeneity which 
is greatly akin to the Newtonian definition and also satisfies 
all the three necessary conditions of Goodinson.l However, 
we confine our attention only to static space-times as the 
concept of a homogeneous gravitational force field is essen
tially Newtonian and static Einstein fields bear the closest 
relation to Newtonian gravitational fields. 

In GTR, a test particle, which is otherwise free, moves 
along a geodesic. Thus, according to an observer who is also 
moving geodesically, the gravitational force on the test parti
cle vanishes and this is commonly referred to as the elimina
tion of gravitational force in GTR. However, it is evident 
that the gravitational force on test particles is not zero ac
cording to an observer who is not following a geodesic; in 
fact, an observer moving with a 4 velocity Ui(Ui U

i = - 1) 
ascribes the gravitational force ai _Ui to a test particle of 
unit mass. H Therefore, a 4 velocity field (corresponding to a 
set of observers) serves to define a gravitational force field 
throughout space-time. In particular, the gravitational force 
measured by observers at rest relative to the frame of refer
ence' of a space-time coordinate system x i is given by ai 

U;;k U" where Ui is the field of tangents to the time lines 
(xa 

= const.) of the coordinate system. We shall refer to this 
force field as the gravitational force field existing in the refer
ence frame provided by the coordinate system x'. 

Let us now examine gravitational force fields in static 
reference frames (of static space-times). By definition, a 
frame of reference is said to be static if it is attached to a 
coordinate system Xi in which the line element assumes the 
form 

(2.1) 

where galJ and t/J are independent of X O = t. 
In such a coordinate system, a direct calculation yields 
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the following quantities [see also Synge5 (pp. 388 to 340)]: (i) 
the tangent vector field of the time lines x a = const.: 

U u _
dxa 

-( --"'000) =-- e '" , 
d7' 

(2.2) 
Uu = ( - e"',O,O,O) , UUUa = - I, 

where we have chosen 7' such that t is an increasing function 
of 7' along the time lines x a = const; (ii) the non vanishing 
Christoffel symbols 

r;:" = ~", rga = tf;.a' r;, = g"'f3e2"'tf;.f3' (2.3) 

where 1,:" denote the Christoffel symbols constructed from 
the spatial metric gil v ' and the comma denotes ordinary par
tial differentiation; (iii) the tensor Ua;b: the only nonzero 
component of the tensor Ua;b obtained by covariant differen
tiation of Ua is given by 

Ua;o = - r~o Uo = e"'tf;.a; 

(iv) the acceleration field a': 

(2.4) 

. k ; 
a;=U; = U;;kU = (0,tf;.I,tf;.2,tf;.3);a;U =0, (2.5) 

a; = (O,glatf;.a ,g2atf;.a ,g3atf;.a ), (2.6) 

a2=a k ak = g"'f3tf;.a tf;.f3; (2.7) 

(v) the tensor au: 

ao;o = - r ~ aa = - e2¢g"'f3tf;.a tf;.f3 = - a2e2"', (2.8) 

ao;" = 0, aa;O = 0, (2.9) 

aa;f3 = tf;.af3 - r ~f3 tf;",; (2.10) 

(vi) the vector a;_ a;;j Uj: 

a; = (ao;o UO,O,O,O) = ( - a2e"',0,0,0) = - a2U;. (2.11) 

From Eqs. (2.2), (2.5), and (2.11) we obtain the 
relations 

Uu = -a;~, UI;~J-al~J=O, (2.12) 

showing that Ua is a static congruence. 6 These equations 
(2.12) in turn imply 

() gijU;;} = - gija; ~ = 0, 

(7ij=U(i;}) + aU~) + !(}(gij + U;~) = 0, 

{J)'j= - UI ,;} I - ai' ~ 1= 0, 

(2.13) 

(2.14) 

(2.15) 

which show that a static congruence is necessarily rigid and 
normal. 

Coming back to the acceleration vector a" we see that 
(as a i U' = 0) it lies entirely in the infinitesimal 3-rest space 
of an observer whose 4 velocity is U,. Moreover, in the case 
of a static reference frame, like the one we are considering, 
the infinitesimal 3-rest spaces of observers traveling along 
the time lines mesh into a finite spacelike hypersurface called 
a space section. 6 Thus, at any moment of time t = to in a 
static reference frame, a, lies entirely in the space section 
t = to which has the metric gaf3 and the spatial components 
aa of a i form the covariant components of a 3 vector a de
fined throughout this space section. The contravariant com
ponents of a are then given aU = g"'f3af3 and a gives the inten
sity of the gravitational 3 force existing in the static reference 
frame. Here we must mention another interesting derivation 
of a given in Landau and Lifshitz. 7 
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Observe that a is already independent of time by virtue 
of the static nature of the reference frame. Following the 
Newtonian definition of homogeneity, we now define a to be 
spatially homogeneous if it is constant throughout a space 
section. Since the space sections are in general non-Euclid
ean, the constancy of a with respect to to the space metricgaf3 
has to be defined only as8.9 

(2.16) 

where 1~f3 are the Christoffel symbols of the space metric 
gaf3' An immediate consequence of Eq. (2.16) is that 

(a"aa ).fJ = 0, (2.17) 

which shows that the magnitude of a is a constant through
out the space section. This lends more support to Eq. (2.16) 
as a definition of homogeneity of a. 

Note that for the metric (2.1) r::f3 r ~fJ and hence Eq. 
(2.16) requires only the spatial components of the covariant 
derivative a,;} to be zero. Thus, Eq. (2.16) is not a covariant 
condition. However, it can be cast in a covariant form easily. 
To see this consider the projection tensor 

(2.18) 

associated with Ua • This tensor "projects" into the 3-rest 
space of an observer with 4 velocity Ua . In particular, for the 
metric (2.1) and the vector field (2.2) we have 

hoo = hOa = 0, haf3 = gaf3' 

hg =h~ =h~=O, h'8 =0'B. (2.19) 

Because of this, the vanishing of the spatial components of 
a';j makes the tensor h ~h~a;;j vanish completely, i.e.Jor a 
static congruence Ua , the noncovariant condition (2.16) is 
equivalent to the covariant requirement 

(2.20) 

Note that Eq. (2.20), when true of a static congruence Ua , is 
also sufficient to guarantee Eq. (2.16), for, in a special co
ordinate system with the congruence U, as the time lines, 
Eqs. (2.2) and (2.19) are true and hence Eq. (2.20) reduces to 

h ~h eaa;f3 = o~oeaa;f3 = ail;v = 0, 

which is Eq. (2.16). Thus, Eq. (2.20) is the necessary and 
sufficient, covariant, condition for the homogeneity of the 
gravitational3-/orcefield existing in a static reference frame. 
This leads to the following theorem: "A space-time admits a 
homogeneous gravitational force field if it possesses a static 
congruence Ua satisfying Eq. (2.20)." 

We will now show that Eq. (2.20) is consistent with the 
necessary covariant conditions of homogeneity introduced 
by Goodinson. 1 First, we observe that the equation (2.20), or 
its equivalent equation (2.16), implies the constancy of the 
scalar a=(a"a k )I!2, i.e., 

a k =0. (2.21) 

We only have to differentiate a2 to see this; we then get 

a2
A = (a,a').k = 2a';ka\ 

which vanishes by virtue ofEqs. (2.6), (2.9), and (2.16). The 
condition (2.21) is one ofthe Goodinson conditions of homo
geneity. To get the others, we have to consider the spacelike 
congruence defined by the unit spacelike vector field 
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1 
K; = -aj> K;K;= +1 

a 

and its kinematical quantities I 

expansion scalar (). PijK;;j' 

shear tensor at P~P JK(a;b) - !() ·Pij' 

rotation tensorwt P~pJKla;b J' 

where 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

Pij_g;j + U;~ - K;Kj = hij - K;Kj = Pji' (2.26) 

This projection tensor Pij associated with K, has the follow
ing properties: 

P~ = 2, pabKb = 0, 

pabUb = 0, Pacpbc = P~. (2.27) 

Particularly for the K; congruence of the static congruence 
(2.2), the components of P j are given by [see Eqs. (2.5), (2.6), 
(2.19), (2.21), and (2.22)] 

Pg = 0, P~ = 0, P ~ = 0, 
(2.28) 

P " h" K"K i:" 1" {3 = {3 - {3 = U{3 - - a a{3' 
a2 

Now, using Eq. (2.28) and observing that Ko;o = (l/a)ao;o is 
the only nonzero component of K;;j for a homogeneous 
gravitational force field [this follows from Eqs. (2.9), (2.16), 
(2.21), and (2.22)], it is easy to see that all the three kinemati
cal quantites defined in Eqs. (2.23)-(2.25) vanish for the K; 
congruence of a homogeneous gravitational force field. We 
thus obtain the necessary conditions 

(). = 0, (2.29) 

at =0, (2.30) 

wt = 0, (2.31) 

which, in addition to Eq. (2.21), characterize a homogen
eous gravitational force field. To these conditions we may 
add three more conditions, namely Eq. (2.13)-(2.15), which 
describe the static nature of the U; congruence. Thus, we 
have, in all, seven necessary conditions characterizing a ho
mogeneous gravitational force field. Out of these, the four 
conditions (2.13), (2.14), (2.21), and (2.29) are the Goodin
son necessary conditions of homogeneity. 

This discussion shows that the condition (2.20) is a 
stronger, but consistent, condition of homogeneity for static 
gravitational 3-force fields. Moreover, it has the advantage 
of being a simple covariant condition which is both neces
sary and sufficient. 

3. PRESCRIPTION FOR CONSTRUCTING 
HOMOGENEOUS GRAVITATIONAL FORCE FIELDS 

It is now obvious that the problem of construction of a 
model of a homogeneous gravitational force field is simply 
the problem of construction of a suitable static congruence in 
space-time. However, we must note that it is not sufficient to 
have a mere mathematical solution, namely, a real static co
ordinate system x; whose time line congruence satisfies Eq. 
(2.20); we must also see that the corresponding space-time 
geometry satisfies the Einstein field equations for some phys-
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ically reasonable situation. Therefore, one way to find mod
els of homogeneous gravitational force fields is to check 
whether the known static Einstein fields admit static congru
ences satisfying Eq. (2.20), but there is little chance of find
ing such solutions. The other way is to construct anew solu
tions admitting homogeneous gravitational force fields. In 
doing this, as we do not know what sort of matter-energy 
distributions lead to homogeneous gravitational force fields, 
we have to adopt what Synge [Ref. 5 (p. 189)] calls the g 
method in which a set often sufficiently smooth functions 
gij(x), having everywhere the signature (- + + +), is 
chosen and the energy tensor is calculated from the Einstein 
equations. The energy tensor so obtained is then examined 
for physical acceptability, by considering the algebraic sign 
of its energy density (which must be positive) and the other 
eigenvalues. This g method, in conjuction with the condition 
(2.16), leads to a simple prescription for the construction of 
exact static solutions which admit homogeneous gravitional 
force fields. It is as follows: "With a suitable static spatial 3 
metric ga{3' find a solution 1/1, of the differential equation 

1/1.,,{3 - t;{31/1.a = 0, (3.1) 

where t;{3 are the Christoffel symbols ofga {3' Then construct 
the energy tensor 

Tij = - (817') - I{Rij - !Rgij - Agij} (3.2) 

for the static line element 

ds2 = gapdxa dx13 - e21l'dt 2. (3.3) 

If this energy tensor Tij represents a "reasonable" physical 
situation, then Eq. (3.3) is an example of a space-time admit
ting a homogeneous gravitational force field." 

4. ELECTROVAC MODELS OF HOMOGENEOUS 
GRAVITATIONAL FORCE FIELDS 

We now proceed to construct a class of static electrovac 
solutions which admit homogeneous gravitational force 
fields. The key point is to apply the prescription of the pre
vious section to a spatial line element of the form 

(4.1) 

where L = L (x), M = M (y,z), and N = N (y,z). As L is a 
function of x alone, it is possible to absorb e2L into dx2 by a 
simple scale change in x, but we shall retain this term for the 
time being as it is a simple matter to set L = 0 whenever we 
want it. The non vanishing components of the Christoffel 
symbols for the metric (4.1) are 

I L • .2 M • .2 -M • .2 - N 2(N-M) 
YII = I' r22 = 2' r23 - 3' r33 - - 2 e , 

(4.2) 
• .3 __ M e2(M - N) • .3 N • .3 N 
r22- 3 ,r23= 2' r33= 3' 

where we have used the notation!" fa sothatL I L.I,M3 
=M.3 , etc. With these Christoffel symbols, we now set out to 
solve the partial differential equation (3.1) in the unknown 
1/1. The problem is pretty hard if 1/1 is dependent on all the 
three coordinates (x,y,z) and so we look for special solutions. 
Fortunately, a solution exists when 1/1 is a function of x alone. 
Then all the derivatives of 1/1, except 1/1.1 =1/11 and 1/I.1I 1/III' 
vanish and Eq. (3.1) becomes 
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¢II -LI¢I =0. 

This is an ordinary differential equation in ¢ and has the 
general solution 

t/J(x) = m + k f eL(x)dx, (4.3) 

where m and k are two (real) constants of integration. With 
this ¢, we now form the static space-time metric 

ds2 = e2Ldx2 + e2Mdy2 + e2Ndz2 _ eNdt 2, (4.4) 

which admits a homogeneous gravitational force field of in
tensity [see Eq. (2.5)] 

aa = ¢,a = (keL,O;O). (4.5) 

It only remains to see what sort of physical situation is 
represented by Eq. (4.4). For this we have to construct the 
energy tensor of Eq. (4.4). First, regarding the Christoffel 
symbols ofEq. (4.4), we observe that the spatial components 
of r Jk are already given in Eq. (4.2) and of the other compo
nents, only 

r7o=¢I' r~=¢le2(t/'-L) (4.6) 

are nonzero. From this, we obtain the non vanishing compo
nents of the Riemann tensor 

Robed = !(god.be + gbe.ad - gac.bd - gbd.ac) 

+ gmn(r';dr~e - r:r~d) (4.7) 

to be 

Roiol = k 2exp( 2L + 2k f eL(Xldx) = k 2e2(L + tbl, (4.8) 

R 2323 = - e2M (M33 + M~ - M3N3) 

- -e2N(N22 +N~ -M2N2)' (4.9) 

where we have set the constant m appearing in Eq. (4.3) 
equal to zero, as this can always be absorbed into t. Contract
ing R abed , we find that the Ricci tensor 

(4.10) 

has only the following nonzero components: 

Roo = - k 2e2tl-, RII = k 2e2L, 

R22 =e2M - 2N (M33 +M~ -M3N3) 

+N22 +N~ -M2N2, (4.11 ) 

R33 = e2N - 2M (N22 + N~ - M2N2) + M33 

+M~ -MJ N3. 

UsingRab and gab , we find the components of the tensor M% 
= R % - !Rt5% - At5% to be 

Mg =M: =e-2M-2NR2323 -A, 

M~ =Mj = -k 2 -A, (4.12) 

where we have shown only the nonvanishing components. 
This tensor is important because it is related to the energy 
tensor T% by 

T~ = - (81T)-lM~ (4.13) 

and we shall now examine whether it is possible to choose the 
arbitrary real functions L,M and N (¢ is already determined, 
as a function of L, by the homogeneity criterion) in the met
ric (4.4) such that the energy tensor (4.13) has a reasonable 
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physical model. First of all, we shall check whether a me
chanical fluid model exists for Eq. (4.4). In a general energy 
tensor, to get pressure rather than tensions and an energy 
density which is positive! this is even more important; see 
Synge [Ref. 5 (p. 316)]J, T% should have 

Tg <0, Ti >0, T~ >0, T~ >0, 

which follows from the fact that T~ is diagonal in our co
ordinate system with eignevalues appearing along the diag
onal [see Eqs. (4.12) and (4.13)]. Equivalently, M~ should 
have 

Mg >0, M: <0, M; <0, M~ <0. 

However, this is impossible in view ofEq. (4.12) and hence 
tensions are also present in the energy tensor we are consider
ing. Thus, we have to rule out fluids as possible models for 
Eq. (4.4). Moreover, the presence of tensions and the pair
wise equality of the eigenvalues of Tj actually suggests that 
we look for a free electromagnetic field as a model of Eq. 
(4.4), as the electromagnetic field energy tensor also has the 
same properties. In that case, the M j of Eq. (4.12) must 
satisfy the Rainich-Misner-Wheeler (RMW) equations lO

-
12 

M~ =0, 

M';"M'b = !(MmnMmn)t5%, 

aa.b - ab.a = 0, 

y' _gc Mbm;eM d 
'-':abcd m 

aa -----------------M2 

M2=MmnMmni=0, 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Mabvavb>O, (4.18) 

where the last equation must be true for all timelike vectors 
va. We shall now check whether these equations are satis
fied by Eq. (4.12). 

Of the RMW equations, the differential equation (4.16) 
is trivially satisfied in this case as a j vanishes identically by 
virtue of the diagonality of gij and Mij' The equation (4.18) 
requires 

(4.19) 

and the other two equations (4.14) and (4.15) are satisfied if 

Mg +M~ =0, (4.20) 

which, when written completely, reads 

2A +k 2+e- 2''V(M22 +M~ -M3N J ) 

+e- 2M (Nn +N~ -M2N2)=0. (4.21) 

Thus, in Eqs. (4.19) and (4.21), we have two conditions to 
determine the three unknowns L, M, and N, indicating that 
solutions of the RMW equations do exist. Of these two equa
tions, Eq. (4.19), combined with Eq. (4.20), conditions only 
the two constants k 2 and A such that 

(4.22) 

The other equation (4.21) determines only M and Nand 
hence L is left undetermined. Thus, we can choose any con
venient functional form for L (x). Regarding M and N, as 
there is only one Eq. (4.21) to determine them, we choose 
anyone of them arbitrarily and determine the other. With 
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each such solution (M,N) and a convenient choice of L 
(which only amounts to a choice of a suitable scale for the x 
coordinate) we obtain an electrovac solution admitting a ho
mogeneous gravitational force field of intensity a given in 
Eq. (4.5). Thus, solutions ofEqs. (4.21) and (4.22) form a 
whole class of static electrovac solutions admitting homo
geneous gravitational force fields. 

5. SOLUTIONS OF THE DIFFERENTIAL EQUATION 
(4.21) 

Depending on the constant parameter 

p2 k 2 + 2A 

which satisfies, by virtue of Eq. (4.22), 

(5.1) 

p2>A, (5.2) 

a number of cases arise with the differential equation (4.21). 
They can be collected under three groups corresponding to 
A~O as follows: 

case I: A >0, p2>A >0, k 2 ;>0; 

case II: A = 0, p2 = k 2 > 0; 

case III: A < 0, p2 > A, p2~0. 

Further, there are two subcases in I corresponding to k 2;>0 
and there are three subcases in III corresponding to p2~0. 
We shall designate them as follows: 

case la: A > 0, p2 > A > 0, k 2 > 0; 

case Ib: A > 0, p2 > A > 0, k 2 = 0; 

case Ilia: A <0, p2>0>A, k2> - 2A; 

case IIlb: A <0, p2 = O>A, k 2 = - 2A; 

case I1Ic: A < 0, 0> p2 > A, k 2 < - 2A. 

The parameter p is real in all the cases with the exception of 
the case IIlc, in which it is purely imaginary. We now give 
some solutions of Eq. (4.21). As already remarked, Eq. 
(4.21) alone does not determine both the functions M and N 
and we have to supplement it with an extra condition which 
is at our choice. Thus we consider the following special 
solutions. 

A. Solutions with M = N 

In this case Eq. (4.21) reduces to 

M22 + M33 = - p2e2M. (5.3) 

Even this is not a simple equation and we have not found any 
solutions for P=l=0. However, whenp = 0, which corre
sponds to case IIlb, we obtain the familiar two-dimensional 
Laplacian equation -

(5.4) 

which has a whole class of solutions. For example, we may 
choose M = M (y,z) to be the real or imaginary part of any 
complex function which is analytic in the complex variable 
y+iz. 

B. Solutions with N = 0 

In this case Eq. (4.21) becomes 
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(5.5) 

Since this does not detemine the y dependence of M, we shall 
obtain some solutions by spcifically assuming that M is inde
pendent of y. Then, writing 

eM = f(z), (5.6) 

we obtain from Eq. (5.5) 

d'l 2 
- +PJ=O. 
dz2 

Thus, they-independent solutions ofEq. (5.5) is 

eM = A cos(pz) + B sin(pz), 

(5.7) 

(5.8) 

where A and B are two constants of integration. Solutions of 
this form exist for all the types except I1lb and HIe. We must 
choose the solution ofEq. (5.7) as 

eM = A cosh(p'z) + B sinh(p'z), p=ip', (5.9) 

in the Case IIlc, where p2 < 0, and as 

eM =A + Bz (5.10) 

in the Case IIIb, where p = 0. 
Apart from these solutions, we can, in principle, obtain 

other solutions by determining M for a given functional form 
of N, as in that case Eq. (4.21) becomes a partial differential 
equation in M only. We shall however be satisfied with the 
special solutions that we have obtained above as they contain 
solutions of all types la to Hlc. 

6. PROPERTIES OF THE SOLUTIONS 

Here we shall study some properties of the electrovac 
solutions that we obtained in the previous section. The prop
erties studied include the electromagnetic fields and their 
sources, the Petrov types, and the singularities of the 
metrics. 

A. An orthonormal tetrad 

For our future calculations we need an orthonormal 
tetrad (OT) of vectors. For Eq. (4.4), the unit tangent vectors 
of the coordinate curves of the coordinate system (t,x,y,z) 
form a convenient ~T. This OT is given by 

e;O) = (e - ';',0,0,0), e(l) = (O,e - L,O,O), 

e(2) = (O,O,e - M,O), e(3) = (O,O,O,e - N), 

where the indices in the brackets label the vectors. 

B. The electromagnetic field 

(6.1) 

Since the complexion scalar a is a constant throughout 
the space-time represented by Eq. (4.4) (this follows from 
the vanishing of a i a,,.), the electromagnetic field Fab of 
Eq. (4.4) is related to its Maxwell rOotfab 10-12 by a constant 
duality rotation, i.e., 

Fab = cosalab - sina Jab' a = const, (6.2) 

where *fab = !( - g) 112 EabcJcd is the dual of lab . The arbi
trariness of the constant a can be used to give any desired 
complexion to the field Fab . The choices a = ° and 1T /2 cor· 
respond, respectively, to purely electric and magnetic com
plexions whereas any other choice of a in (0,1T12) givesFab a 
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mixed complexion. To find the Maxwell root ofEq. (4.4) we 
use the prescription of Misner and Wheelerll which leads to 

(101)2 = q2e2L + 2';', l=A + k 2 > O. (6.3) 

Thus, 

(6.4) 

where we have chosen the positive root. The negative root, if 
desired, can be obtained from Eq. (6.4) by a duality rotation 
through a = 1T. It is easy to check that all other components 
of/ab are zero and thus Eq. (6.4) gives the complete Maxwell 
root. Using Eqs. (6.4) and (6.2), we get the electromagnetic 
fields of Eq. (4.4). The tetrad components ~ab) of lab in the 
OT (6.1) are given by 

hOI) = q. (6.5) 

All other components vanish. 

C. Field Singularities and sources 

It is believed that field singularities are the seat of the 
sources of the electromagnetic field. These singularities may, 
in general, appear as singular points, lines, or surfaces and to 
locate them we need the invariants of the field. The two in
variants of the electomagnetic field (6.2) are given by 

FI = !FabFab = - q cos2e, 
(6.6) 

As both these invariants are constants, it appears that there 
are no intrinsic (i.e., coordinate-independent) singularities 
for the field (6.2). 

D. Petrov classification 

The Petrov classification is based on the invariants of 
the Weyl conformal tensor C abed' For electrovac space-time 
in the presence of the cosmological constant A, C abed is de
fined as ') 

2,1 
Cabed = Robed + M abed - 3gabed' (6.7) 

where 

Mabed = !(gaeMbd + gbdMac - gadMbe - gbeMad) 
(6.8) 

and 

gabcd = !(gaegbd - gadgbJ· (6.9) 

Referred to the OT (6.1), C obed has the nonvanishing 
components 

- C(OIO!) = C(2323) = 2C(0202) = 2C(0303) = - 2C(1212) 

= - 2C(1313) = 2A /3. (6.10) 

From this it follows that (see, for example, Anderson 14) Cabed 

is of Petro v typeD. For solutions with A = 0, Cabed is con for
maIIy flat. 

E. Complete system of second order differential 
invariants and singularities of the metric 

We now determine the basis of the complete system of 
second order invariant functions of the metric tensor gab of 
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Eq. (4.4). We do this in an attempt to locate intrinsic singu
larities of the metric. 

The basis for the absolute scalar invariants of order 2 
consists of 14 independent invariants (Ref. 15,16, and 13 (pp. 
126 to 131)]. Here we follow the scheme of enumeration 
given by Narlikar and Karmarkar." According to this 
scheme, the 14 invariants are 

II =R~, 12 =R~R%, 13 =R%R~R~, 
14 = R ~R ~R ~R ~, 

J I = ghjg'i<A hiji< , J2 = ghig'k B hijk , 

J 1 = ghjgik E hijk' J4 = ghjgik F hijk , 

K - R hiR ikC K - R hiR ikA 
1 - /".,hijk , 2 - hijt.. , 

K =RhiR "D .. _, hlj'" 

K4 = QhJQiI'Chijk , Ks = QhJQikAhijk' 

K6 = Q"JQikDhtj!., 

where C itijk is the Weyl tensor, and 

A hijk = C/llpq Cjkrsftrgq" 

B lnjk = ChipqAjkrsgPrgq" 

1 
D hijk = B hljk - 12 J2 (ghigik - ghkgtj) 

- VI C htjk ' 

Dhlik = (IJ3 j) - 1/2Dhtjk' 

Eh(i!. = ChipqDrsjkgPrg"', 

Flni!. = ChlpqErsik gprg
q
" 

Qj=R~R;' 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

Since we are evaluating invariants, we can use any coordi
nate system and we shall use a locally Galilean coordinate 
system in which gtj = gtj = diag( -1,1,1,1). The OT (6.1) 
provides such a coordinate system and the components of 
any tensor in this coordiante system are simply the tetrad 
components with respect to Eq. (6.1). In view of the special 
diagonal structure of the metric tensor gtj, the formulas 
(6.12)-(6.20) simplify considerably and we get after a 
straightforward computation 

II = -4,1,12 =2k4+2(2A +k 2f, 

13 = 2k 6 - 2(2,1 + k 2)3, 

14 = 2k H + 2(2,1 + k 2)4, J I = SA 2/9, 

J
2 

= 8,11/9, J 1 = - 8,1 4/9, 

J
4 

= - SA 5/27, KI = (1M /3)(,1 + k 2)2, 

K2 = (8,1 2/9) [(2,1 + k 2)2 - 2Ak 2], 

K1 = - 2'\18 A (A + k 2)2, 
. 3 

K4 = (64/3),1 3(,1 + k 2)2, 

Ks = (8,1 2/9) [k 8 + k 4(k 2 + 2,1)2 + (2,1 + k 2)4], 

K6 = - (64/9),1 5 (A + k 2)2. 

Thus, we see that all the 14 basis, absolute, invariants of 
order 2 associated with the metric (4.4) are constants 
throughout space-time and hence are completely free of sin
gularities. This tempts us to conclude that the space-time 
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domain in which Eq. (4.4) is valid is itselffree of singulari
ties, but we cannot be sure of this as these invariants give 
only a partial information on the nature of the space-time 
geometry. 

Summing up, we see that the electrovac solutions asso
ciated with Eq. (4.4) appear to exhibit a remarkable property 
in that all the second order differential invariants and the 
electromagnetic-field invariants are completely free of 
singularities. 

F. Discussion of some special solutions 

To conclude, we now display some typical special solu
tions and discuss a few of their properties. The solutions with 
the corresponding choice of the functions and the constant 
parameters A and k are collected below. All these solutions 
admit a homogeneous gravitational 3-force field of intensity 
a given by 

a" = (k,O,O). (6.21) 

Solution lisA >0, k 2>0,p = (2,.1 + k 2) 1I2,L = 0, 
'" = kx, N = 0, M = A cos(pz) + B sin(pz), ds2 = dx2 

+ dy2exp[2Acos(pz) +2B sin(pz)] + dz2 - e2kxdt 2, Pe
trov typeD. Solution II isA >0, k = O,p = (2,.1) 112, L = 0, 
'" = 0, N = 0, M = A cos(pz) + B sin(pz), ds2 = dx2 + dy2 
X exp[2A cos(pz) + 2B sin(pz)] + dz2 - dt 2, Petrov type 
D; the coordinate system is static and synchronous. Solution 
III is A = 0, k 2 > 0, L = 0, 1/J = kx, N = 0, M 
= A cos(kz) + B sin(kz), ds2 = dx2 + dy2exp[2A cos(kz) 
+ 2B sin(kz)] + dz2 

- e2kXdt 2, conformally flat solution 
without the cosmological term A. Solution IV is A < 0, 
k 2 > - 2,.1 > 0, p = (2,.1 + k 2)1/2, L = 0, '" = kx, N = 0, 
M = A cos(pz) + B sin(pz), ds2 = dx2 

+ dy2 exp[2A cos( pz) + 2B sin(pz)] + dz2 - e2kXdt 2, Pe
trov type D. Solution V is A < 0, k 2 = - 2,.1 > 0, L = 0, 
'" = kx, M = N = 0, ds2 = dx 2 + dy2 + dz2 - e1kxdt 2, Pe
trov type D; space sections t = constant are all Euclidean. 
Solution VI is ,.1<0, -2,.1 > k 1> O,p = ( - 2A _ k 2)1/2, 

L = 0, '" = kx, N = 0, M = A cosh(pz) + B sinh(pz), ds2 

= dx1 + dy1exp[2A cosh (pz) + 2B sinh(pz)] + dz2 _ e2kx 

X dt 2, Petrov type D. 

In all these solutions A and B denote two arbitrary constants 
of integration. 

Lastly, we wish to make a few remarks on the solutions 
II, III, and V given above. The solution II corresponds to a 
coordinate system in which the gravitational 3 force is zero. 
Moreover, it provides an example of a nonflat metric which 
admits a static synchronous reference system. (A coordinate 
system in which goo = -1 and gOa = ° is said to be a syn
chronous coordinate system.) This appears to contradict, at 
first sight, the theorem quoted in Landau and Liftshitz [Ref. 
7 (p. 292)] that "a synchronous reference system cannot be 
stationary." This simply means that there cannot be a non
flat metric in which goo = - 1, gOa = 0, and the other met
ric tensor components are independent of the time coordi
nate t. However, there is no contradiction as the Landau
Liftshitz theorem holds only when A = ° and in solution II, 
A # 0. Also, this metric admits an inertial reference frame in 
the sense of Audretsch. 17 According to Audretsch, a refer-
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ence frame which is both static and synchronous is the ana
logue of the inertial frame in G TR and such a reference 
frame is provided by a timelike congruence Ua which is co
variantly constant, i.e., 

Ua;h = 0. (6.22) 

In view of", = 0, the time line congruence of this solution 
(II) clearly satisfies Eq. (6.22) [see Eq. (2.4)]. Audretsch has 
also shown that if an electrovac solution admitting an iner
tial reference frame exists, then it must be a Petrov D-type 
solution corresponding to a nonzero negative value of A. 
This is clearly consistent with the solution II. (Note that 
Audretsch works with a metric of signature -2 and his 
condition A < 0 when translated into signature +2 with 
which we are working, becomes A> 0.) 

Solution III is worth noting as it is an example of a 
space-time admitting a homogeneous gravitational force 
field without the cosmological constant A. Note that all the 
other solutions we have found need a nonzero A and it ap
pears as if a homogeneous gravitational force field can be 
found only when A # 0. Thus, it is satisfying that we have at 
least one example of a homogeneous gravitational force field 
with A = 0. 

The solution V is essentially the solution 

(6.23) 

which we obtained some time ago. 18 Here, k and r denote 
respectively the 3 vectors (k l ,k2 ,k3) and (x,y,z). On choos
ing the x axis along the direction of k, Eq. (6.23) reduces to 
the solution V. The metric V also bears an interesting rela
tionship with the "Godel-type" metric l9 

ds2 = dx2 + !e2k1dy2 + dz2 - (dt + ek1dy)2, (6.24) 

where k = ( - 2,.1 ) 1/2, ,.1< 0. This metric can be interpreted 
as the geometry of an electromagnetic field with a removable 
gra vitational field in the background. If we replace ekl by ekx 

in Eq. (6.24), we get the well known Godel solution [Ref. 8 
(p. 438)] and that is why we have called Eq. (6.24) a Godel
type solution. However, the appearance of Eq. (6.24) as a 
stationary solution is only superficial and in Ref. 19 this met
ric was erroneously called a nonstatic metric. In fact, Eq. 
(6.24) is precisely the Solution V written in a new coordinate 
system. The coordinate transformation 

t _ x' V2 - kl' , - V2 + -k- e ,x=t, y=y', z=z' 

sends the solution V into 

ds2 = !e2kl dX'2 + dy'2 + dZ'2 - (dt' + ek"dxY, 

which is Eq. (6.24) except for a trivial renaming of y' as x' 
and vice versa. 
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Exact solutions of Brans-Dicke theory for irrotational barotropic models 
with stiff matter 
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(Received 1 May 1979; accepted for publication 3 October 1979) 

In the previous work, we have obtained classes of exact solutions of Brans-Dicke (BD) theory 
when only a scalar field is present and also in the presence of an electromagnetic field. In the 
present paper, we have generated a new class of solutions of BD theory corresponding to 
irrotational barotropic perfect fluid with pressure equal to energy density. The main result of the 
paper may be stated as follows: "Corresponding to any diagonalizable solution of Einstein 
vacuum field equations, in which fields and metric tensors are functions of not more than three 
variables, we can generate a solution of the Brans-Dicke theory for the irrotational barotropic 
perfect fluid with pressure equal to energy density." 

1. INTRODUCTION 

In a recent paper,1 it was found that the Einstein equa
tions for a self-gravitating fluid, with pressure equal to ener
gy density and four-velocity U a , are equivalent to the field 
equations 

Rab = - 20a Ob , 

Do=o'k =0. 
In case of irrotational fluids, we have 

Ua = OJ\! OeOc. 

(1.1) 

(1.2) 

(1.3) 

The pressure and density of the universe are given by 

p =p = OcOc, 

and the energy-momentum tensor is 

Tah = 20G Oh - gabOcOC . 

(1.4) 

(1.5) 

The general solutions of the field equations (1.1) and 
(1.2) for plane symmetric and cylindrically symmetric me
trics have been obtained by the authors given in Refs. 1 and 
2. It was also pointed out that the field equations are related 
to BD-field equations in vacuum. The latter equations are 
reducible to the form 

by defining 

exp[O I(w + 3/2)112] = ifJBD' 

gah = exp[O I(w + 3/2)1I2]gab(BD)' 

The present paper is a continuation of our previous 
work3

,4 in which we have obtained classes of exact solutions 
ofBD-theory when only the scalar field is present and also in 
the presence of an electromagnetic field. The solutions were 
obtained by transforming BD-field equations into Einstein 
vacuum field equations assuming the functional relationship 
amongst scalar fields, one component of the metric tensor 
and field potential. Here we have considered the energy
momentum tensor in the form of a perfect fluid given by (1.4) 
and (1.5). In this way we have obtained one more class of 
solutions of BD-field equations by transforming them into 
Einstein field equations. 

In Sec 2, we have set up BD-field equations in a suitable 
form by assuming a functional relationship amongst the sca
lar field ifJ, one component of metric tensor, i.e., gkk' and field 
potential 0, then we have established the main result of the 
paper. In Sec. 3, BD-solutions have been obtained corre
sponding to the Kasner solution and a solution obtained by 
Mishra and Radhakrishnas of the Einstein theory. Sec 4 con
tains some concluding remarks. 

2_ DERIVATION OF SO-FIELD EQUATIONS FOR 
PERFECT FLUIDS FROM EINSTEIN VACUUM FIELD 
EQUATIONS 

The BD-field equations are 

Rij= -1!ifJ [Tij-(w+l)/(2w+3)Tgij] 

- wlifJ 2ifJiifJi - ifJiJlifJ, (2.1) 

ifJ k ;k = T /(2w + 3). (2.2) 

We consider the energy-momentum tensor as that of a 
perfect fluid given by (1.4) and (1.5). We attempt to solve the 
field equations (2.1) and (2.2) for the universe defined by 

ds2 = E exp(2u) [(dX k
)2 + 2,,(3dx"dx(3], (2.3) 

where E = sgn(gkk)' and k is either 0,1,2, or 3. Greek letters 
take the values 0,1,2, and 3 except k. BD-field equations 
(2.1), (2.2), and (1.2) in terms of metric (2.3) may be written 
as 

Pa(3 + 2,,(3.:1 2 u - 2u"u(3 + 2u(3;a + 22a(3.:11 (u) 

- exp( - 8)[20" 0(3 - 1!(2w + 3)2a(3.:1) (0)] 

- (w + 1)8,,8(3 - 8,,;(3 + (8au(3 + 8(3u,,) 
- 2a(3.:1) (8,u), (2.4) 

.:12 (u) + 2.:11 (u) = exp( - 8).:11 (0 )/(2w + 3) -.:1) (u,8), 
(2.5) 

.:12 (8) + 2.:11 (u,8) 
= - 2exp( - 8).:1) (0 )/(2w + 3) - .:11 (8), (2.6) 

and 

(2.7) 

2269 J. Math. Phys. 21(8). August 1980 0022-2488/80/082269-03$1.00 © 1980 American Institute of Physics 2269 



                                                                                                                                    

where 

.::ll (U,V) = .Ia (3U"J3, 

.::lZ(U) = U~;,. 
¢ = exp(15), 

and u, .Ia(3 being functions of x"'P"f3 is the Ricci tensor 
formed w.r.t . .I"(3 and covariant derivatives are also taken 
w.r.t. .I"f3' From (2.5) and (2.6), we get the following linear 
relationship between u and 15: 

15 = - 2u. (2.8) 

If we further assume the functional relationship between u 
and e, i.e, if we assume 

v = exp( - u), v = veX), e = e (X), and X (x Cl
), 

(2.9) 

then with the help of Eqs. (2.5), (2.6), and (2.8), it can be 
proved that 

v = fsech(X), 

e = c tanh(X), 

f and c are constants satisfying 

C
Z = (2w + 3)f2 

therefore field equations (2.4)-(2.6) convert to 

Par] + 2(2w + 3)X"X(3 = 0, 

.::lZ{X) = 0, 

(2.10) 

(2.11) 

(2.12) 

which are the Einstein field equations Rij = 0, for the metric 

dsz = c [exp{2K )(dX')2 + exp( - 2K ).Ia (3dx "dx f3 ], 

(2.13) 

where we have assumed 

K = V (2w + 3) X. (2.14) 

Thus we have established the following result: "Correspond
ing to any diagonalizable solution of Einstein vacuum field 
equations in which fields and metric coefficients are func
tions of not more than three variables we can generate a 
solution ofBD-theory for irrotational barotropic perfect flu
id with pressure equal to energy density." 

Mathematically, suppose the metric (2.13) satisfies Ein
stein vacuum field equations, then the metric (2.3) will satis
fy BD-field equations for barotropic perfect fluid. 
The scalar field is given by 

¢=exp(-2u)=f2sech2 [KIV (2w+3) 1 (2.15) 

field potential by 
----e = V {2w + 3)ftanh [K IV (2w + 3) ], 

the density and pressure of the universe by 

p=p=f4sech6 [KIV (2w+3) ]KaK", 

and the four velocity by 

ua = OjV (OcOC) 

(2.16) 

----
= cosh IK;v' (2w + 3) IKj fV (K"K"). (2.17) 
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3. CYLINDRICALLY SYMMETRIC EXPANDINGBD
UNIVERSE 

We apply the result obtained in the previous section to 
the Kasner vacuum solution of Einstein theory. 

The homogeneous and anisotropic Kasner model is giv
en by 

ds2 = dt 2 _ t zP'dx2 - t 2P'dy2 - t 2P'dz2 , (3.1) 

where the constants satisfy 

'i.Pi = 1 and 'i.p7 = 1. (3.2) 

The corresponding BD-solution will be given by 

ds2 = V 2 [t 2P'dt 2 _ dx2 _ f 2(P, +P,Jdy2 _ t 2(p, +P,ldz2 1, 

with the scalar field 

4f2t 2p,/\/(Zw + 3) 

¢ = V - 2 = ----'~_----===
(1 + t 2p, /\/2w + 3 )2 ' 

the pressure and density 

t (6p,/V(2," + 3) - 2( p, + I» 
Po P = P = '---;;----=----,-~-....[(1 + t 2P ,/\/(2w+3)]6 ' 

Po being constant and four-velocity are (O,O,O,V g44 ). 
Using the coordinate transformation 

(PI + l)tP'dt~T, 
(PI + l)dx~X, 

the above solution is transformed to 

ds2 = V2[L 2(dTl _ dX2) _ TI Hdyl _ T I- adz2] 
(3.3) 

with 

¢ = 4 f 2T 2P 1(1 + T2P)2, 

P =P =Po¢ 31T2, 

L = 1/(1 +PI)' 

a = (P3 - pz)/(l + PI ), 

P = PI 1(1 + PI)V (2w + 3) . 

(3.4) 

(3.5) 

The solution (3.3) represents cylindrically symmetric 
expanding BD-universe which corresponds to the solution 
obtained by Roy and Singh6 in relativistic theory (¢ = const 
and w--oo). 

A more general solution: A more general cylindrically 
symmetric solution can be generated from the Einstein vacu
um solution of Mishra and Radhakrishna5 

ds2 = exp(m2rl4 + mt)(dt 2 _ dr) - exp(mt )rdB 2 

- exp( - mt )dz2
• (3.6) 

The corresponding BD-solution will be given by 

ds2 = V 2[exp(m 2rI4)(dt 2 
- dr) - (dz2 + rd( 2

)], (3.7) 

with scalar field 

¢ = 4 f 2exp{ - mt;v' (2w + 3) 

[1 + exp( - mt IV (2w + 3) ]2' 
pressure and density 

P=P 
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= poexp[ - mt IV' (2w + 3) + m 2r/4] 

X I [exp( - mt IV' (2w + 3) + I]6 
X [exp(mt /v' (2w + 3) + 1 Pl- \ 

and the four-velocity ua = (O,O,O,~). 
This solution represents a cylindrically symmetric and 

inhomogeneous expanding BD-universe. 

4. CONCLUSION 

The immediate use of the result derived in this paper is 
in obtaining exact solutions of Brans-Dicke theory for the 
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Zeldovich universe from the known vacuum relativistic 
solutions. 

In conclusion, we at least hope that some physical in
sight can be gained from these solutions in determining the 
implications for the primordial state of the universe. 
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An alternative solution of the Bogoliubov's equation for the two-particle 
distribution function in the kinetic theory of gases 
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In this paper we consider an alternative solution of the Bogoliubov's equation for the two-particle 
distribution functions F 2 under the assumption that it is a function of the one-particle 
distribution function Fl' In terms of the density expansion F2 = l:i ~ ~ piF li), we show that F~n) 
satisfies a first order linear partial differential equation. The existence of a unique solution for 
Fin) can then be proved under some general conditions. Moreover, F~n)reduces to the result in the 
classical virial expansions at equilibrium. For the discussion of the kinetic equation, a special 
solution for F~O) can be obtained by the method of separation of variables. Following Grad's 
method, a kinetic equation can then be derived, which reduces to the ordinary Boltzmann 
equation for the hard sphere potential. It can be shown that the equilibrium solution of the 
kinetic equation is just the Maxwell-Boltzmann distribution. Under some restricted conditions 
the kinetic equation can be proved to satisfy the H theorem. 

I. INTRODUCTION =I (aHN . af" _ aHN . a!N), 
I ~ I Jri Jpi Jpi Jri 

with Hamiltonian 
N 

HN = I ! Pi'P; + I v(lr; - rj I), 
i= 1 i<j 

(1) 
In 1946 Bogoliubov 1 presented his well known dynami

cal theory of gases. Since then much work has been devel
oped in its various applications; however, a rigorous study 
on the existence and uniqueness solution of the two-particle 
distribution function F2 still seems lacking in the literature. 
In this paper we consider an alternative solution for F2 under 
the assumption that F2 is a function of FI (rather than a 
functional of FI as in Bogoliubov's method). By expanding 
F2 in powers of the density p, F2 = F~O) + pF~I) + p2Fi2) 

where for simplicity the particle mass m has been assumed to 
be 1. 

+ "', F~') can be shown to satisfy a first order linear partial 
differential equation. Under some general conditions we can 
prove the existence of a unique solution for F~n). Further
more, F~n) reduces to the classical virial expansion at 
equilibrium. 

For the discussion of kinetic equation, we propose a 
special solution of FiO) of the form FiO) = S (rl ,r2 ,PI ,P2) 
X FI (r I ,PI ,t ) FI (r 2 ,P2 ,t ) by the method of separation of 
variables in solving the partial differential equation for FiO). 
It is interesting to note that S represents the correlation of 
the two particles through their dynamical motions. Follow
ing Grad's method/ a general kinetic equation can then be 
obtained, which reduces to the ordinary Boltzmann equa
tion for the hard sphere potential. Also, the equilibrium so
lution ofthe kinetic equation is just the Maxwell-Boltzmann 
distribution. When S is independent of PI and P2' the kinetic 
equation then satisfies the H theorem. 

II. REVIEW OF THE BOGOLIUBOV'S EQUATION FOR Fn 

Consider a classical system of N particles with pairwise 
intermolecular potential v in a volume V. The state of the 
system can be described by a normalized probability distri
bution function!". in r space. Let Xi = (ri' Pi)E R 6 be the 
position and momenta of the ith particle. The temporal de
velopment off" is governed by the Liouville equation 

a/" a, = !H".,f,,] 

Suppose the intermolecular potential v consists of a 
hard core of diameter u and an attractive potential ¢J of finite 
range R, where ¢J = ¢J (Ir l - r2 1) is a function of class C I 
defined on the domain D", = ! rlr = Irl - r21 >u, 
(rl ,r2)ER 3x R 3]. Assume thatp = limN .• ""CN IV) < 00, 

V-- oo 

and denote Gij = - a¢JijIJr i , ¢Jij = ¢J (I r i - rj I)· Define 
Grad's truncated functions FI ,F2 , ... ,Fk ,." by 

FI (xl,t) = vi !N(X I ,X2,· .. ,XN,t) dX2 ,,·dxN, 
D l xD3 X···xD, 

F k (X I ,X2,· .. ,Xk ,t) 

= Vki !N(XI,X2"",XN,t)dxk+I,,·dxN' 
D~ IX·· xD, 

k>2, 

where Dk is the subdomain of the Yk space defined by 
Irk - r I 1 >u for all P k' By Grad's method we can obtain 
from Eq. (1) the following Grad's hierachy: 

(2) 

aFk --- k>2, 
at 

where 

2272 J. Math. Phys. 21(8). August 1980 0022-2488/80/082272-06$1.00 © 1980 American Institute of Physics 2272 



                                                                                                                                    

'" 
MkFk+ I 

= ± (f dpk + I J: d S.(p, + I - P; )Fk + I 
i = I J'/r j - rJ.. I 1 r = a 

- ( dXk+ I G;,k+ I' ~F,+ I)' k>l, JE c1p; 

and E is the subdomain defined by I r; - r k + I I >u for 
i = 1,2, ... ,k. 

In the following discussions we shall apply Bogoliu
bov's dynamical theory to Grad's hierarchy. Let 7 be the 
time of a collision, to the time between two collisions, and T 
the macroscopic relaxation time. For slowly varying macro
scopic phenomena and not too dense system it is known that 
7«/0 « T. From Eq. (2) it can be seen that Fk (for k>2) 
changes rapidly in a time of order 7 on account of intermole
cular interaction [assuming ifJ (r)-O rapidly as r---+ 00], while 
FI changes slowly during this period of time sinceifJ does not 
affect FI directly. The time scale for FI is 1o' According to 
Bogoliubov, after an initial chaotization time of order 7 a 

kinetic stage is reached, in which all of the Fk for k>2 de
pend on time t only through FI . Let F, be a function of 
XI ,x2, .. ·,xk,FI (XI ,t), FI (x2,t), ... ,FI (Xk,t): 

Fk (X I ,X2 ,· .. ,x"t) 

= FdxI ,x2 , ... ,X, .FI (XI ,I ),FI (X2 ,t ), .... F I (xk,t », (3) 

where FI (x o!) is a function of class C I defined on R 6 X R 1, 
whose temporal development is in turn governed by the fol
lowing equation 

aFI ~ '" 
-- = -LIFI +pMIF2 =A (xoFI(x;,t». (4) 

at 

In order to obtain a general equation for Fk we consider the 
following series expansion of Fk and A in powers of the den
sity p: 

A = A (0) + pA (I) + p2A (2) + .... 

(5) 

Substituting Eqs. (3), (4), and (5) into Eq. (2) yields the fol
lowing results: 

A(O)= -LIFI • 

D (O)F(O) - - L~ F(O) 
k - k k' 
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(6) 

(7) 

(8) 

where 

D (0) = I A (O)(xjtFI (x;,!) a , 
; aFI (x;.t) 

a D(n)=IA(n)(x;.FI(x;.t» . 
; aFI (x;.!) 

By considering FI as a known function (but completely arbi
trary for the moment, which will be determined later by the 
kinetic equation). it is evident from Eqs. (6)-(8) that we can 
solve Eq. (6) for F~O). especially F~O). which then according to 
Eq. (7) enables us to obtain A (1). This in turn allows us to find 
D (I)F%O) and then by Eq. (8)F~I) can be obtained, particular
ly F~I), and so on. In Sec. III we consider the solutions of FiO) 
and Fin). 

III. SOLUTIONS Of F~O) AND F~n). 

In order to simplify the notation we denote 
u l = FI (X;,I), 4»; = - aifJ laro b(ro p;,u;) = au;lc1p;, 
g; = 4»;'b(r;,p;,u;),i= 1,2,F}0)=G(r l .r2,PI P2'U I .U2 ), 

and F~n) = H (rp r2• pp P2,U p U2), for n> 1. Equations (6) 
and (8) then become 

aG aG aG 
PI'-+ P2·-+4»J·-+ arJ ar2 c1pJ 

aG aG 
+ gl --+ g2 -- = 0 

aU I aU2 

(9) 

and 

PI . aH + P2' aH + 4»1' aH + 4»2' aH 
ar l ar2 c1p1 c1p2 

aH aH 
+gl-a +g2-

a 
=¢(r l ,r2,PJ,P2'U I,U2), (10) 

U 1 U2 

where ¢ represents the right-hand side of Eq. (8). 

If G and H are considered as functions of the indepen
dent variables r 1 , r 2' PJ , P2, U I , and u 2, defined on the do
main D = R IZ X C I(R 7) X C I(R 7) with t as a parameter, 
Eqs. (9) and (10) then become first order linear partial differ
ential equations. Their solutions can be constructed from the 
corresponding characteristic equations 

dr l ; drzj dpl; dp2j dU J duz --=--=--=--=--= 
Pli P2j ifJli ifJ2j gJ g2 

= dA, i,j = 1,2,3 (11) 
and 

drJi drzj dpI; dpzj dU J duz --=--=--=--=--=--
PI; PZj ifJI; ifJZj gl gz 

= dH = dA, i,j = 1,2,3. 
¢ 

(12) 

From Eqs. (11) and (12) we note that the following systems 
of equations 

drl ; 

dA = Pw 
dpz; . 
dA = rP2;, 

i = 1,2,3, (13) 

can be solved first, and then the solutions substituted into the 
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equations 

dU I dU2 dH 
d)' = gl' d)' = g2' d). = f/;, (14) 

to solve for U I ,u2 , and H. 

For convenience we lety = (r l , r2, PI' P2,U I ,u2 ), 

A = (PI' P2' cf>1' cf>2,g1' g2)' Z = (rl ,rl,PI ,P2 ,u I ,u2 ,H), and 
B = (PI ,P2 ,cf>1 ,cf>2,g I ,g2' 1/1). The characteristic equations 
(13) and (14) respectively can be written as 

and 

dy =A 
d)' 

~=B. 
d)' 

(15) 

(16) 

The characteristics ofEq. (15) form a 13-parameter family of 
curves in a 14-dimensional space, whereas the characteris
tics ofEq. (16) form a 14-parameter family of curves. Since 
an integral surface ofEq. (10) is a 14-dimensional surface 
lying in a 15-dimensional space, an integral surface ofEq. 
(10) must be generated by a 13-parameter family of charac
teristic curves, i.e., solutions ofEq. (16). Let the parameters 
of Eqs. (15) and (16) be 1'1 ,1'2,,",1'\3' In principle, the solu
tions of Eqs. (15) and (16) can be written as 

Yi =Zi =J;().,1'I,. .. ,1'II)' i= 1,2,. .. ,12, 
Yi =Zi =J;().,1'I, .. ·,1'\3)' i= 13,14, 

H = ZI5 =/;S().,1'1 "",1'\3)' 

Let y(O) be given at). = 0 and assume that 
Irl (0) - r2 (0)1 >R, where t/J (R) = O. Since the correlation 
between two particles can be neglected when their separa
tion is much greater than R, thus F2 (0) = U I (0) U 2 (0). By 
Eq. (5) it then follows that 

G (0) = G (r I (0), r 2 (O),PI (0), P2 (O),u I (0)'U 2 (0» 
= U I (0)u 2 (0) (17) 

and 

H (0) = H (r l (0), r2 (0), PI (0),P2 (O),u I (0),u 2 (0» = O. (18) 

By Eq. (9) we have dG IdA = 0 on the characteristics. The 
initial condition ofEq. (19) can be set up as 

r l :G ().,1'1 "",1'13) = G (0) = UI (0)U2 (0) 

(19) 

Similarly the initial condition ofEq. (10) can be set up as 

{

Zi(O) = Yi(O) = qJi( 1'1 ,1'2,. .. ,1'\3), i = 1,2,. .. ,14, 

r
2

: (20) 

ZIS(O) = H(O) = O. 

We are now ready to consider the solution ofEq. (9) 
with initial condition (19) and the solution ofEq. (10) with 
initial condition (20). 

A. Solution of AD) 
2 

Let DI and D2 be two compact subdomains of R 12 and 
C I(R 7) X C I(R 7) respectively. Denote a = (r l , r2, PI ,P2)' 
a o = (r I (O),r2 (O),PI (0), P2 (0», U = (u I ,U2 ), 
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Uo = (UI (0),u2(0», andA I = (PI' P2' cf>1' cf>2)' Define the 
norms lal = l:~~ I (Iri 1+ IPi I), lui = lUI 1+ lu21, and IAI I 
=l:~~1 [IPil + lcf>il].Leta,a',ao beinDI andu,u',uo be in 

D 2 • The following lemma is easy to prove. 

Lemma 1: Suppose cf>i satisfies the following condition 

I cf>i (rl , r2) - cf>1 (r; ,r~)I<ml Irl - r; 1+ m21r2 - r~ I, 

i= 1,2, (21) 

where m I and m 2 are positive constants. Then A I satisfies a 
Lipschitz condition in DI . Consequently, there exists a 
unique solution in DI for the vector differential Eq. (13), 
dal d)' = A I for)' >0, which satisfies the initial condition 

The solutions ofEq. (13) can be written as 

a i =Yi =J;().,1'I,1'2,. .. ,1'II)' i= 1,2, .. ·,12. (22) 

Substituting the results ofEq. (22) into Eq. (14) yields 

du 
-' = gi().,1'1 ,"',1'11 ,u;), i = 1,2. (23) 
d)' 

Similar to Lemma I, we now have 
Lemma 2: Suppose gi satisfies the following Lipschitz 

condition in D2 , 

Igi().'U;) -gi().,u;)I<l;lu i - u;l, i= 1,2, (24) 

where II and 12 are positive constants. Then there exists in 
D2 a unique solution for the differential Eq. (23) for ),>0, 
which satisfies the initial condition ui(O). 

The solution ofEq. (14) can be written as 

u l = !\3().,1'! ,1'2,,",1'11 ,1'12)' 

u2 = !14().'1'! ,1'2,,",1'11 ,1'\3)' 

If the Jacobian 

J = aUl>!2""!14) #0 
a().,1'I,1'2,"·1'\3) 

on r l , then ).,1'1,1'2, .. ·,1'\3 can be inverted in the neighbor
hood of r l as functions ofrl ,r2,P! ,P2' U I and u2 , 

). = J!(rl ,r2,PI,P2'U I,U2), 

1'i =j;+ I (rl ,r2,PI ,P2,U I ,u2), i = 1,2,. .. ,13. 

Since 

d -0- aj;+1 d + aj;+1 d + aj;+1 d 1'i- - -- r l --. r2 -_. PI arl ar2 apl 

+ 
aj;+1 d aj;+! d + aj;+1 d ---. P2 + -- U I -- U 2 

ap2 aU I aU2 

= PI'-+ P2'-+ cf>1'-+ cf>2'-(
a a a a 

ar l ar2 apt ap2 
a a )-+gl -a + g2 -a J;+ldA, 
U I U 2 

thusj; +! is a solution of Eq. (9), and 

F(1'1 ,1'2,. .. ,1'\3) = ul (0) u2 (0) = F(iz.]3 , ... J!4) is a 
local solution of Eq. (9) with initial condition (19). 

Theorem 1: Assume that conditions (21) and (24) are 
satisfied, and J #0 on r l . Then in the compact subdomain 
15 = DI XD2 of D, there exists a unique solution for Eq. (9) 
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in the neighborhood of r 1 , which satisfies the initial condi
tion (19). 

B. Solution of F<;! 
By the solutions of a j and Uj, ,p then becomes a function 

of A and the parameters 71,72,"',713 , The differential equa
tiondH IdA = ,pwith the initial conditionH (0) = Oamounts 
to a simple integration. Hence, H = lis (A,71 ,72, ... ,713 ) can 
be uniquely determined. Consequently, by Lemmas 1 and 2 
there exists a unique solution for Eq. (16) in the compact 
subdomain 151 which satisfies the initial condition (20). 
Again, ifthelacobianJ =l=00nr2 , thenA, 71,72,"',713 can be 
inverted in the neighborhood of r 2 , which can be substituted 
into the solutionH =!ts (A,71 , ... ,713 ) to yield a unique solu
tion for Eq. (10). 

Corollary: Assume that conditions (21) and (24) are sat
isfied, andJ =l=00nr2 • Then in thecompactsubdomainDof 
D, there exists a unique solution for Eq. (10) in the neighbor
hood of r 2 ,which satisfies the initial condition (20). 

We next consider two special solutions of FiO). 
(I) Hard sphere potential 
For the hard sphere potential defined by 

{

OO' if r<u, 
vCr) = 

0, if r>u, 

we can easily obtain FiO) = G = U 1 U2 from Eq. (9). 
(II) Solution of Eq. (9) by the method of separation of 

variables. 
By virtue of Eqs. (13) and (14), we try a solution of F~O) 

of the following form 

G = nr1 ,r2 ,PI ,P2) y(u 1 ,u2), (25) 

with initial conditions S (0) = 1 and y(O) = U 1 (O)u 2 (0). 
Equation (9) then becomes 

J..(PI' as + P2' as + cl»1' as + cl»2' as) 
S ar1 ar2 apl ap2 

= - J..(cI»l'b(r1,Pl'U 1) aay + cl»2·b(r2,P2'u2) aa
y

), 
y U 1 U2 

(26) 

which can be solved by the method of separation of variables 
if and only if 

b(r;.pj'u;) = q(r;.p;),h (u j) 

and 

h(u 1 ) ay = h(u2) ay =cy, (27) 
aU I aU2 

where c is a constant. It then follows from Eq. (27) that 
y(u 1 ,U2) = U 1 u2 is the only solution which satisfies the ini
tial condition y(O) = U 1 (0)U 2 (0). The solution of G can 
therefore be written as 

G = SUI U2 , (28) 

where S satisfies the following equation 

(
a a a a) Pl' a;:- + P2' a;:- + cl»1':;:- + cl»2' - lnes) 

1 2 vPl ap2 

- [cI»l·q(rl>pd+ cl»2·q(r2,P2)], (29) 
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with initial condition S (0) = 1. 
Although q is still unknown (which will be determined 

by the kinetic equation); however, S at least in principle can 
be solved in terms of q. Since 

d 
-In( S) = - [cI»l·q(r l ,PI) + cl»2·q(r2,P2)]' 
dA 

by Theorem 1 there exists a unique solution for S, which can 
be written as 

S = exp( - ± LA cl»j(S,71 ,,";711 ).q(S,71 ,,"711 ) dS). 
I~ 1 ° 

The special solution of G = FiO) = SU 1 U 2 will be useful in 
the discussion of kinetic equations. 

In the next section we consider the solutions of F~O) and 
Fin) at equilibrium which can be shown to be identical to the 
classical results. 

IV. EQUILIBRIUM SOLUTION 

Let U 1 = Fl (r 1 ,PI ,t ) be in an equilibrium state, i.e., 
U1 = n(rl )({3 12rr)3/2 exp( - {3p~/2), where{3 = l/KT,Kis 
the Boltzmann constant, Tis the temperature, and n(r1 ) sat
isfies an equation to be specified by the kinetic equation. 
Then aU I lapl = - {3Pl U1 , and the characteristic equa
tions (11) becomes 

drjl = dr2j = dpl. j- a ¢ = dP2 /- a ¢ 
Pli P2j I arli j ar2j 

= dln(u 1 ) - {3 L -Pli 
/ 

3 a¢ 

j~ 1 ar1j 

(30) 

From Eq. (30) we can construct a unique solution satisfying 
the initial condition (19) as 

F~O~q = e ~ 134> ({3 12rr)3/2n(r 1 )n(r2)e ~ {J(p: + P~)l2. (31) 

The results we have just obtained can easily be generalized to 
F~O~q for k>2. By Eq. (8), ,p finally reduces to 

,p = FiO~q (PI' :1 + P2' :J L dr3 n(r3)/13 123' (32) 

whereEdenoteslr l -r31>u, Ir2 -r31>u,and/13,andh3 
are the Mayer functions. Equation (10) then becomes 

.!fFi1
) = ± (p,~+ cI»~+ {3p.cI»U.~) 
eq j ~ 1 I arj I apj I I I aU

j 

XF~I~q = ,p, (33) 

with initial condition (20). 

L t F (I) - F(O) Th e 2 eq - 2 eq 7]. en 

.!f 7] = (Pl' a~l + P2' a~J L dr3 n(r3 )!t3 123 

and 7](0) = O. 

Consequently, 

7]= L dr3 n(r3)!t3h3' 

When U I is a thermodynamically stable equilibrium state, 
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i.e., U I = (f3 /21T)3/2 e - (f3pi
12J, then F~O~q = e - f3 "'u I U2 and 

F~I~q = F~O~q S Edr3 113 IZ3' Letfo = e ~ f3'" and 
II = e ~ f3'" hdr3 113 123' Then/o and.!; are the well known 
classical results in the virial expansion of the radial distribu
tion function. With the solutions of F~O) and F~I) we can 
successively solveF~n) from Eqs. (6)-(8), and show thatFin~q 
is identical to the result in the classical virial expansion. 
Since a detailed proof is very complicated and lengthy, we 
shall just summarize the result in the following. 

Theorem 2: If u, is in a thermodynamically stable equi
librium state, then F~n~q becomes the nth term in the virial 
expansion of the equilibrium two-particle distribution 
function. 

v. DISCUSSION OF THE KINETIC EQUATION 

To the order of p Eq. (14) reduces to 

aF, aF, f f -a + p,' -;::- = P dpz d S·(pz - PI )F~O) 
t a~1 Ir,-r,l=u 

i 
a</J aF(O) + p dx z _. __ z_. 

D, Jr l Jpl 
(34) 

Following Grad, we firstly impose the assumption of the 
binary collision. Secondly we assume that FI is a spatially 
slowly varying function over an interval oflength (T. Equa
tion (34) then becomes 

aFI aFI --+ p, ._-
at Jr l 

= p~ f dpz f~ dn n.p 
In.p>o 

x [F~O)(r, ,r l + (Tn,PI ,P2,F, (1'),F, (2'» 
(0) A. 

-F2 (rl,r l -(Tfl,PIJpz,FI (I),FI (2)] 

i a</J F~O) 
+ p dx z -'--' 

D, Jr l Jpl 
(35) 

where FI (i') = FI (r, ,p; ,t), F, (I) = F, (r, ,Pi ,t), i = 1,2, 
P = pz - PI ,n is a unit radial vector, and the binary colli
sion is denoted by PI + p, -pi + P; with 

A. A. 

P; = Pi + fl (fl·p). 

In case of the hard sphere potential, Eq. (35) reduces to the 
ordinary Boltzmann equation 

aFI aFI -- + Pl'--
at arl 

= p~ fdPz f~ dnn. P [FI (1')F, (2') - F, (1 )F, (2)] 
JiJ.p > 0 

=J(j,l). 

On the other hand, in terms of the special solution 
FiO) = su, uz , Eq. (35) becomes 

aFI aFI -- + Pl'--
at arl 

= p~ fdPz f~ dnn.p [s (r I ,r I + (Tn,pi ,p;) 
In.p> 0 

X FI (1')F, (2') - S (r I ,r I - (Tn,PI ,pz) F, (1)FI (2) ] 
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It can easily be shown that the Maxwell-Boltzmann 
distribution 

FI (1) = n(r,)( fJ /21T) 312 e - f3 pi/2 

(36) 

is a solution ofEq. (36) provided n(rl ) satisfies the following 
equation 

In [n(r l )] - p i, dr2 e - f3'" n(r2 ) = const. (37) 

Conversely, by setting 

aFI = 0, s(r, ,rl + (Tn,pi ,p;) FI (1') FI (2') 
at 

= S (rl ,rl - (Tn,PIJP2) FI (1) FI (2), (38) 

we can recover the Maxwell-Boltzmann distribution. 3 

An equilibrium state can therefore be defined as the solution 
of Eqs. (37) and (38). Particularly, the thermodynamically 
stable equilibrium state satisfies Eqs. (36), (37), and (38). In 
this sense, Eq. (36) can be considered as a generalized kinetic 
equation. Unfortunately, so far we have not been able to 
prove the H theorem from Eq. (36). 

Recently Braun and Flores 4 had proposed a convergent 
kinetic theory; however, their method is equivalent to ap
proximating S by 1 - gz (rl ,rz ) wheregz is the local equilib
rium two-particle correlation function. At any rate, suppose 
S is only a function ofr, and rz . Equation (36) then becomes 

aFI aFI aFI (1) 
- + PI'-= p~s(rl,(T)J(fJ)+ p--
~ arl Jpl 

. dx z - FI (2)S. i a</J 

D, arl 
(39) 

Let Rbe a region such that FI (1)-<> as Ipi 1-00 on the 
boundary .I of Rand !p I 7/"·ds = 0, where 7/" = SPI FI (1) 
X In [ F, (1)] dpi . Multiplying through Eq. (39) by 
1 + In[ F, (1)] and then integrating with respect to PI' 
yields the following result 

a7/" + 'i/.7/"= -S(rpa)ii, (40) 
at 

where 

cW' = f FI (1) In [FI (1) ]dpI' 

ii = p~ fdP, fdPz f~ dn n.p [FI (1') FI (2') JiJ.p > 0 

_ F (1) F (2)] In (FI (I') FI (2'»). 
I' F

1
(1)F1 (2) 

Since ii;;;;,O, and by Eq. (29), s is always a positive function, 
we can integrate Eq. (40) over the region if and prove the H 
theorem. 

IN.N. Bogoliubov, "Problems In Dynamical Theory in Statistical Mechan
ics," translated by E.K. Gora in Studies In Statistical Mechanics, edited by 
J. de Boer and G.E. Uhlenbeck (North Holland, Amsterdam, 1962), Vol. 
I. 

M. Chen 2276 



                                                                                                                                    

2H. Grad, "Principles Of The Kinetic Theory of Gases," Handbuch der 
Physik, edited by S. Flugge (Springer, New York, 1958), pp. 205-94, Bd. 
12. 

3Since Eq. (38) is true for all r l , we can set r l = O. Thus 

S (afl.pi ,p;) FI (Pi) FI (p;) = s ( - an,PI ,P2) FI (PI) FI (P2)' 

Consequently S must be an even function of a, which implies that 

S (an,pi ,p;) = s (an,PI ,P2) 

and 

2277 J. Math. Phys., Vol. 21, No.8, August 1980 

It then follows thatFI (/) = cn(r l ) e - P(',)P;I2, where cis a constant. By the 

characteristic equation (30) we can obtain 

3 (at/J at/J ) d In(u l u2) = - L --p(rl )drli + --p(r2)dr2i 
i~1 ar li ar2, 

3 3 

= p(r l ) I Plidpl, + p(r2 ) I P2i dp2i' 
;= 1 ;= I 

But this is a total differential if and only if p (r I ) = P (r 2) = const. Let 
p (r,) = - p. Then FI (/) = n(r,)(p /211')312 e - P p;12 and S = r p~. 

'E. Braun and A. Flores, J. Stat. Phys. 8,155 (1973). 
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Analyticity in the coupling constant of the A P(I/J) lattice theory a) 

Florin Constantinescu 
Institut fur angewandte Mathematik der Johann Wolfgang Goethe-Universitdt Frankfurt am Main, Robert-Mayer Strasse 10, 
West Germany 

(Received 28 February 1979; accepted for pUblication 17 July 1979) 

Consider the lattice A P (<p ) theory in an arbitrary number of dimensions. The single spin distribution 
is given by A P(f/J) + (m2/2)f/J 2. We show that if() < n +1121T, then there is a constant E > Osuch that 
the correlations are analytic in 1,.1, 1 < E, 1 arg,t 1 < () provided m is sufficiently large. This result implies 
Borel summability of the lattice (Euclidean) A P (f/J ) quantum field theory for small coupling 
constants. 

1. INTRODUCTION 

We study the lattice theory with single spin distribu
tions given by AP ( f/J) + (m 2/2)f/J 2 in arbitrary number of di
mensions. We prove two results. The first one refers to the 
particular case P ( <p ) = <p 2n, n;:;. 2. The correlation functions 
in this case are shown to be analytic in the entire A-plane 
provided m is sufficiently large. Our second result refers to 
the general case in which P (f/J ) is only a semibounded polyno
mialP( f/J) = ~7~ 2alf/J 21. For() < [(n + 1)/2]11' we prove that 
there is a constant E (possible ()-dependent) such that the 
correlations are analytic in 1,.1, 1 < E, 1 arg 1 < () provided m is 
sufficiently large. This analytic structure is similar to the 
analytic structure of the eigenvalues for the x2n quantum 
mechanical anharmonic oscillator. I This result implies 
Borel summability of the correlation functions of the P (f/J ) 
lattice model. The factorial bound needed in the Borel-Le
roy transform follows by results in Ref. 2 or more directly in 
Ref. 3. For proving this result we use the Mayer (cluster) 
expansion and a scaling argument in f/J. We recall that in the 

where 

P(m,a) = ~ a} 21 
'r £..~. 

I~ 2 a 

Let us denote2 

For A > 0, a> ° we have 

IA (A) = a k 
!2gA (A,a). 

continuum case analyticity of correlations in the restricted 
domain 1,.1, 1 < E, 1 arg,t 1 < 11'/2 + 1] with E and 1] > 0 small and 
m large is known.2 Recently4 detailed information on the 
partition function of the P ( f/J ) = <p 4 lattice model as function 
of the coupling constant A was obtained. 

2. FORMULATION OF THE PROBLEM 

Suppose A (<p) = <p 7,' ... <p 7,'is a monomial of total degree 

k I + ... + kr = k localized in the cube A C R" where aA lies 
on the dual lattice (1:')*. The finite volume expectations (cor
relations) of the model are defined by 

(A) A = _I - JA (<p) exp( I <Pi<Pj ) II d/i?, (1) 
Z(A) "A iEA 

ljE 

where ij is a bound on 1:" and 

o exp( - AP( <PJ - (m 2/2)<p n df/Ji (2) 
d/i. = , 

I S exp( - AP( <Pi) - (m 2 /2)<p n d<pi 

Z(A)= JexP(?<Pi<Pj)IId/i? (3) 
ijEA lEA 

(4) 

(5) 

The function gA (A,a) = a . k 121A (A) can be analytically extended to D = I (A,a);Rea > D, 1 - D < la 1 < 1 + D, ReA-an> 0, 
1,.1, 1 < E J for E, D sufficiently small. Indeed 

f exp(a ;~ CPiCPj) II exp [ - (am 2 !2)cp n dcp; = a - IA 1/2 f exp( ~ f/J;<Pj ) II exp [ - (m
2 
!2)<p n d<p; =1=0. 

By continuity arguments 

")Supported in part by the deutsche Forschungsgemeinschaft 
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f exp(a j~ CPJj)j) n exp[ - Aa"P(cp;,a) - (am
2
/2)cp 71 dcpi #0 

because IAa" I < E(l + t) )" is small. 

(6) 

Suppose we are able to prove by means of the Mayer (cluster) expansion that for m large the thermodynamic limitg(A,a) 
of gA (A,a) exists for complex values of A and a inDo In particular the thermodynamic limitj(A ) ofjA (A ) exists and is analytic 
in ReA, > 0, IA I < E. For real a and A in D we have 

f(A) = a k12g(A,a). 

With a real we can analytically continue (6) inA to ReA > O. Now fix A with ReA> 0 and analytically continue the right
hand side of(6) in a to Rea > t), 1 - t) < lal < 1 + t) such that ReAa" > O. A last analytic continuation ofg(A,a) inA to ReAan 

> 0 brings us to the optimal analyticity domainofj(A): largA, I <fJ«n + 1)17/2,IA I <€where e = (n + 1)1712 - nt). In fact 
we will prove in Sec. (6) that in the particularcaseP ( rP) = rP 2n, n>2,f(A )isanalyticintheentireplane largA, I < e < (n + 1)17/2 
(for m sufficiently large). 

3. THE MAYER (CLUSTER) EXPANSION 

We study the thermodynamic limit of 

[ - 2 2] n fA (cp) exp( - al:ijEA CPjCPj)lliEA exp -pP(cp;,a) - (am /2)CP; dcpj 
hA (p"a) gA (Aa ,a) = 2 2 ' 

S exp( - al:ijEACP;cp)ll;EA exp[ -pP(cp;.a) - (am /2)cp j 1 dcp; 
(7) 

wherep = Aan
• We use the Mayer expansion in the explicit series form given in Ref. 5 (see also Refs. 6, 7, and 8). In (7) we take 

(p"a)E Dl = I (p"a):Rea > {j,l - t) < lal < 1 + t),RefL > O,lpl <€, ), 

where €, is small. We also suppose that m is sufficiently large. Let us denote m~ = m 2 
- 2'11 > 0 where 'II is the number of 

dimensions and take m, cp = q. Then 

_ k SA (q) exp[(a/2mi)l:ijEA (q; - qj)2]ll;EA exp[ -pQ(q;.a,m l ) - (a/2)q;] dq, 
hA(p,a)=m l [2 2] 2 ' 

f exp (a/2m, )l:ijEA (qi - q2) lljEA exp [ -pQ (q;.a,m,) - (a/2)q, 1 dq, 

where 

~ a, 21 
Q(q,a,m,) = ~ 21 n-Iq . 

1=2m,a 

Let us denote 11 = a/2mi· We have 1111 < (1 + t) )/2mi such that 1111 is small ifm2, i.e., mi = m 2 
- 2'11 is large. In this section 

we denote 

fA (q) exp[lIl:ijEA (qi - q2)2]lliEA exp[ -pQ(q;.a,m) - (a/2)qt] dq; 
(A)A= ----~--~------~------------------------

f exp[lIl:ijEAq, - qYllljEA exp[ -pQ(qi,a,m) - (a/2)q;] dq; 

and by (A ) the thermodynamic limit of (A ) A (if it exists!). Here A (q) = q~' ... q~', k = k, + ... + k r. 
Let j 

kb=kij= exp[lI(qi - qy] -1, kr = IT k b , 

hEr 

(8) 

where b =ij is a bound on 'lV and r = (b , , ... ,bk ) is a collection of bonds b;. i = 1, ... ,1 which are mutually different. Let us 
denote {} = X ;EZvR;,.I = X iEzv.Ii and dpo = X ;ezvdp? where in this section 

dpo = exp[ -pQ(q"a,m,) - (a/2)q7] dqi 

( S exp [ -pQ (qi ,a,m,) - (a12)q~] dq; 

and.I, is the Borel 'i-algebra of R,. Expectations with respect to dpo will be denoted by ( . ) 0' We use here the Mayer 
expansion in its explicit form j

: 

(A) = Lay, 
y 

ay = (Akr,(y»o( -krz(y»o"'( -krq(y»o' 

(9) 

(10) 

where we have to specify the summation variable r and the sets r i =ri (r). For this we introduce some graph theory notations. 
Let r be the collection of all finite nonempty sets in 'l. To each VEr we associate a point t vE Vand organize I <P I ur as a 
graph such that there is a line between VI and V2 Er iff VI = V2 - tv, or vice versa. Then { <P I ur is a connected tree with <P 
as lowest vertex. 
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We assume that the mapping V _t v has the following 
properties: 

(i) t v lies on the boundary of V; 
(ii) if V = VI u ... uVn is a partition of VEr into its con

nected components, then tv = t v
j

; for some i. We now speci
fy rand r i (r) in (9) and (10). The summation in (9) goes 
over sets 

r = (VI ,rl ), ... ,(Vq ,rq) J, q> 1, 

where Vi-Vier) Er, r i ri(r) are collections of bonds 
such that the following conditions are satisfied: 

ja) Forq>p > 1, Vp lies (in the graph sense) below Vp ~ I 
xurp~1 . 

(b) For q>p > 1, rp is nonempty and connected and 

tvEfp CZV - (Vp - tv). 

(c) VI (r) = V and r l (r) may be empty or such that 
(VI' r l ) is connected. 

In (a)-(c) r means the set oflattice points contained in 
r. We state the result of this section as a theorem. 

Theorem 1: The Mayer series (9) converges absolutely 
and uniformly in (f.l,a,TJ)E D2 where D2 = (f.l,a,TJ):Rq.t 
> 0, A - 0 < lal < 1 + 0, ITJI <01 J with EI ,8,6 1 > 0 suffi
ciently small. 

Let us study the integral quotient on the right-hand side 
of(14). It reduces to a sum of terms 

S qml exp [ - f.lQ (q,a,m l ) - (aI2)q2] I dq 

I S exp [ - f.lQ (q,a,m I) - (a/2)q2] dql 

For f.l = 0, (15) equals 

S qm exp [ - (ReaI2)q2] dq 

I S exp [ - (a/2)q2 ] dql 

which is uniformly bounded in a for Rea> t), 

(15) 

(16) 

1 - t) < la I < 1 + t). Taking into account that If.ll is small, 
la I > 1 - t) > 0, and m I large it follows that (14) is also uni
formly bounded in D 2 • This together with (13) proves the 
estimate (11). 

In order to prove (12) we write 

I(Akr>ol = I( gf exp [ -TJ' ifr (qi -qy] 

xA (q)[ - (qi - q;?] dTJ')o I 
and proceed as above. We use the fact that A (q) is a mono
mial in q and get the estimate (12). 

5. ANALYTICITY IN THE COUPLING CONSTANT 

In this section we state our first result. 
Theorem 2: Let P ( ¢ ) be a semi bounded polynomial of 

degree 2n and consider the weakly coupled lattice 
).P ( ¢ ) + (m 2/2)¢ 2 (Euclidean) quantum field theory. If 
e < [en + 1)/2]1T then there is a constant E> 0 such that the 
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Proof Suppose we can prove that there is a constant 
C> 0 such that for all r = {bl '''''bk

} we have 

I (kr>ol «Clolr l (11) 

uniformly in(f.l,a,TJ)E D2 and similarly 

(12) 

where C2 can depend on A but not on the parameters in D2 . 
From (10), (11), and (12) we get with a constant C> 0 

(13) 

uniformly with respect to the parameters in D 2 • In order to 
complete the proof observe that the combinatoric factor in 
(9) by holding IFI I + ... + Irq I fixed does not exceed 4 1A I 

K IT,I + ... + I r I ( R £'. X q see elS. 5 and 6) where K is a constant. 
In the next section we will prove the central estimates 

(11) and (12). 

4. ESTIMATES 

We prove (11) by adapting to the complex case a simple 
argument in Ref. 5. We have by integration along the seg
ment [0, TJ] in the complex TJ variable 

(14) 

I(generalized) Schwinger functions are analytic in the cou
pling constant). in the domain I). I < E, I arg). I < e if the mass 
m is sufficiently large. 

Proof The prooffollows from the results stated in Secs. 
2-4. 

We remark that this result can be extended for the mod
el with statistical sum 

Z (A) = f exp(/3 ~ ¢i¢j) II df.l? (17) 
ijEA lEA 

instead of(3) where/3 = lIkTis the inverse temperature. In 
this case we have to require the /3 1m 2 is sufficiently small. 
The analyticity domain obtained in Theorem 2 is similar to 
that obtained in the case of the one-dimensional quantum
mechanically anharmonic oscillator with potential x2n. In 
the particular case n = 2 detailed information on analytic 
properties of the eigenvalues is available. There is a three
sheeted structure around). ~ 0 and). = 0 is a limit of square 
root points with asymptotic phase ± 31T12. On the first 
sheet there is no singularity. We do not have such detailed 
information on the analytic properties of our model but in 
the particular case P( ¢) = ¢ 2n, n>2 we have some results. 
This case is discussed in the next section. 

6. THE CASE P( </» = </>2n, n;>2 

Our second result is the following: 
Theorem 3: Consider the lattice model),<\> 2n 

+ (m 2/2)¢ 2 where n>2 and). is small. If e < [en + 1 )/2]1T 
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and m is sufficiently large then the Schwinger functions of 
this model are analytic in the coupling constant A in the 
domain I arg,.t I < O. 

Proof As in the case of Theorem 2, the proof of this 
theorem depends on the estimates (11) and (12) which in 
tum reduces to a study of the one-dimensional integrals in 
(14). We have to bound the quotient in (15) for all,u with 
Rqt>OandasuchthatRea>o, l-o<la/<1 +0. We 
remark that the numerator in (15) is bounded for Rqt;;;'O, 
/,u / <R where R is a positive constant arbitrarily large. Ifwe 
can prove that the denominator is strictly positive for 
Rqt;;;'O, /,u/<R, Rea;;;.o, 1 - o</a/< 1 + o it will follow that 
(15) is bounded for Rqt;;;'O and /,u / <R. For this we prove the 
following elementary result. 

Lemma 4: Consider the integral 

I (A,,u) = L'" exp( - At 2n -,ut 2) dt, 

where ReA;;;'O, /,.1. /<R, Rqt;;;'o, 1 - o</,ul<l + 8 where 
R > ° and ° < 0 < 1. Then for all A, ,u with these properties 

/1 (A"u)/ >C, 

where C is a positive constant. 
Proof We write 

,.1.=,.1.1 +iAz, ,u=,ul +i,u2' 

and 

Re1(A"u) = L'" exp( - Al t 2n - f.11 t 2) 

X cOS(A2 t 4 + f.12 t 2) dt 

and substitute/(t) = Al t 2n + ,.1.2 t 2 = u. The function 
f' (t ) = 2nA I t 2n - I + U 2 t is increasing for tE(O, 00). Let 
t = rp (u)be the inverse function. Thenrp ~ = 11/: isdecreas
ing on (0,00). We have 

ReJ(A"u) = 1"0 exp[ - Al rp 2n(u) - f.11 rp 2(U)] 

Xrp ~ casu duo 

The function Al rp 2n(u) + f.11 rp 2(U) is strictly increasing on 
(0,00) because rp(u) is so. The product exp[ - Al rp 2n(u) 
- PI rp 2(U)]rp ~ is strictly decreasing in UE(O, 00). It is clear 

that there is a positive constant C such that 

Re[I(A."u)] > C. 

Then J1(A,p)/;;;'Re[1 (A"u)] > C and the lemma is proved. 
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We have now to study the behavior of (15) for /f.111arge, 
Rqt > 0. The generality of our result regarding the analytic 
continuation in the coupling constant A in Sec. 2 is not influ
enced if we restrict to the case /argul<1T12 - cu where cu is 
arbitrary small. For /argu/ <1T12 - cu, /,uJ~oo we can deter
mine the asymptotic behavior of (15) by applying the com
plex Laplace-Watson9 method (a particular case of the 
steepest descent method. By direct application of the La
place formula9 we find that for m >0 and JarguJ <1T12 - cu, 
/,u/~oo the quotient (15) goes uniformly to zero. This shows 
that (15) is uniformly bounded in the region 
/argu/<1T12 - cu, Rea;;;'o, 1 - o.;;;lal.;;;1 + o. The proof of 
the convergence of the Mayer expansion follows now as in 
Sec. 4. This completes the proof of Theorem 3. 

7. CONCLUSIONS 

We have studied some analytic properties in A of the 
lattice AP( ¢) + ~m2¢ 2 models in arbitrary number of di
mensions for large m. From the results of this paper it fol
lows that the lattice models have Schwinger functions which 
are Borel summable in the classical sense. The required re
laxed factorial bound can be proved as in Ref. 2 or more 
directly as in Ref. 3. 
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The involutional transformations are shown to playa fundamental role in the Dirac relativistic 
theory ofth~ electron. The symmetric plane waves in the momentum representation, which are 
the simultaneous eigenfunctions of the energy and helicity operator, are given by the columns ofa 
unitary matrix defined by U = YE Y" where YE and Ys are IUH (involutional, unitary, and 
Hermitian) matrices which diagonalize the Dirac Hamiltonian and the helicity of a free particle 
respectively. It is shown that all the known properties of the Dirac plane waves stem from the 
properties of the involutional transformations Y E and Ys ' 

1. INTRODUCTION 

Recently, the author has developed a general theory of 
matrix transformation I ,2 which gives an explicit solution for 
the matrix equation 

AX=XB, (1.1) 

for a gi ven pair of square matrices A and B of any given order 
satisfying the same polynomial equation. In a special case 
when A and B are involutional, i.e., A 2 = B 2 = I, where I is 
the unit matrix, the theory takes a particularly simple form. 
The simplest special case of the theorem (Theorem 2 of Ref. 
1) has been introduced as the basic lemma for the recent 
work on the general theory of the spinors. 3 We shall, howev
er, restate the lemma in a slightly modified form suitable to 
the present work and introduce a corollary to it. 

Lemma: LetA and B be involutional matrices of a given 
order satisfying A 2 = B 2 = 1. If their anticommutator is a c
number (=/= -2), 

AB + BA = 2c I, c=/= -1, (1.2) 

then there exists an involutional transformation which inter
changes A and B via 

A = YBY, y 2 =I, 
where 

Y = (A + B )/(2 + 2C)1/2. 

(1.3) 

The direct proof of this lemma is also very simple. A 
simple extension of this lemma leads to the following corol
lary. 

Corollary: The most general transformation V, which 
connects the involutional matrices A and B of the lemma, via 
a similarity transformation 

A = VBV- 1
, 

is given by 

V=FAY= YFB , (1.4) 

where FA (FB ) is a nonsingular matrix which commutes with 
A (B). 

The fundamental nature of this lemma on the Dirac 
theory of the electron can be seen from that any linear com
binations of the Dirac y-matrices are involutional and their 
anticommutators are c-numbers. It has been shown in the 

previous work3 that this lemma leads to the general theory of 
the spinor representations of the group of orthogonal trans
formations 0 (d, C) in a d-dimensional Euclidean space V(d) 

over the complex field. In a special case of the Lorentz 
group, the lemma gives the complete parametrization of the 
basic spin or representations of order 2 X 2. It should be men
tioned3 that the geometric interpretations of the lemma and 
the corollary with the simplest choice of FA (= A ) lead to 
the general expressions of the axial involution (twofold rota
tion) and plane rotation in V(d) respectively. 

In the present work we shall use the lemma to explicitly 
construct the Dirac plane waves and analyze their proper
ties, Since the Dirac Hamiltonian for a free particle is involu
tional, one can immediately write down the involutional 
transformation YE which diagonalizes the Hamiltonian. 
Moreover, the Hamiltonian is Hermitian so that YE is an 
IUH (involutional, unitary, and Hermitian) matrix. 1 Thus, 
the four columns of YE provide the complete set of orthonor
malized energy eigenspinors in the momentum representa
tion. One of the satisfying features of the solution is that it 
can easily be shown to be a Lorentz transform of the spinor 
at the rest frame (Sec. 2). We shall introduce the mean opera
tor of an observable A by the involutional transform A E 

= YEAYE and study its properties. This concept has first 
been introduced by Foldy and Wouthuysen4 based on a uni-
tary transformation which is not involutional. We shall find 
that the above definition is more satisfactory owing to the 
characteristic property of an involutional transformation 
that the inverse transformation is the same as the original 
one (Sec, 3). Using the corollary of the lemma we shall next 
construct the symmetric Dirac plane waves which are the 
simultaneous eigenfunctions of the energy and helicity. The 
plane waves are described by the columns of a unitary matrix 
defined by U = Y E Y, where Y, is another IUH matrix 
which diagonalizes the helicity operator. It will be shown 
that all the symmetry properties and orthogonality relations 
of the plane waves follow directly from those of the IUH 
matrices YE and Y, (Secs. 4 and 5), 

It is emphasized that the purpose of the present com
munication is to show the fundamental roles played by the 
involutional transformations in the Dirac relativistic theory 
of the electron. In the forthcomming communication we 
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shall show that the Dirac-Coulomb problem can be reduced 
to the non relativistic Coulomb problem by a single involu
tional transformation. It seems that the simple lemma intro
duced in the beginning of this introduction provides the most 
important mathematical tool thus far missing in handling 
the Dirac relativistic theory of the electron. 

2. THE INVOLUTIONAL TRANSFORMATION OF THE 
DIRAC HAMILTONIAN 

The Dirac Hamiltonian for a free particle is written as 

H = a·p + 13m, c = II = 1. (2.1) 

It is involutional, 

H2=E2, E= ±(m2+p2)1/2, (2.2) 

where p = I p I and the sign of E is left arbitrary to ensure the 
greater symmetry of the Dirac plane wave solutions. From 
the lemma, we can diagonalize the Hamiltonian via an invo
lutional transformation, 

YEHYE =f3E, yE
2 =1, 

where 

YE = YE( p) = NE(H + f3E), 

NE = sgn(E)(2E2 +2Em) ~1. 

(2.3) 

We may rewrite Y E in a form similar to that ofthe Hamilton
ian itself, 

YE = YE(p) = p'ap + m'f3, a p = (a·p), (2.4) 

where p = pip and 

p'=sgn(E)[~(l-(mIE»]1/2, m'= [~(l + (mIE»] 1/2. 

Since the Hamiltonian is Hermitian, YE is an IUH (involu
tiona, unitary, and Hermitian) matrix. I Thus, the four col
umns of Y E give a complete set of orthonormalized eigenvec
tors of H. Let the set of column vectors be u 1-U4 , then we 
can write 

Hu" = E"Eu,., v = 1,2, 3,4, 

where u,. = u,.(E,p) = Yt.X" with 

E" = { 1 
-1 

for v = 1,2, 

for v = 3, 4. 

(2.5) 

Now, one has to show that the Dirac spinor u,. (E,p) is a 
Lorentz transform oft", which is the spinor belonging to the 
Hamiltonian mf3 at the rest frame. We can easily achieve this 
by rewriting u,. (E,p) in the form 

u,(E,p) = {l - v~)1/4E,.expBE,x(a·p)]x", E>O, 
(2.7) 

and noting that the spinor representation of the pure Lorentz 
transformation SLor corresponding to a uniform motion of 
the coordinate system (r, it) with the velocity Vo = - piE is 
given by3 

SLOT = ± exp[it (a·p)], tanhx = IVol. (2,8) 
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The factor (1 - V~)IJ4 in front of (2.7) accounts for the Lo
rentz contraction of the spacial volume element. To under
stand the involutory nature of Y E' it would be even better to 
compare (2.8) with the spinor representation of an improper 
Lorentz transformation called the axial involution rh of X v 

about a vector h ( = i sinhU- 12)p, coshU- 12» in the Lorentz 
frame, for r h is given by3 

(2.9) 

So far, we have considered the involutional transforma
tion which diagonalizes the Hamiltonian H. According to 
the lemma, we can transform H into various other forms. An 
interesting special case is to transform H into Eap via 

YaHYa = Eap' Y; = 1, 

where 

Ya = [H + Eap ]/[2E(E + p)] 1/2, 

(2.10) 

which is again an IUH matrix. The above transformation is 
interesting since it brings the Dirac Hamiltonian for a parti
cle with mass m into that of a massless particle. The above 
form of the Hamiltonian has been considered by Cini and 
Touschek5 and by Bose et al,5 Their transformation matrix 
appears somewhat involved being a modification of the 
Foldy-Wouthuysen transformation4 (see 3,7). It can, how
ever, be shown that their transformation is simply equal to 
apYE· 

One may transform H further into the form of the Weyl 
Hamiltonian of a massless particle, 

H", = Ef3~p, ~p = (l;.p), 

through 

T:,HTw =Hw, Tw = Ya(P1 +P3)/v'2, 

(2.11 ) 

(2.12) 

where T", is still a unitary matrix. If one uses Theorem 2 of 
Ref. 1, one can transform H into H", also by 

S-IHS=Ef3~p, (2,13) 

where 

S=H +Ef3~p' 

S -I = iP2 (H - Ef3~p)/(2pE), 

Here S is not unitary but Hermitian. It is noted that the 
determinant of S is given by 

detS = (2pE)2. (2.14) 

3. MEAN OPERATORS 

Let us define the mean operator A E of an observable A 
by the involutional transform of A with YE which diagona
lizesH, 

(3.1) 

Then A E gives the matrix representation of A in the represen
tation which diagonalizes H, A few important examples are 

HE =f3E, f3E =H IE, 
(3.2) 

a f ; = (p/E)f3 - [1 - pp(E2 + Em) ~ I J.a. 

In the Dirac standard representations, a is an odd operator 
while 13 is an even operator, Thus, within the manifold of the 
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positive or negative energy states the mean operators HE and 
U E behave like classical observables, being constants equal 
to the respective classical expectation values. In the case of 
the velocity operator, U = t, the mean operator U E equals 
Evpl E in each energy manifold. The odd operator part of U E 

describes the so-called Zitterbewegung which, however, can 
be observed only in the nonstationary states. 

On account of the involutional nature of YE, ifAE is the 
mean operator of A, then A is also the mean operator of A E , 

A = YEA E YEo (3.3) 

An example of such a pair is Hand f3E as given by (3.2). It is 
of interest to see how the mean operator changes in time. The 
equation of motion of A E is given by 

AE = i[H,AE ] = iYE [f3E,A ] YEo (3.4) 

Here, it should be kept in mind that E is a function of the 
momentum operator p, as given by (2.2). In a special case 
when A is the position operator, we have 

i'E = (pIE)(H IE), (3.5) 

which yields, in the energy-momentum representation, 

(3.6) 

The rhs is completely diagonal and hence free ofZitterbewe
gung in contrast to U E = (i')E' 

The equation of motion (3.4) can also be used to find 
constants of motion. Suppose that A commutes with f3E, 
then A E is a constant of motion. Examples of such A are the 
orbital angular momentum L = rXp and the spin angular 
momentum p:. Accordingly, LE = YELYE and !l:E 
= ~YEl:YE are constants of motion. For the case of the 

Dirac operator, K = 13 (l:·L + 1), which is one of the well
known constants of motion, we have K = K E' 

The concept of the mean operators was first introduced 
by Foldy and Wouthuysen by means ofa unitary matrix. 

TFw = exp [¥3 (u·p)tan l(p/m»), (3.7) 

which brings the Dirac Hamilitonian into a form which is 
free of odd operators, i.e., TFwHT~w = f3E which is diag
onal in this case. It can easily be shown that the matrix T FW 
is simply equal tof3YE . Since TFW is not involutional, their 
arguments on the mean operators are somewhat involved. 

4. THE SYMMETRIC DIRAC PLANE WAVES 

The Dirac plane waves described by Us' = Y EX" are de
generate. One may easily remove this degeneracy by intro
ducing the simultaneous eigenspinors of the energy and heli
city operator ~p = l:.p. For this purpose, we shall first 
introduce one more involutional transformation which dia
gonalizes the helicity. From the lemma, we have 

Y,~pY, =S~3' Z~ =/, (4.1) 

where s = ± 1 is inserted for convenience, and 

Y,. = Y,( p) = N,(~p + S~3)' N, = (2 + 2SP3) 

By definition Y,( p) satisfies the symmetry property 

Y,(p)= - Y_,(-p). (4.2) 

Now, from the corollary of the lemma in Sec. 1, one can see 
that a unitary matrix which diagonalizes H and ~p via 
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UtHU=BE, ut~pU=S~3' 

is given by 

U = U (E,p,s) = YE ( p)Y,( p). 

(4.3) 

(4.4) 

Thus, the simultaneous eigenspinor belonging to the energy 
E" E, the momentum p and the helicity ( - 1) v + Isis given by 
the column vector of U, denoted by U,,' 

u, (E,p,s) = U (E,p,s)X,., (4.5a) 

in the momentum representation. For later use we shall 
write the eigenspinor in the coordinate representation as 
follows: 

t/!" (E,p,s;r,t) = U x,.exp[ip·r - i EvEt]. (4.5b) 

The unitary matrix U defined by (4.4) is highly symmet
ric. To see this, we first rewrite (4.4) in the form 

U = Y, (sa~' + 13m'), 

from which it follows that 

(4.6a) 

-:~+J ] 
- ~-+s)] , 

(4.6b) 

where N, is the normalization constant for Y, of (4.1). We 
see immediately that the positive and negative energy states 
are related by 

U3(E,p,s) = sgn(sE)U]( - E,p,s), 
(4.7) 

UiE,p,s) = - sgn(sE)Ui - E,p,s), 

and the large and small components of each U, denoted by 
U,,, and U,: respectively satisfy 

U ,~(E,p,s) = (-1)"+ ]E,.SU ,,,( - E,p,s), (4.8) 

which holds for positive or negativeE. It can be shown that a 
symmetry relation analogous to (4.8) exists also for the 
Dirac-Coulom b waves. 3 On account of these symmetries 
one may call t/!,. of (4.5) the symmetric Dirac plane waves. 

We shall next discuss the transformation properties of 
the t/!,. under the various symmetry operations. Let C = Y2K , 
T = - i~2K, and P = - iY4 be the charge conjugation, 
time reversal and parity operation respectively, where the 
Dirac operators are in the standard representation and K is 
the complex conjugation. Then, from the symmetry proper
ties of the involutional matrices of Yr: and Y, under these 
symmetry operations, one can easily obtain the following 
result, 

Ct/!. (E,p,s;r,t ) = ( -1)VE,.t/!5 _ •. (E, - p, - s;r,t), 

Tt/!,,(E,p,s;r, - t) = ( - 1) "t/!,.(E, - p, - s;r,t ), 

Pt/!,(E,p,s; - r,t) = iE"t/!,.(E, - p, - s;r,t), 
(4.9) 

where ii = v - ( - 1)", i.e., I = 2,2. = 1, etc. Using (4.7), we 
may rewrite the first equation of (4.9) as follows: 

Ct/!,.(E,p,s;r,t) = sgn(sE)t/!,.( - E, - p, - s;r,t). 
(4.10) 

Thus, under these symmetry operations, C, T, and P, the 
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wavefunctions "'" transform within the subset "'I' "'2 or "'3' 
"'4 with modification of the parameters. 

5. THE ORTHOGONALITY AND PROJECTIVE 
PROPERTIES OF THE DIRAC PLANE WAVES 

The orthogonality of the set of the column vector U" is 
a direct consequence of the unitary nature of the transforma
tion matrix U, 

U~.Uft =X:utUXft =8"ft' V,/l= 1,2,3,4, 
(5.1) 

4 

'" U ut = "'X uutxt =1 LvvLv v· 
V= 1 v 

For the Dirac adjoint spinors U" = UU3 we have 

Uv Uft = X! Y,HYsXft/E = x~(m{3 + spa3)xft /E, 
(5.2) 

I U"U" = I UX"x:ut{3={3. 
" " 

Since a 3 is an odd operator, we have the following orthogon
ality relations in the positive or negative energy manifolds: 

UV U", = €,,(m/E)8vv" v,v' = 1,2 or 3,4. 

These relations (5.1) and (5.2) hold for the set of spinors U" 
with fixed parameters. If one uses the relation 

{3YE( p){3 = YE( - p), 

one obtains an alternate set of orthogonality relations and its 
closure, 

U,.(E, - p, - s)Uft (E,p,s) 

= X~Y -s( - p){3Ys( p)Xft = - €"8,,ft' 
(5.3) 

4 

I 
v=1 

Next, we shall construct the projection operators from 
the orthonormalized complete set ! U" J. The projection op
erator Pz onto a subsetz of the set of the sates ! U" J is defined 
by the partial sum, 

(5.4) 
V€Z 

In the calculation of Pz the following identity plays the es
sential role 

X,X~ =!O + €,.{3) [1 - ( -I)"~3], 

from which it follows that 

I x,x;. =!(1 + {3), 
l' -- 1.2 

I X,X~ = !(1 - {3) 
1'=3.4 

I x,x;. =!(1 + ~3)' 
1'= 1.3 

(5.5) 

(5.6) 

It is an immediate consequence of these identities that the 
projection operator onto the states of a given energy E is 
given by 

PrJ p) = I Uv(E,p,s)U:(E,p,s) 
l'= 1.2 
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where E can be positive or negative. Likewise, the projection 
operator onto the states with the helicity s is given by 

P,( p) = I U,,(E,p,s)U!(E,p,s) 
v = 1,3 

= YEYs!(1 +~3)YsYE = HI +s(l;.p)]. (5.8) 

It is noted here that PE ( p) and Ps ( p) commute with each 
other since the helicity is a constant of motion. Finally, the 
projection operator onto the state with the energy E and the 
helicity s is given by 

PE,s( p) = U,(E,p,s)UT(E,p,s) 

= !YE Ys(1 + {3)(1 + ~3)Ys YE 
= PE( p)Ps( p). 

(5.9) 

It is well known6 that the proofs of these relations (5.2), 
(5.3), and (5.7)-(5.9) for the Dirac plane waves are very 
messy, without use of the factorized form of the unitary ma
trix, U = YEYs' 

It is worthwhile to note that the difference between the 
actions of the unitary operator ut and the projection opera
tor PE,s( p) on an arbitrary spinor state Ua = ~"a" U" may 
be characterized by 

4 

utUa = I a"X" , PE,sUa =aIU1, (5.10) 
v=1 

that is, the column elements of the former describe the prob
ability amplitudes of all spinor states while the latter projects 
out the state with the energy E and the helicity s. 

Under the charge conjugation C, time reversal T, and 
parity operation P, the projection operator PEs transforms 
as follows: ' 

CPE,s( p)C -I = P _ E.s( - p), 

TPE.,(p)T- 1 =PE.,(-p), 

PPE.s( p)P -I = PE, _ ,( - p), 

where p is the momentum vector which is real. 

(5.11) 

Through these proofs of the well-known properties of 
the Dirac plane waves one may be convinced with the effec
tiveness of the factorized form of the unitary matrix 
U = YE Ys in describing the Dirac plane waves. 
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By means of a single involutional transformation, the Dirac equation for a charged particle in a 
central Coulomb field is reduced to a second-order differential equation for the radial part which 
h~ the same form as the radial equation for the nonrelativistic Coulomb problem. The general 
Dlrac-Coulomb waves thus obtained are highly symmetric with respect to signs of the energies 
and other constants of motion. It gives the precise phase shift for the continuum spectrum without 
any additive multiple of 1T in contrast to the existing solutions. The symmetry properties of the 
Dirac-Coulomb waves are discussed. 

1. INTRODUCTION 

In the previous work I (referred as I), the theory ofinvo
lutional transformation has been applied to construct the 
Dirac plane wave solutions. It is based on a simple lemma 
which explicitly gives an involutional transformation which 
connects two involutional matrices. This simple lemma has 
previously been applied to construct the general theory of 
the spinor representation of the group of the orthogonal 
transformations in arbitrary dimensions,2 a special case of 
which is the Lorentz group. 

In the present work we shall apply the involutional 
transformation to solve the Dirac-Coulomb problem. The 
method is so very effective that the exact solution follows 
almost immediately from knowledge of the nonrelativistic 
Coulomb problem. Since the Hamiltonian is not involu
tional in the present problem, it is not possible to write down 
the spinor solution as in the case of the free Dirac particle. 
We can, however, introduce an involutional transformation 
Y" which diagonalizes an involutional operator A contained 
in the Hamiltonian. This operator was first introduced by 
Temple,3 and then later by Martin and Glauber,4 and by 
others.5 .

6 Its eigenvalues A playa role similar to that of the 
orbital angular momentum quantum numbers in the nonre
lativistic problem. It will be shown that the involutional 
transformation Y" immediately reduces the Dirac equation 
to a pair of first-order differential. equations for the radial 
parts known as the Infeld-HuW factorized form of a second
order differential equation. The latter has the same form as 
the radial equation for the nonrelativistic Coulomb problem. 
Since the solutions of this equation are completely known, 
the rest is a simple matter oftransforming the solutions back 
into the original representation by the involutional transfor
mation Y". Despite a great deal of work on this famous old 
problem (especially by Darwin8 and by others3-7.9.IO), it still 
seems to have some unrecognized simple features. 

The present method gives the solution which seems 
thus far the most satisfactory in the sense that it is simple and 
holds for both positive and negative energies as well as for 
attractive or repulsive Coulomb field. The so-called large 
and small components of the spinor interchanges with each 
other by simple changes of the signs of the energy E, charge 

z, and K the eigenvalue of the Dirac operator K. The solution 
clearly exhibits the proper symmetries with respect to the 
charge conjugation, time reversal and parity operators. It is 
smoothly transformed into the force-free case as well as into 
the nonrelativistic case without any further calculation. 
There exists little difficulty in calculating the normalization 
constant or the phase shift of the solution. This is in marked 
contrast to Darwin's solution, for which it is well known that 
the normalization requires a formidable task for the discrete 
case and that the phase shift can be determined up to an 
additive multiple of 1T for the continuum case. We shall also 
discuss the so-called Coulomb helicity operator first intro
duced by Johnson and Lippman II and later by Biedenharn.5 

The operator will be given in its most symmetrized form. 

2. THE DIRAC-COULOMB WAVES 

The Dirac equation for a charged particle in a central 
Coulomb field may be written as 

(H -E)t/!=O, (2.1) 

with 

H=a.p+f3m-zr l
, c={z=1. 

We shall leave the signs of the energy E and the potential 
parameter z arbitrary, in order to achieve the greater symme
try of the wavefunction t/! with respect to the signs of these 
quantities. It is assumed, however, that m;;;.Oand Izl < 1. For 
the electron in a nuclear field, z equals the atomic number of 
the nucleus multiplied by the fine structure constant. In the 
spherical coordinates we have 

H = f3m - iar ( ~ + ~ + ~), 
Jr r r 

(2.2) 

where a
r 

= rl (a.r) and A is an operator3
-

6 defined by 

(2.3) 

Here L is the usual orbital angular momentum, :I is the 
Dirac spin matrices, and K is the Dirac operator as originally 
defined except that the sign has been changed for 
convenience. 

As is well known, the Dirac operator K is a constant of 
motion and commutes withf3, a r , L, and J (the total angular 
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momentum). The operator A commutes with K and J but it 
is not a constant of motion. Both K and A are involutional in 
the subspace where J2 = j(j + I), since 

(2.4) 

Thus, the eigenvalues of K are given by K = ± 1, ± 2,··. and 
the eigenvalues of A are given by ± A with 

A = K(l - (ZIKf) 112 (2.5) 

where we have adopted the positive square root convention 
and hence sign (A) = sign (K). In view of the definition of K, 
one may introduce a two-component spinor x,: which 
satisfies 

- (rr·L + 1) X~ = K x,: , Jz X~ = Jix,:. (2.6) 

Then, X~ is also an eigenfunction of J 2 and L 2 belonging to 
their respective quantum numbers given by 

j(K) = IKI -!, 1 (K) = IK/ + Usign(K) - 1]. (2.7) 

The well-known explicit form of X~ and its symmetry prop
erties are given in the Appendix for convenience. 

With the preparation given above we shall let tPG,K be a 
simultaneous eigenfunction of H,K, and Jz with the respec
tive eigenvalues E, K, and Ji and set 

</J j;,K = Y" tPG,K' (2.8) 

where Y" is the involutional transformation which diagno
lizes A via 

Y" A Y" = /3A, Y" 2 = 1, 

where, from the lemma of I, 

1 ( U )112 Y" = - -- (A +/3A). 
U k+A 

(2.9.1) 

(2.9.2) 

It should be noted that </J j;,K is still an eigenfunction of K and 
Jz but of H' = Y" H Y" ' The equation for </J j;,K may be writ
ten in the form 

Y" iar (H - E) Y" </Jj;,K = 0, 

or explicitly 

{:r +/3(~ - z: )+iar( K: -/3m)}r</Jj;,K =0. 

(2.10) 

If one gives the matrix representation of this equation one 
can see that it is best to set 

-I.P- _ ( C I R E,,, x,: ) 
'I' E,K - _ is R ,,' 

I E,-"X-K 

(2.11) 

where R E, ±" are properly normalized radial functions and 
C I, S I are the normalization constants satisfying 
C I 2 + s I 2 = 1. Substitution of (2.11) into (2.10) followed by 
elimination of the angular parts, using (rr.rlr)x~ 

- xP- K' yields 

(2.12.1) 

( 
dAZE) --+ -- - rRE -" = N"rR E ", dr r A' , 
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with 

N" = ~(EK +m) 
CI A 

= El ( EK _ m) = A -1«KE)2 _ (mA )2)1/2; 
SI A 

(EKlmA )2;;;.1. (2.12.2) 

In the Appendix, an alternate expression of N" is given by 
(AS). The inequality given above which limits the allowed 
energy range, follows from that the two operators on LHS of 
(2.12.1) are mutually Hermitian conjugate. The self-consis
tent set of the constants C 1 and S I may be written as 

C I = [(1 + ;: )/zr2

, 

51 = sign(KE) [( 1 - ~: ))r2

, (2.12.3) 

with the convention of the positive square root. 
The set ofEq. (2.12.1) is known as the Infeld-Hull fac

torized form 7 of the differential equation 

I:; _ A (A,z+ 1) _ ~E _ (m2 _ E2)}r R E,). = 0, 

(2.13) 

which has the same form as the radial equation for the nonre
lativistic Coulomb problem. Since the solutions of this equa
tion are completely known, one may consider that the prob
lem is solved, The rest is a simple matter of writing down the 
solutions for </J j;,K and transforming it back to ~,K using Y" 
given by (2.9). For this purpose we shall first introduce a set 
of parameters, 

(2.14.1) 

where q is defined to be real and positive when IE I';;;m and 
pure imaginary with the positive imaginary part when 
IE I> m. In any case, E takes the following familiar form 

E = ± m(l + (ZI1])2)-1/2, (2.14.2) 

where the sign has to be consistent with E = q1]lz. From the 
boundary condition at the origin, rRE,,, --0 as r-o, the ini
tial exponent of the acceptable solution is given by 

I (A) = IA I + Hsign(A) - 1). (2.15) 

Thus, it is more convenient to denote the radial solution by 
R E,l (,,) instead of R E,'" Then, 

R E ,/(,,) (r) = N E ,/(,,) (2Iqlr)l(,,) e- qr 

X IFI (I (A) + 1 - 1], 21 (A) + 2, 2qr) (2.16.1) 

where IFI is the confluent hypergeometric series l2 and 
N E,/(,,) is the normalization constant to be determined. The 
radial function is real even when q is imaginary, since then it 
is invariant for q-- - q and 1]-- - 1] (Kummer's transfor
mation 12). The function R E,/ (") is further characterized for 
the discrete and continuum spectra separately by the conver
gence condition at r--oo: 

(A) The discrete spectrum wherem;;;.IE l;;;.m(A IK). The 
radial function (2.16.1) is characterized by a set of discrete 
values of 1] and the corresponding normalization constants: 

1] = I(A) + 1 + n r ;;;' n r • nr = 0.1.2 ..... 
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NE,I()') = N7I,I().) 

= [4q3 r(7]+/(A.)+I)]112 /r(2/(A.) +2). 
7] r(7] -/(A.» / 1 

(2.16.2) 

The discrete solution denoted by R 7I,I().)(r) can be expressed 
alternatively in terms of the associate Laguerre polynomial 
of the degree n, defined by 

(
n, +s) L n , (s) (2qr) = n, IFI (- n,,1 + s, 2qr). 

It is noted that the sign of E is determined by the sign of z 
since zE>O. The minimum value IE I = mA. IK for a given 
value of IKI occurs at n, = 0, K < 0 and 7] = IKI. The corre
sponding wavefunctions take particularly simple forms, 
which will be shown in the next section. 

(B) The continuum spectrum where IE I >m. The radial 
solution (2.16.1) is characterized by imaginary q and 7], and 
the corresponding normalization constant, 

q=ik, k>O, 7]= -i~, ~=zElk, 

NE,I().) = Nk,l().) 
= (21T)1/2ed/2m-; Ir (I (A.) + 1 - i~ )llr (2/ (A.) + 2) 

(2.16.3) 

where the normalization constant is given in the wave num
ber scale. The continuum wave denoted by Rk,l().) has the 
following asymptote 

Rk,I().) _(2I1T)1!2 rlsin(kr - (1T/2)/ (A.) 

+ ~ln(2kr) + l51().», 

l51().) = argF(/(A.) + 1 - i~). (2.16.4) 

Since there exists no constraint on ~ except that it be real, the 
energy can be positive or negative for any given value of z. 

I t should be noted that the radial solutions (2.16.1) 
characterized by (2.16.2) and (2.16.3) have the same forms 
as those of the nonrelativistic Coulomb problem with a triv
ial exception of "the noninteger orbital angular momentum" 
/ (A. ). It is also noted that the normalization constants are 
consistent with the constant factor N). of(2.12.2) which may 
be rewritten in the form of (AS) for the comparison. 

Now, we shall transform l/J j;,K back to tPk.K by the invo
lutional transformation Y).. Using (2.9.2) and (2.11) we may 
write the solution in the form, 

tPlt,K (z,r) = (i/.gK~: ) = NK (A. IK)1/2 Y). l/J j;,K (z,r), 
K X-K 

(2.17.1) 

where an extra normalization factor is introduced, for Y). is 
not unitary. The radial parts are given by 

gK-gK (z,E,r) = NK [C lc2RE,I().) + SIS2 RE,/(_).)]' 
(2.17.2) 

IK=IK (z,E,r) = NK [C IS2 RE,I()') + SIC2 RE,I( -).)], 

with the coefficients Ci and Si (i = 1,2), 

C I = 2- 1/2(1 + (mA. IEK»1/2, 

SI = 2-1/2sign(KE)(1 - (mA. IEK»1/2 
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(2.17.3) 

Notethatc/ + S/ = 1 and the set (cl,sJ) is from (2. 12.3) and 
(c2, S2) is from Y). written in the form 

Y). = (KIA. )1/2 (cJ3 - iS2 a,). (2.17.4) 

The normalization factor NK is given by 

N = {IEKlmA. I for the discrete spectrum, (2.17.5) 
K IKI A. I for the continuum spectrum, 

where use has been made ofthe integrals given by (A3) and 
the identity (A4). 

The solution given by (2.17) is completely general; it 
holds for arbitrary signs of the energy E and charge z. Ac
cording to (2.17.2), we have the following symmetry 
properties, 

IK (z,E;r) = sign(KE) g _ K ( - z, - E;r), (2.18.1) 

noting that R E,I ().) depends on E through zE. Thus, the large 
component tPk,K (z,r» and small component tPk.K (z,r)< of 
(2.17.1) are related by 

tPk.K (z,r) < = isign(K) tP~ E,K ( - z,r». (2.18.2) 

A similar symmetry has been obtained for the symmetric 
Dirac plane waves in I. 

We shall next explicitly show the symmetry properties 
of the spinor solution (2.17) with respect to the charge conju
gation C ( = A. 2K, K being the complex conjugation) and the 
time reversal T (= - i~2K), and parity P = - ir4' Using 
(2.18.1) and the symmetry properties of x.: given by (A2) we 
have 

C tPk.K (z;r) = i( - 1)!l + Il2sign(E) tP~ E, _ K ( - z,r), 

TtPltK (z;r) = (_I)!l+ 1I2sign(E) tPk.K (z,r), (2.19) 

P tPiiK (z; - r) = i( - 1)I(K) tPii,,, (z,r). 

These symmetry properties (except for the phase factors) are 
consistent with the transformation properties of the opera
tors H, K, and J under the respective symmetry operations. 

We shall now calculate the phase shift for the contin
uum spectrum. From (2.17.2) and (2.16.4) we obtain for the 
asymptotes of the radial functions gK and IK , 

g" - (2/1r) 1/2C I(O)r-Isin(kr + ~ In(2kr) - (1T/2)1 (K) + l5K ), 

(2.20.1) 

I" - (2I1T) 1/2S I (O)rlsin(kr + ~ In(2kr) 

- (1T12)/ ( - K) + l5K ), 

where 
cl(O) = 2- 1/2(1 + (mIE»1/2, 

SI(O) = 2- '/2sign(KE) (1- (mIE»1/2 
(2.20.2) 

and l5
K 

is the phase shift, except for the logarithmic term, as 
one can see from that A.~ as z--o. It is given by 

l5K = (1T12)IK -A.I + argF(/(A.) + 1 - i~) + ~K' 
~ =tan-,(I-(mIE)~)=tan-'( K-A. ~-1), 

" K+A. 1 + (mIE) 

-!!...< ~,,< !!..., (2.20.3) 
2 2 

where the identity (A4) has been used. It can easily be shown 
that l5" -l5" (z,E) satisfies the symmetry property, 

l5" (z,E) = 8 _ K ( - z, - E), (2.20.4) 
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which can be shown by a direct calculation or from the gen
eral symmetry property (2.18.1). 

In the existing continuum solutions9
, 10 of Darwin's type 

the phase shift 8K is given through exp(2i8K) so that 8K is 
known only to within an additive multiple of 1T. This gives 
the sign ambiguity in Darwin's solution. One can transform 
the present solution to Darwin's solution9 by using the con
tiguous relation of the confluent hypergeometric functions. 
For the comparison one may need the following relation 

(2.21) 

which follows from the definition of..1 K given in (2.20.3). 
Before concluding this section it is worthwhile to men

tion another trivial symmetry property for the radial func
tions with respect to the sign of A. So far, we have used the 
convention that sign (A ) = sign(K). We may change this con
vention and regard their signs independent by redefining gK 
and.!: as functions of K and A as they are written in (2.17.2). 
Let gK = gK (A,z,E ),JK = .!: (A,z,E), then we have 

gK ( - A,z,E) = sign (zE) gK (A,z,E), 
(2.22) 

IK ( - A,z,E) = sign (zE).!: (A,z,E), 

i.e., these are "invariant" for the sign changeA~ - A keep
ing the rest of the parameters unchanged. Thus, one can 
simply put A = IA I in the radial functions. This property 
may conveniently be used when one compares the present 
result with the existing solutions6

,9,10 where A = IA I is used. 
This convention, however, introduces an inconvenience 
when we. calculate the phase shift 8K since A~IKI instead of 
A~K as z~ (compare (2.22) and (3.5». We shall not use 
this convention in the present work. 

Comment on Dirac's Procedure: It is of interest to look 
into the ingeneous representation which Dirac introduced in 
his original paper13 for the Dirac-Coulomb problem. It will 
help us to understand a certain feature of the Dirac-Cou
lomb problem. Based on thefacts that a r andp anticommute 
with one another and commute with the constant of motion 
K and the rest of the variables occurring in H of(2.2), Dirac 
assumed the existence of "a canonical transformation" 
which brings a r into P2 without changing P and the other 
variables in H. The canonical transformation automatically 
maps off the angular dependence ofthe Dirac equation in a 
subspace where K = K and hence leads to a set of radial equa
tions, which Dirac has solved. Evidently, this approach does 
not give the angular part of the wavefunction as it stands 
unless the canonical transformation is explicitly known. So 
far, however, this has never been reported to the knowledge 
of the author. Thanks to the lemma and its corrollary intro
duced in I, it is now a simple matter to write down such a 
unitary matrix which brings the desired transformation 
since a r and P are involutional. In the following we shall 
discuss some of the properties of this transformation. 

Let us define a unitary matrix UD by a product of two 
IUH (involutional, unitary, and Hermitian) matrices as 
follows 

UD = P2 (a r + P2)1 V2 = (1 - iP.Ir)l vi (2.23) 
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Then,we have immediately 

U D a r U D t = P2' U DP U D t = p. (2.24) 

By direct calculations, one can show that the transformation 
reduces the Dirac-Coulomb wave tPk.K of (2.17.1) into a di
rect product of the radial and angular parts, as expected, 

tPD = UD tPk.K = C:)® ,t:,D' (2.25) 

where, ,t:,D is a two component spinor defined by 

,t,:,D = <t.: + iX'_ K)I vi (2.26) 

An analogous expression holds for t/J D = U D t/J ~,K' The 
Dirac operator K, on which the angular part of tP k.K depends, 
is also reduced into the form 

K D = UD KUD t=i.Ir CI.L+l), (2.27) 

which is consistent with the direct product form of tP D' The 
transform of Y" takes the form, 

Y"D = UD Y" u1 = (KIA )1/2(cj3 - iS1P2)' (2.28) 

With use ofthis expression, we can read off (2. 17.2) from 
(2,17.1). Analogously, we can read off(2.12.1) from (2.10) 
written in the representation U D' There is no doubt that 
Dirac's representation simplifies the actual calculations, if 
not essential. It can be very useful, particularly since the 
transformation U D is now known. 

3. SPECIAL CASES 

We shall discuss some of the special cases of the general 
solution given by (2,17): 

(i) When IE I = mA IK, the minimum value of IE I for a 
given value of IKI, we have 

TJ=IAI, nr=O, K<O, A<O, 

so that the Laguerre polynomial reduces to unity, and 
Cl = 1, SI = O. Thus, 

.1.1' [ (2q)3 ] 1/2(2q )1" 1 -1 _ qr(C~ ) 
'l'E,K<O ~ r(21A I + 1) r e iS1X!'_K' 

(3.1) 

For these energy levels, K> 0 is forbidden. 
(ii) In the nonrelativistic limit, r- can be neglected com

pared to 1 so that 

A = K, TJ = I (K) + 1 + n" C l = C2 = 1, SI = S2 = O. 

Thus, 

(3.2) 

which is indeed the well-known classical limit expressed in a 
compact manner. 

(iii) In the case of a free Dirac particle, there remain 
only the continuum solutions. We let z = 0, then 
TJ = - it = 0, A = K, and 

Rk,/(K) (z = 0) = (2!1T) 1!2kj, (K) (kr), (3.3) 

wherej'(K) (kr) is the spherical Bessel function, Thus, 

I/If.;,K(Z = 0) = (2hT)1/2k (. Cl(O~j'(K)x,: ), (3.4) 
ISI(O)h( - K)X'- K 
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where CI(O) and SI(O) have already been defined in (2.20.2). 
The asymptote ofthis solution follows from (2.20.1) or di
rectly from the asymptote of the spherical Bessel function, 

j/(K)(kr)-(kr) -I sin(kr - (11'/2)/ (K». (3.5) 

(iv) The approximation A-K corresponds in energy 
wise to the approximation due to Sommerfeld and Maue. 
The quantum number 77 takes the nonrelativistic integral 
values I (K) + 1 + n" while the energy E is still given by the 
relativistic expression (2.14.2). The solution (2.17) becomes 

( 
cI(O)RE.I(K)r,: ) 

t/!;;.K - . • (3.6) 
IS I (O)RE.I ( _ K)X"- K 

which is very similar to ¢J 'E.K of(2.11). This is due to the fact 
that YA -/3 in the same approximation. A similar expression 
has been considered by Biedenharn and Swamy l4 as an ei
genfunction of approximate Hamiltonian which they called 
the symmetrized Hamiltonian. The above approximation in
dicates that the present solution is also very suitable for ap
proximate calculations as well. 

4. THE COULOMB HELICITY OPERATOR 

There exists one more constant of motion y which is 
involutional. It changes the sign of the eigenvalue K of the 
Dirac operator K as follows. 

yt/!;;,K = t/!;;. _ K' y2 = 1. (4.1 ) 

Such an operator was first introduced by Johnson and Lipp
man II and later reconstructed by Biedenharn.5 Following 
Biedenham, we use the Infeld-Hull factorized from (2.12.1) 
and u,r,: = - Xf'_ K to obtain 

= i (1 - (rnA /KH) )112 si n(KH). (4.2) 
y PI 1 + (rnA /KH) g 

One can directly verify that this operator indeed satisfies 
(4.1) by using the following relations, 

[K, pd + = 0, [H, Ptl _ = 2irnp2' 

[H,A] _ = -2f3(KH - rnA), (4.3) 

where [ ... ] + denotes the anticommutator and [ ... ] _ the 
commutator. The branch point ofthe operator y occurs 
when IE I = rnA /K. This is related to that K > 0 is forbidden 
for the minimum value IE I = rnA /K. For a free particle 
y_ - i(I·p)sign(K), which is essentially the helicity opera
tor. On account ofthis property, Biedenharn namedy the 
Coulomb helicity operator. The expression of y given by 
(4.2) is the most symmetric one of the kind. 

APPENDIX 

For completeness, we may define the angular part of the 
two-component spinor r,: by (cf. Ref to, p. 26) 
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r,:(r) = _ Sign(K)( ~ _ _ Il __ )1f2yf' -112(r)lyI/2 
2 2K + 1 / (K) /l 

+(~+ _1l __ )1/2Y J.l+lf2(i')ly- l12 (AI) 
2 2K + 1 I(K) /l , 

where j is the unit vector r/r. The symmetry properties of r,: 
(f) are 

u,r,:(r) = - X"-K(r). r,:( - r) = (-l)I(K)r,:(r), 
(A2) 

- iuzx.:(r)* = ( - 1)f' + 1/2 sign(K)X K- f'(f). 

The normalization of the spinor t/lJ;;K which gives NK of 
(2.17. S) requires the following integrals for the radial func
tionsR'IJ(A) and Rk,l(A) belonging to the discrete and contin
uum spectra respectively, 

(OOR R .2d _(1_('1/71 )2)1/2 Jo '1,I(A) 'I,I(-A)' r= /I. ./ 

LX> Rk'.I(A)Rk".I( _A)r dr 

= - sign(zE)(1 + (A /~f) -lf2{j(k / - k ") 

and the identity 

(A3) 

1 - (rnA. /EK)2 = (Z/K)2(1 - (A /77)2»0. (A4) 

In terms of this identity, NA of(2.12.1), can be written in the 
form 

(AS) 
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We study the global existence problem for the Maxwell-Klein-Gordon equations in (2 +1)
dimensional, Minkowski spacetime. We first establish local existence, in a suitable Sobolev space, 
by specializing to the Lorentz gauge and applying standard techniques. We then prove global 
existence by showing that an appropriate norm of the solutions cannot blow up in a finite time. An 
essential step in the proof involves showing that a certain second order "energy" does not blow up. 

I. INTRODUCTION 

In this paper we shall study the global existence prob
lem for the (classical) Maxwell-Klein-Gordon (MKG) 
equations in (2 + I)-dimensional spacetime. We first estab
lish local existence (in a suitable Sobolev space) by specializ
ing to the Lorentz gauge and applying standard techniques. 
We then extend this result to a global one by proving that an 
appropriate norm of the potentials and their velocities does 
not blow up in a finite time. 

Our local existence argument requires that we work in 
the H2 XH I space of potentials and their time derivatives 
(here Hs is the Sobolev space of functions in L 2 with deriva
tives up to order s also in L 2). To extend the local result to a 
global one requires that we prove that the H 2 X HI norm of a 
solution does not blow up in a finite time. Energy conserva
tion is clearly insufficient for this purpose since, even with 
suitable gauge conditions, the energy could at most bound 
theHI XL 2 norm of a solution. We shall show, however, that 
a suitably defined "pseudoenergy", though not strictly con
served, does not blow up in a finite time. This pseudoenergy 
will provide the needed bound on the higher derivatives in 
theH2XH I norm. 

Our global argument is somewhat indirect for the fol
lowing reason. The local argument is facilitated by using the 
Lorentz gauge but the energy and the pseudoenergy provide 
bounds on only the "transverse parts" of the fields. This 
follows from the fact that both the energy and the pseudoen
ergy are gauge invariant. To sidestep this complication, we 
shall use the no blowup result for the pseudoenergy to show 
that the HI norms of the electric charge and curren t densi ties 
do not blow up in a finite time. Since these quantities are 
gauge invariant, the no blowup result holds, in particular, in 
the Lorentz gauge. Using this no blowup result for the cur
rents, one can then show that the H2XH I norm of the Lo
rentz gauge potentials does not itself blow up. 

In Sec. II we derive our local existence result for the 
MKG equations in the Lorentz gauge and define the "Cou
lomb transform" of any particular Lorentz gauge solution. 
In Sec. III we define the pseudoenergy and prove that it does 
not blow up in a finite time. We extract from this result a 
number of bounds upon the Coulomb transform of any given 
solution and use these to show that the HI norms of the 
charge and current densities do not blow up in a finite time. 

"Research supported in part by NSF grant PHY76-82353. 

In Sec. IV we complete the global existence proofby showing 
that the H2 XH, norm of a (Lorentz gauge) solution cannot 
blow up in a finite time. 

II. LOCAL EXISTENCE 

The Maxwell-Klein-Gordon field consists of a vector 
potential AJt and a complex scalar field ¢ (with complex 
conjugate ¢ *). To write the MKG equations in first order 
form, we define the momenta 

PJt = at AJt' 1T * = at ¢ + ie Ao ¢, 

1T = at ¢ * - ie A 0 ¢ *, (2.1) 

where e is the coupling constant (charge) of the scalar field. 
In terms of these, the electric field E is given by 

E
j 
= aj Ao - at Aj = aj A 0 - Pj (2.2) 

and. in the Hamiltonian formalism, (Aj' - E'), (¢, 1T), and 
( ¢ *, 1T*) are canonically conjugate pairs. 

We introduce the notation 

ifJ = (Ao, Po, A I' PI' A 2, P2, ¢, 1T*), (2.3) 

(regarding ifJ below as a column matrix) and define the linear 
differential operator A by 

roo 0 

o 
o 
o 

r 
o 
o 

o 
r 
o 

o 
o ' 
r 

(2.4) 

where.J - m 2 = ajaj - m 2 for a positive (mass) constant m 
and where each zero in A stands for a 2 X 2 matrix of zeros. 
The MKG evolution equations (in Lorentz gauge) may be 
expressed as 

d ifJ (t) 
- i A <P (t) + J ( ifJ (t» ---= 

dt 

where J is the nonlinear map given by 

o 

J(ifJ)= 

m2A 0 + ie( ¢* 1T* - ¢ 1T) 
o 
m 2AI + ie( ¢ *V I t/J - t/JVIt/J *) 
o 
m 2A 2 + ie( t/J *V 2 t/J - ¢V 2 t/J*) 
- ie A 0 t/J 
+ ie aj ( Aj t/J) + ie Aj Vj t/J - ie A 0 1T * 

(2.5) 

(2.6) 
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where Vj l/J is the gauge covariant derivative 

Vj l/J = aj l/J + ie Aj l/J, 

Vj l/J * = (Vj l/J) * = aj tP * - ieA j tP *. (2.7) 

Note that we have added and subtracted a mass term mlA I' 
to thea, PI' components of the Maxwel!:quations. This pro
cedure regularizes the linear operator A (by ensuring a 
bounded inverse) but leaves the full Maxwell field massless 
as required. 

We supplement the evolution equations with two initial 
value constraints: the Lorentz condition 

a I' A I' = ai Ai - Po = 0 (2.8) 

and the Gauss equation 

..::1 Ao - ai Pi = ie( tP 1T - tP * 1T*), 

which may be reexpressed as 
ai E i = ie( tP 1T - tP * 1T *). 

(2.9) 

(2.10) 

We shall show below that these two conditions are preserved 
by the evolution equations. 

As a "rough phase space" for the field </J we take the 
Hilbert space JY of all A I' E H l , tP E H l , PI' E HI' and 
1T * ENI , with the inner product on JY defined by 

I' 

+ II tPll~, + 111T * II~" 
(2.11) 

where H, is the Sobolev space offunctionsffor which 

(f,f)H,= Ilfll~{,= r dlx{f*f+ aJ*aJ+'" 
JR' 

+ (ai, ... a,J*a" ... a;J)}< CIJ. (2.12) 

One can show that A is a self-adjoint operator on JY with a 
domain D (A) consisting of all A I' E H 3 , l/JE H}, PI' EN2 and 
1T *E H 2• Furthermore, one can show, by means of the Sobo
lev estimates discussed below, that J maps D (A) to D (A) . 
We may thus apply the general methods of Browder l and 
Segaf to investigate the local and global existence of solu
tions. In the following we shall appeal to the formulation of 
this general theory given by Reed and Simon. 3 

For local existence and uniqueness of solutions it suf
fices to verify the following inequalities for all </J, 1]E D (A): 

II J(</J)II< C( II </J 11)11 </J II, 

IIAJ(</J)II<C(II</JII)llkpll, 

II J ( </J ) - J ( 1]) II < C ( II </J II, II 1] II) II </J - 1] II, (2.13) 

II A (J ( </J ) - J ( 1]» II < C ( II </J II, II 1] II, IIA </J II, IIA 11 II) 

X III tP - I 1] II, 

where each C () is a monotone increasing everywhere finite 
function of all its arguments (where we have written II II for 
II II II' to simplify notation). Given these estimates, which 
we shall verify below, the general theory assert that for any 
tPoED(A)thereisT _ <OandaT + >Osuchthat(2.5)hasa 
unique continuously differentiable D (A)-valued solution 
with tP (0) = tPo· Furthermore, if on any finite interval of ex
istence the solution tP (t) has the property that II </J (t ) II is 
bounded from above, then tP (t ) exists and is strongly differ
entiable for all tEe - CIJ, CIJ). (We have here appealed to the 
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time reversal invariance of the MK G equations to extend the 
solution backwards in time.) 

To verify the above Lipshitz conditions, one needs to 
use the Nirenberg4-Gagliard05 inequalities 

IlfllL"<KIIDmfllL'allflll;;-a (2.14) 

where 11 p = a[( lIr) - (min)] + (1 - a) (11 q), O<a< 1, 
(ifm - (nlr) is a non-negative integer, only a < 1 is allowed) 
and! R n_R k. Here K stands for a constant which depends 
only on the values ofn,p,q, k, r, and m and which is indepen

dent of the function! In particular, one needs (for n = 2) the 
estimates 

and 

II f II L' < K ( II D If 111:}) II f 111:}, 

II f II L' < K ( II D 1 f 111::) II f II Z,3, 

IlflIL' =esssupifl 

<KllfIIH, 

(2.15) 

(2.16) 

with these and standard tools like Holder inequality, one can 
show that 

II J ( </J ) II < (C I II tP II + C2 11 </J 112) II </J II, 

II AJ ( <P ) II < ( Co + C III <P II + C2 11 <P 112) IIA <P II, 

IIJ(</J)- J(1])II< (Co+CI(II</J11 + II 1]11) 

+ CZ{II </J W + II 1]W»11 tP - 1]11, 

II A J ( </J ) - A J ( 1]) II < (Co + C I (IIA </J II + IIA 1] II) 

+ Cl(11 </J W + II 1]W»11 A(</J - 1111), 

(2.17) 

for some positive constants Co, C I, and C2 and for all </J, 
1]ED(A). 

To show that the supplementary initial value equations 
(2.8) and (2.9) are propagated by the evolution equations, we 
write 

U Po -a; A" 

v a, Ei + ie( tP * 1T* - tP 1T) (2.18) 

= a; ( a; Ao - Pi) + ie( tP * 1T* - 1/J 1T) 

and compute, using (2.5), that 

(2.19) 

This is just the first order form for the massless linear wave 
equation for a "field" U with velocity d U I dt = V. We note 
from the expressions (2.18) for U and V that U (t )EH 2 and 
V (t)E HI whenever <P (t)E D (A). However, since the linear 
wave equation has unique global solutions on H 2 XH I , it 
follows that U (t ) and V (t) vanish throughout the interval of 
existence of tP (t) provided they vanish at any instant on this 
interval. 

In Sec. III we shall need to estimate various gauge in
variant quantities constructed from the canonical variables 
(A;, - E I, 1/J, 1T). These estimates are facilitated by first 
gauge-transforming the fields to the Coulomb-gauge, esti
mating the transformed expressions in terms of other gauge 
invariant quantities, and finally reverting to the original (Lo
rentz) gauge, To show that this procedure is well defined, we 
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conclude this section with a discussion of gauge transforma
tions and define the Coulomb transform of any set of canoni
cal fields. 

Atany fixed time t letA i EN2, ,pE Hz,E i ENI , 1TE HI and 
assume that A is a real valued, locally square integrable func
tion whose gradient a i A is in Hz (note that A need not be in 
L 2). We define the corresponding gauge-transformed fields 
(indicated by a prime) at time t to be 

,p' = exp( - ie A ),p 1T' = exp(ie A ) 1T. (2.20) 

Clearly A: E Hz and E i' EN1• To show that 1T'ENI we ex
pand the norm 

111T'II;I, =111T11~/, +ie ( ai A(1Tai 1T*-1T*ai 1T) 
JR' 

+ ezi, (ai A )(a, A) 1T* 1T (2.21) 

and use the estimate II a, A IlL < ,,;;; C II ai A IIH, to show that 

111T'II~,,,;;; II1Tm/, (1 + lelCllai A IIHY' (2.22) 

In a similar way one shows that 

(2.23) 

for a suitable constant K. One can clearly extend this argu
ment to show that gauge transformations preserve A· EN 
,pEN, E 'EN, -I' 1TEN, -I (for s;;;.2) provided ai AEN:. s' 

We now wish to show that any (Lorentz gauge) solution 
may be transformed (at any instant of its interval of exis
tence) to the Coulomb gauge. The solutions discussed above 
lie inD (..4) so they yield canonical data which satisfy A, EH3, 

E' ENz, ,p E H 3 , 1TE Hz. A "Coulomb transform" of this data 
is defined to be a gauge transform of these fields which satis
fies the Coulomb condition 

a, A : - ai A ~ = o. (2.24) 

Without an extra condition this transform will not be 
unique, since the function A which generates it will be deter
mined only up to an additive constant. We may ignore this 
lack of uniqueness, however, since the expressions we shall 
need to estimate are all independent of a constant change of 
phase of,p and 1T *. 

To show that a Coulomb transform always exists, we 
must show that any A, EN3 admits a decomposition 

A, =A~· - ai A, (2.25) 

in which a, A ~ = 0 and ai A EH3• That any L 2 vector field 
(onR zor R 3) maybe uniquely decomposed intoanL 2 diver
gence-free field and an L 2 gradient (with the summands in 
~ 2 ' lact, always L orthogonal) was shown by Ladyzhenskaya.6 

As remarked by Cantor,? this proof extends to the H, case. 
For s;;;.3 we can give a si~pler argument as follows: 

Let Ai ENs and let A,~esignate the Fourier transform 
of A,. We can decompose A, as 

(2.26) 
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where 

A kk· A AI= _'_1 A. 
, k.k J' 

Since 

(2.27) 

( d2k(l+k2)'A~A~";;; ( d2k(1+k2)'~~, (2.28) 
JR' JR' 

I d2kA'AI =0 " , 
R' 

it follows that A ~ and A ~ (the inverse transforms of AC and 
Af, and respectively) obey , 

AfEH"A~EHs' 

whenever Ai E H,. Furthermore, the equations 

k,Af = 0, k, Aj - k j A~ = 0 

imply that 

(2.29) 

(2.30) 

aiA~=O, a,Aj-ajA;=O, (2.31) 

and we recall (from the Sobolev embedding lemma) that A f 
and A ; are both at least C I for s;;;'3. Since A ; has vanishing 
curl (i.e., A I = A ~dx' has vanishing exterior derivative) one 
may construct a C 2 function A with gradient ai A = A; by 
means of the argument used in proving the Poincare lemma. 
This A is determined from A, only up to an arbitrary additive 
constant, as we have mentioned. 

We shall designate the Coulomb transform of 
(A" E',,p, 1T) by (A f, Ei' ,pc, 1r') or, whenever it's clear 
from the context which gauge is intended, by (A~, E",p, 1T). 

III. ENERGY INEQUALITIES 

The conserved, gauge invariant energy for the MKG 
field is 

E = ( d 2X [ 1T * 1T + ! E' E i + m2 ,p * ,p JR , 

+ !(ai Aj -ajA;)(aiA j -ajAJ 

+ (a j ,p * - ie A j ,p *)(a j ,p + ie A J ,p) J. (3.1) 

For any particular solution we have E = Eo = const and 
thus get a priori bounds on the L 2 norms of ./, 1T E iF. ty, , , rl 

=a,A j -ajA"andV j ,p=a j ,p+ieAj,p. 
Now consider the gauge invariant pseudo-energy C(j 2 

defined by 

C(j 2- ( d 2X[ (V j 1T *)(V j 1T) + ~(a E ')(a E ') JR l } J 

+ m 2(V j ,p *)(V j ,p) + (V j V, ,p *)( V j V, ,p) 

+ l(a j F,d (aj F'k) J, (3.2) 
where 

Vi 1T = ai 1T - ieAi 1T, 
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v j v, ¢ = (a j + ieA ) [(a, + ieA,) ¢)], (3.3) 

Vi 1T * = (Vi 1T) *, VjVi ¢ * = (VjVi ¢)*. 

Both C(f I=E and C(f 2 converge for any ( ¢,A), (1T, E)] 
E H2 X HI and we shall show that C(f 2 does not blow up in a 
finite time. 

Using the equations of motion, one computes that 

dC(f2 = { d 2x[ie [(V 1T*)E j 1T-(V 1T)E j 1T*l 
dt JR' } } 

+ieajEi[(V j ¢)(Vi ¢*)-(V) ¢*)(V, ¢)] 

+ iem 2 [E) ¢ *("1 j ¢) - E) ¢(V j ¢ *) 1 

+2ieEj[(Vi ¢*)(VjVi ¢)-(Vi ¢)(VjVi ¢*)] 

+ ieFjd(V j 1T)(Vk ¢) - (Vj 1T *)(Vk ¢ *)] 

+ !e2 F)k Fjk ( 1T ¢ + 1T * ¢ *)]. (3.4) 

Each of the terms of the right-hand side is separately gauge 
invariant. Therefore, to estimate any of these terms, we may 
evaluate it in the Coulomb gauge as discussed in Sec. II. If, as 
we shall see, each term is estimable in terms of gauge invar
iant quantities, then we may revert to the Lorentz gauge at 
the end of the estimate. This procedure will give us a differ
ential inequality for the function C{}' 2' 

We shall need a bound on the L 2 norm of A C(t), the 
Coulomb transform of A(t). To derive this, consider the 
integral 

IIA(t )lli, = ( d 2x(Ai(t) A,(t) + Ao(t )Ao(t », (3.5) 
JR' 

defined for A I' in the Lorentz gauge. Computing the time 
derivative of this integral and using the Lorentz gauge condi
tion to reexpress the result, we obtain 

~(IIA(t)lIi,)= -2 ( d 2x(A,E') 
dt JR' 

";;41IAIIL' IIEIIL' ";;4(2Eo)1/21IA(t)IIL" 
(3.6) 

where Eo is the energy of the particular solution considered. 
It follows that, for t;;;>O, 

IIA(t)IIL' ..;;IIA(O)IIL' + 2 (2Eo)l12 t. (3.7) 

However, A C(t), the Coulomb transform of A(t), is simply 
the transverse part of A(t) in the sense of the decomposition 
(2.25) and thus satisfies 

II AC(t )IIL''';; IIA(t )IIL''';; IIA(t )IIL" (3.S) 

It foHows that 

IIAC(t)IIL,..;;IIA(O)IIL' + 2 (2Eo) 1/2 t. (3.9) 

In fact, it is always possible (using a gauge transformation 
which does not disturb the Lorentz condition) to impose the 
initial condition 

A(O) = AC(O), A 0(0) = 0, 

So that one may also write 

IIA(t )IIL''';; II AC(O) ilL , + 2 (2Eo) 112 t 

Recall from (2.16) that the L 00 norm of A C obeys 

IIAC(t)IIL' ..;;CIIAC(t)IIH, 

2294 

..;;C(IIAClli, + r d2x(ajA~)(ajA~) 
JR' 
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(3.10) 

(3.11) 

+ {d2x(ajakA~)(ajakAD]1/2. (3.12) 
JR' 

Using the Coulomb gauge condition a,A ~ = 0 to reexpress 
the integrals (e.g., fR,d 2x(a jA ~a) A~) 
= ! f R ,d 2X (ajA f - a,A j)(a jA f - a,A j), one finds that 

I I AC(t )IIL . ..;;C ( II AC(t )lli, + 2Eo + 2 C{}' 2]112, (3.13) 

and thus, recalling (3.11), that 

II AC(t )IIL ' ..;;2 112C (IIAC(O)IIi, + Eo) + SEot 2 
+ C{}' 2(t)]1/2 

..;;K ( D + D 't 2 + CIJ it) ]112, (3.14) 

where D and D I are positive constants depending upon the 
values of Eo and II A C(O) II L' . 

We may now proceed to estimate the terms on the right
hand side ofEq. (3.4). The terms in the first bracket may be 
estimated as follows: 

11,d
2
x [(Vj 1T)Ej1T*11";;2111TIIL.IIEIIL' 

X ( 1 ,d 2X (V j 1T)(V j 1T*) y12, 

IIEIII.' ,,;;c(~ 1,d 2x (a j E')(a j EI)y/4 

X(~1,d2xEkEky/4 ";;CE6/4C{}'~/\ (3.15) 

111T II L' ..;;CE 6/4 (1 ,d 2X (a, 1T)(ai 1T*) y/4, 

where we have used the Nirenberg-Gagliardo inequalities 
(2.14) twice. Now, reexpressing a, 1T as (V, 1T + ie A ~ 1T), we 
have 

{ d 2X (a j 1Tai 1T*)..;;2( ({ d 2X (V j 1TV) 1T*»)1/2 
JR~ \JRl 

+ (e2 1,d 2XA f A ~ 1T *1T y/2r 

..;;4 ( (1 ,d 2X (Vi 1T *)(Vi 1T») + e2(IIACIIL ,f Eo] 

..;;4( C{}' 2 + e2 Eo K 2( D + D 't 2 + C{}' 2) J, (3.16) 

where we have used Eq. (3.14) to estimate IIAcllL ' . Combin
ing Eqs. (3.15) and (3.16) one thus gets 

11,d 2x [(Vj 1T)E j
1T *1 I";; CE 6/2 C{}'~/4[C{}'2(1 +e2EoK2) 

+ e2EoK2(D + D 't 2)] 114. 

(3.17) 
In a completely analogous way one shows that 

11,d 2x (a j E')(Vj ¢ *)(Vi ¢)I 

..;;CC{}' ~/2 E612( L,d2
X (a j Vi ¢)(a j Vi ¢ *)Y/2 

..;; CC{}' ~/2E6/2 [ C{}' z( I + e2 EoK 2) 

+ e2 EoK2(D +D 't 2)]1/2, 
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<,CEg/4 '1!i~/4! 1 + K'['1!i 2 + (D + D 't 2)] I12J 1/2, 

\1,d 2X «VjV; t/J *)Ej(V; t/J»\ 

<,CE b12'1!i~/4! '1!i i1 + Eoe2 K2) 

+ EoK 2e2(D + D 't 2)J 114, 

II,d
2
X (Vj 1T)(Vk t/J)Fjk I 

<,CE b12 '1!ii/4! '1!i 2(1 + EOe2 K 2) 
+ e2 K 2 Eo( D + D 't 2) JI/\ 

and finally that 

11 ,d 2X (FjkFjk 1T t/J) I 
<,CEg/4'1!i~/2! '1!i 2(1 + e2K2 Eo) 

+ e2K2Eo( D + D 't 2) J 1/4 
Xp +K'[(D+D't 2)+ '1!i 2]1/2JI /2. 

It follows that 

d~~(t) <, Ko + K l t
2 + K2~ 2(t) 

(3.18) 

(3.19) 

(3.20) 

whereKo, K 1, andK2 are positive constants which depend on 
the fields only through the values of Eo and II A C(O) II L' • 

Thus, for t;;;.O 

'1!i 2(t)<, '1!i 2(0) + Kot + j- Kit 3 + K2 So' dt' '1!i 2(t '), (3.21) 

and from Gronwall's inequality it follows that 

'1!i 2(t)<, [ '1!i iO) + Kot + ~I t 3 ] 

+ So' dt' K2[ '1!i lO) + Kot' + ! KIt '3[ 

X exp[Kit - t ')]. (3.22) 
Thus '1!i 2 does not blow up in a finite time t;;;.O. (A similar 
argument holds for t<,O by virtue of the time reversal invari
ance of the MKG equations.) 

From conservation of energy, the L 2 bound on A C(t) 
given in Eq. (3.9), and the no blow-up result for ~ 2 we 
obtain 

IIAC(t)IIH, < 00, IIE(t)IIH, < 00, II t/J(t)IIL' < 00, 

111T(t)IIL' < 00 IIV; t/J(t)IIL' < 00, 

IIV;Vj t/J(t)IIL' < 00, IIV;1T(t)IIL' < 00, (3.23) 

for all finite t. 
Recalling Eq. (3.16) we thus get for the Coulomb trans

formed fields, that 

111T(t)IIH, < 00, 

and, by similar argument, that 

II t/J(t )IIH, < 00 

and 

(3.24) 
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A straightforward sequence of estimates gives 

r d 2X (a A t/J *)(a A t/J) 
JR' 

<'CI r d 2x!(a jv; t/J*)(ajv; t/J) 
JR' 

+ (a j A ~)(a j A D t/J * t/J + A ~A ~(a j t/J *)(a j t/J) J 

<,C2['1!i~12 + leIEb/21IAC(t)IIL' ]2 

+ C3EoIIAcll~ . (1 + \: \ I I AC(t )llv )2 

+c4(llajA~llvf(IIt/JIIL.)2. (3.25) 
But, using the Nirenberg-Gagliardo estimates we get 

Iit/Jllv <,C' E b/4 11a; t/J11l"?<,C'E b
12 

X [1 + lelml IIAcllL . ]I/2 (3.26) 
and 

Iia jA ~IIL' <,C 'Ilaja k A ~11l"?llajA; lit? 
<,C'E b/4 '1!i ~12. (3.27) 

It follows from (3.23) and (3.25)-(3.27) that 

Iit/J(t )IIH, < 00 

for all finite t. 

To summarize the results of this section, we have shown 
that the Coulomb-transformed fields obey 

I It/J(t)1IH, < 00, II1T(t)IIH, < 00, I IAC(t)1 IH, < 00, 

IIE(t )IIH, < 00, (3.28) 
for all finite t. We also obtained the gauge invariant bounds 

IIt/J(t)IIL' < 00, IIV; t/J(t)IIL' < 00, IIV;Vj t/J(t)IIL' < 00, 

II1T(t)IIL' < 00, I I V;1T(t) I IL' < 00, (3.29) 
for all finite t. 

To complete the global existence argument, we shall 
need to show that the HI norms of the charge density 
ie( t/J 1T - t/J * 1T *) and current density 
ie( t/JV; t/J * - t/J * V; t/J) do not blow up. Since these quanti
ties are gauge invariant, it suffices to estimate their HI norms 
in the Coulomb gauge. We have 

II( t/J 1T - t/J * 1T *)111, 

<'41,d 2x 1t/J1211T12 

+ 81,d 2x [Ia; t/J1211T12 + I t/J12Ia; 1T12] 

<'4Eollt/JII~. +811t/J11~·I,d2xla;1T12 
+ 8111Tlli·lla; t/Jlli· 
<,c 11t/J111, (Eo + 211a; 1Tlli) + C'E b/2 1Ia;1TIIL' 

xllaka[ t/JIIL,lIa j t/JIIL" (3.30) 
Thus II( t/J 1T - t/J * 1T *)(t )IIH, is bounded on bounded time 
intervals by virtue of the forgoing bounds on II t/J(t )IIH, and 
111T(t )IIH, . 

In a similar way we get 

II t/JV; t/J* -t/J*V; t/JIIH, 

<,41,d 2x (I t/J1 21V, t/J12) 
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+ 8 L,d 2x <Ia j ¢r1 2 1Vi ¢r1 2 + 1¢r1 2 Iaj (Vi ¢rW) 

';;411¢r1l~, (IIV, ¢rill, +2 II a/Vi ¢r)lIi,) 

+ 811aj ¢rm·IIVi ¢rill. 
.;;C II ¢r1l~,(Eo +2I1 a j (V i ¢r)lIl,) 

+ C 'lia j ¢rilL' lIa k a, ¢rilL' 2E 61211 am (Vi ¢r)IIL" 
(3.31) 

Recalling (3.24)-(3.27), we have that II ¢r(t )IIH, and 
Ilaj(Vi ¢r(t»)IIL' are bounded for finite t. It follows that 
II( ¢rVi ¢r * - ¢r *Vi ¢r)(t )IIH. is bounded on bounded time 
intervals. 

IV. COMPLETION OF THE GLOBAL EXISTENCE PROOF 

The Maxwell equations in Lorentz gauge are 

a2A 
~ - L1 A 0 = ie( ¢r * 1T * - ¢r 17")= /0 
at 

a2A 
at 2' - L1 Ai = ie( ¢r *Vi ¢r - ¢r Vi ¢r *)= /i' 

(4.1) 

We already know from (3.7) and its time reversed extension 
that 

(4.2) 

for all t. To show that the full H 2 XH1 norm of CA, P(t)] 
does not blow up, we define 

r(t)= 1 d 2xIA02+A2+Ao Ao·+AA I ,I ,i ),1 j,t 
R' 

+ AOJ AOJ + A jJ A jJ + Ao.,} Ao"j 
+ Ak,ijAk,ij J (4.3) 

(where A" PI') and compute 

dr(t) i 2' • , -- = 2 d x lAo /0 + Ai/i + (AO,k(a k /0) 
dt R' 

+ (Aj,k)(a k Jj)J 

.;;C IIIP(t)llL' 1I/(t)IIL' 
+ lIa k P(t)IIL' lIa k /(t)llL' J 

.;;CI IIP(t)lIl, + lIakP(t)lIl, 

+ 1I/(t)lIl, lIa k /(t)IIl, J. 
.;;C Ir(t) + 1I/(t)II~. J. (4.4) 

From the no blow-up result of Sec. III, we know that 
II / (t ) 1111. is bounded on finite time intervals. It follows 
from Gronwall's inequality that r (t) cannot blow in a finite 
time and thus (since we already know that IIA(t )11 L' < 00) 
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that 

IIA(t)llll, < 00, IIP(t)IIII. < 00. (4.5) 

for all finite t. It follows that II A(t ) II L' < 00 for all finite t 
since IIA(t)IIL' <ClIA(t)IIH,' 

To show that the H2 XH\ norm of ( ¢r. 17" *) does not 
blow up (in Lorentz gauge) we define 

..!' (t) = ( d 2X 117" * 17" + m 2 ¢r *¢r + (ai 17" *)(ai 17") 
JR' 
+ (ai ¢r *)(ai ¢r) + (aia j ¢r *)(aia j ¢r)J, (4.6) 

and compute d..!' (t )Idt using (2.5). After a lengthy but 
straightforward sequence of estimates, one shows that 

(4.7) 

Since IIA(t )IIH, does not blow up in a finite time, it follows 
(again using Gronwall's inequality) that..!' (t) does not blow 
up in a finite time. This result completes our global existence 
proof. 

An alternative argument for the last step may be given 
as follows. We know from Sec. III that the H2 XH\ norm of 
the Coulomb-transformed fields (¢re, 17" C) does not blow up 
in a finite time. From Eqs. (2.22) and (2.23) we know that the 
corresponding norm of the Lorentz-transformed fields will 
not blow up provided Ila; A. IIH, does not blow up. However, 
ai A. is simply the longitudinal part of the spatial, Lorentz 
gauge potential Ai' That this does not blow up follows from 
Eq. (3.9) and the properties of the decomposition discussed 
in Sec. II. 
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For a finite-dimensional space with only a mild restriction on the Hamiltonian, it is shown that 
there exist at least as many Hartree-Fock states as the dimension of the many-fermion space. The 
index of the random phase approximation matrix is determined for these HF states and the 
relationship between that index and the number of real and complex excitation energies 
established. 

1. INTRODUCTION 

The Hartree-Fock (HF) self-consistent field approxi
mation is fundamental to the theory of finite many-fermion 
systems. Nevertheless, because the HF equations are nonlin
ear, the question of existence of HF solutions is nontrivial 
and only recently have some results been obtained. For the 
simpler Hartree problem, the existence of the ground state 
solution (minimum minimorum) has been proved using var
ious methods, albeit often restricted to the case of the Heli
um atom. I

-
5 Using a more powerful method, Lieb and Si

mon6 proved the existence of the HF minimum for any 
neutral atom or positive ion. In contrast to the above paper, 
we take the state space to be finite-dimensional. However, no 
assumption is made here restricting either the strength of the 
interaction or its type, i.e., two-body. 

I t will be shown that there are at least as many HF states 
as the dimension of the many-fermion state space (Theorem 
1). Furthermore, the index of the RP A matrix at these HF 
states is given. In Sec. 3, the relationship between the index 
of the RPA matrix and the number of real and imaginary 
RP A excitation energies is obtained (Theorem 2). 

The existence proof is based on Morse theory.7 This 
theory places a minimum on the number of critical points of 
a smooth real-valued function F on a compact manifold M 
due to the topology of M. Specifically, if rnEM is a critical 
point of Fand (Xl ,x2, ... ,xn

) is a chart about rn withxi(rn) = 0, 
then 

F(x l ,x2, ... ,xn) = F(rn) + i Xi a~ I 
i~1 ax x~O 

~ .. azF I +! £.. x'xJ-.-. + ... 
i.j~1 ax'ax' x~O 

n 

= F(rn) + ~ L xixiGij + "', (1) 
i,j= 1 

where the matrix G ij = (a2 F / ax'ox') I x ~ 0 is called the Hes
sian. The index of the matrix G regarded as a bilinear form 
on Rn is the dimension of the largest subspace ofRn on which 
G is negative definite; at a critical point, this index is inde-

"'This material is based upon work supported by the National Science 
Foundation under Grant PHY -7906534. 

pendent of the chart used to compute G. A critical point is 
nondegenerate if the Hessian is nonsingular. If the index of a 
nondegenerate critical point is A, then a chart (yl, y2 , ... , yn) 
can be found for which 

F(i, y2, ... , yn) 

= F(rn) _ (yl)2 _ (y2)2 _ ... _ (y')2 + (y' + 1)2 

+ .. , + (yn)2 + ... . (2) 

Let C;. be the number of critical points of Ffor which 
the index of the Hessian is,1. Then, Morse theory claims that 
if Fhas no degenerate critical points, then C;. >/3;., where/3;. 
are the Betti numbers of the manifold. Somewhat stronger 
inequalities can be given, see Ref. 7. 

2. EXISTENCE OF HARTREE-FOCK STATES 

Suppose JY' is an n-dimensional Hilbert space and /\ JY' 
is the exterior product of A copies of JY'. Let H be the Hamil
tonian, a self-adjoint operator on /\ JY', not necessarily the 
sum of one-body and two-body operators. By definition, a 
Hartree-Fock state is a critical point of the energy 
function8

.
9 

E:S-R, E(tP) = (tP I HtP), (3) 

where the set of states S is the Slater determinants, 

S = ! tP = tPl /\ tP2 /\ ... /\ tP A I (tPi I tPj) = Dij J. (4) 

Morse theory cannot be applied directly to the energy 
function since every point is degenerate, E(,1tP) = E(tP ) for all 
tPES and ,1EC, 1,1 I = 1. In order to remove this obvious de
generacy, define an equivalence relation on S by tP -!/J for tP, 
t/lESitftP = ,1!/Jforsome,1EC, 1,1 I = 1. The set of equivalence 
classes in S is identified with the complex Grassman variety 
CG(A, n - A), the set of A-dimensional hyperplanes in an n
dimensional complex vector space. 10.11 The energy function 
is well defined on CG (A ,n - A ), 

E:CG (A,n - A )_R. E(4)) = (tP I HtP ), (5) 

where 4> = l,1tP I tPES,AEC,I,1 I = 1) ECG (A,n - A ). 

Before computing the Hessian of E, coordinates must 
be given for the complex Grassman variety in a neighbor
hood ofa fixed critical point 4> in CG (A,n - A ).12 First pick a 
tP = tP I /\ tP2 /\ '" /\ tP A E4>, and then augment the set of A 
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states I if; I ,if;2, .. ·,if; A I with (n - A) additional orthonormal 
states I if; A + I ,if; A + 2 ,···,if;n I· Conventionally, the first A vec
tors are hole states indexed by h, h " while the last (n - A) 
vectors are particle states indexed by p, p'. Let b / and b

a 

denote the fermion creation and annihilation operators for 
the state if;a' and set 

(6) 
IFph = (l/v2)(b / bh - b / bp). 

Then, a chart containing <P for the 2m==2A (n - A ) dimen
sional space CG (A,n - A ) is given by 

(qPh,pph)--+exp(X)<P, (7) 

where 

Weare now able to calculate the Hessian from 

E(exp( - X)<P) - E(<P) 

= (if; lexHr xif; ) - (if; I Hif; > 

= (if; I [X,H]if; > + !(if; I [X,[X,Hnif; > + .... (8) 

Hence, <P is a critical point iff (if; ) [X,H)if; > = 0 for all. Thus, 
if €I> is a Hartree-Fock state, 

E(exp( - X)<P) - E(€I» = !(if; ) [X,[X,H)]if;) + ... 
= ~(if; ) [X,H,x)if;) + ... , (9) 

where the double commutator 2[A,B,C) = [A,[B,Cn 
+ [[A,B),C]. Introducing the coordinates (qph,Pph), the 

Hessian G given by 

E(exp( - X)<P) - E(€I» = !(q p)G (~) + '" (10) 

is unitarily equivalent to the random phase approximation 
(RPA) matrix,13 

(
A B) + I (1m 

G = C B * A * C , C = \1"2 if", 

where 1m is the m X m unit matrix, The submatrices A and B 
of the RP A matrix are given by 

Aphp'h ' = (if;) [ah+ap,H,a/ah,]if;) (Hermitian) 
(12) 

BphP'h' = - (if;) [ah+ap,H,ah~ap,]if;) (Symmetric). 

The condition for the applicability of Morse Theory is 
that every critical point of the energy function be nondegen
erate, However, a Hartree-Fock state is nondegenerate if 
and only if the determinant of the RP A matrix is nonzero or 
that there be no nonzero solutions v to Gv = O. Such solu
tions v are called spurious (see Ref. 14) and are exceptional in 
a finite-dimensional space. Indeed, the Hamiltonians with a 
degenerate Hartree-Fock state form a nowhere dense set in 
the space of all self-adjoint operators. As a practical matter, 
the only case where spurious solutions arise is when an exact 
symmetry of the Hamiltonian is violated by the HF state. 
This problem is fixed, say in the case of rotational and isospin 
symmetry, by restricting states to fixed m and T z • 
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Theorem 1: Suppose that the Hamiltonian admits no 
spurious RP A states. Then there exist at least ( ~ ) Hartree
Fock states. 

Proof The condition of the theorem is just that which 
permits Morse theory to be applied to the energy function. 
Let C'" be the number of Hartree-Fock states for which the 
index of the Hessian G equalsA-. Then C'" ?f3"" wheref3", are 
the Betti numbers of the complex Grassman variety. These 
Betti numbers are known 10, 11: 

f32k + I = 0, 

f3n = o( { (PI' h,''''P A) I PiE Z;oo, 

2;p,~n -A, 2; ip, = k}} 
In order to complete the proof, it must be shown that 

or 

(~) =O({(PIlP2,,,,,PA) )PiEZ;'O, fP,<n -A}} 

The order N ofthis set will be calculated from a generat
ing polynomial. Let 

P(x) = 2: x' +p, + .. +p, = (l_X)-A. 
PI 40 

The coefficient ar in P (x) = l:~ oarx' is the number of 
A-tuples (p" P2,,,,,PA) with l:,p, = r; hence, N = l:~ ~ ~ar is 
the order of the set. But 

ar = -+~p(X)1 . =(A+r-l). 
r. dx x~o r 

Now N(s)=l:;~oar satisfies 

N(s+I)=N(s)+ (
A +s) 
s+1 

and N(O) = 1. 

Since C: A) satisfies these two conditions, we have 

N(s) = (s: A). 

Therefore, N = N (n - A) = C). Q.E.D. 
Morse theory yields still further information about the 

number of critical points. One has7 

and the strong Morse inequalities 

C,{ - C), _ I + -'" ± Co?f3", - f3J- _ I + -'" ± f3o. 
(14) 

From the equality, 

(n) 1-(-1)'" 2: CJ- = A + 2 ~ 2 C,{ (15) 

and from the inequality for A- = I, 

(16) 
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we have 

(17) 

Hence, if Co> 1, then the number ofHF states is greater than 
the dimension of the many-fermion state space, dim 1\ JY 
= (~). 

Nuclear HF calculations for even-even nuclei in the 
region 4<A<40 have been made by Bassichis, Kerman, and 
Svenne l5 with the space JY spanned by the Is, Ip, 2s - Id 
and 2p - 1/ oscillator shells. They discovered for the nuclei 
C2, Si28

, and S32 two HF states with index zero (prolate and 
oblate solutions). Hence, the total number of critical points 
for these nuclei is at least two more than the dimension of 
I\,W". 

3. RPA SOLUTIONS 

The aim of this section is to determine the relationship 
between the index A ofthe Hessian G and the spectrum of the 
RP A equations 

GVj = - iwjJvj , (18) 

where J is the 2m X 2m symplectic form 

J = ( _OJ m I; ) . (19) 

The solutions Vj define particle-hole excitation operators be
longing to the excitation energies wi. 

The result to be proved here applies to a more general 
situation than the RPA, e.g., the equations of motion of 
Rowe. 14 Thus, the theorem will be formulated in a general 
setting. First, a lemma must be proved. 

Lemma: Let Vbe a finite-dimensional vector space and 
V * its dual. Suppose G: V ~ V * is symmetric and nondegener
ate, and T: V --->- V is antisymmetric in G, i.e., G (Tv,v') 
= - G (v,Tv'), V, V'EV. If Wis a subspace of Vinvariant 

under T, TCW)C W, and G I w is nondegenerate, then 

(a) V = WEB WI; 

(b) T= Tlw EB Tlw 

(c) G=GlwEBGlw'. 

Proof (a) WI = ! YEV I G (y,w) = 0 for all WEW J. If 
wEWnW 1

, then 

WEWI=>G(W,w') = 0 for all w'EW. 

But WE Wand G I w nondegenerate=>w = O. Hence, Wn W I 
= 10 J. The linear map 

p:V--->-W*, p(v)(w) = G(v,w) 

is surjective with kernal WI. Thus, 

dimW= dimV - dimW I, 

so that 

dim(WEB WI) = dimW + dimW\ and 

since Wn W I = ! 0 J, it also equals dim V. Therefore, 
V= WEB WI. 

(b) T (W 1) C W \ since for yE W 1 

G(Ty,w) = - G(y,Tw) = o for all WEW. 
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:. T= TlwEBTlw'. 

(c) By (a), we have for all VI' V2EV, 

VI = WI + YI' V2 = W2 + Y2' WI' W2EW, YI'Y2EWI. 

Thus, G(V I,V2) = G(W I,W2) + G(YI'Y2). 
Theorem 2: Let Vbe a finite-dimensional real vector 

space. Suppose G: V ~ V * is symmetric and nondegenerate 
with index A, and J: V~V* is skew-symmetric and nonde
generate. Assume that T = G - I J: V ~ V has a complete set 
of eigenvectors Vj in the complexification C ® Vbelonging to 
the eigenvalues Ilj = (i/ w), Tv) = Il) v) ,j = 1 ,2, ... ,dim V. Let 
A c denote the number of nonreal, nonimaginary w); A" the 
number the pure imaginary w); A it, the number of real Wj 

with eigenvectors v
J 

with positive length in G, i.e., G (vj,Vj ) 

> 0; A R' the number of real Wj with negative length in G; 
A ~, the number of real Wj with zero length in G. Then, 

(a) A = A R + ~(A ~ + A, + Ad, 

(b) 21A 1,41A ~,2IAI,4IAc. 

Conversely, given an index A and an even dimensional vector 
space V with A <dim V together with five numbers A I, A ~ , 
AI' Ac satisfying (a), (b), and dimV = A it + A R + A ~ 
+ A I + A c, then there are maps G and J as above with these 
fivenumbersactingasA I,A ~,A"Ac forG -IJ. 

Proof We begin with three observations. Firstly, since 
Tis antisymmetric in G, 

G(Tvj,vd + G(vj,Tvd = 0, 

or (Ilj + {ik)G (vj,vk) = 0 for all eigenvectors Vj' vk • Second
ly, since T is real 

TVj =lljvj=>T~ ={iA. 

Thus, if Vj = Xj + iYj' ~ = Xj - iYj with Xj and Yj real, then 

0= (Ilj + P)G (Vj'~)' 
= 21lj G (Vj'~). 

But Ilj =1= 0, since Tis nondegenerate. Therefore, 

o = G(Vj'~) 

= G(Xj' x) - G(Yj'Y) +2iG(xj ,y), 

or G (x)' x) = G (YJ , Yj) and G (xj , Y) = O. Hence, G (Vj'v) 
= 2G (Xj ,xj ) = 2G (Yj' Yj). Thirdly, recall that J skew-sym

metric and nondegenerate implies V is even dimensional. 16 

There ar~ two main cases to consider. 
I. G (Vj ,v) =1= o. 

Then Ilj + {ij = 0, or Wj is real. In this case, 
W = span! x j , Yj I is invariant under T and G I w 
is nondegenerate. [It is either positive or negative 
definite depending On the sign of G (Vj ,vj ). ] 

Hence, there are two real eigenvalues (wj and 
- wj ) in Wand, from the lemma 

with two eigenvalues in A it , 
Alv=2+Alw', 

with two eigenvalues in A;-. 

If WI is the span of all Xj' Yj for which G (vj,Vj ) 

=1=0, then by repeated application of the above 

G. Rosensteel and E. Ihrig 2299 



                                                                                                                                    

result we are able to reduce the proof to the study 
of W; since 

V= WI Ell WL T= Tlw Ell Tlw" 
I I 

G=Glw EIlGlw·· 
J I 

II. G (Vj'V) = 0 
Since G I Wi nondegenerate, there is a Vk 

I 

E W 7 with G (vj,v k ) #0. But (J-Lj + iik) = O:::::?J-Lk 
= - ii)" Moreover, Vk E W; implies G (Vk ,vk ) 

= O. Observe that if J-Lj is not real, then G (Vj ,vk) 
= 0, since 

We have three subcases to consider. 
I. J-Lj is neither real nor pure imaginary. 

The subspace W = span!xj,Yj' Xk,Yk I is 
invariant under T and C ® W contains four ei
genvalues in A c: J-Lj' iij , - iij , - J-Lj' By the sec
ond observation, 

O=G(xj +iYj,xk -iYk) 

... G(xj,x.)=G(Yj,Yk)=a, 

G(Xj'Yk) = - G(Yj' x k ) = b. 

Hence, the Hessian in W is given in the ordered 

basis I xj ' Yj' Xk , Yk I by 

o 
o 

-b 

a 

a 

-b 

o 
o 

SodetGlw=(a2+b 2)2= rt; IG(vj ,vk )1 4 #0. 
Thus, G I w is nondegenerate and the lemma may 
be applied to W. We must only determine the 
signature of G I w to be done. Since W contains a 
two-dimensional null subspace, span I x j ' Yj I, the 
signature of W cannot be 0,4, 1,3, i.e., it cannot 
be positive or negative definite, or Lorentz. This 
leaves only signature = 2. For this subcase, we 
have 

with four eigenvalues in Ac-
2. J-Lj is pure imaginary. 

Subcase 1 applies here with one modifica
tion: The four eigenvalues are pure imaginary, 

J-Lj' J-Lj' - J-Lj' - J-Lj' Thus, 

,-llw l =2+,-llw l 
J 

with four eigenvalues in A ~. 
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3. J-Lj is real. 
Observe that the eigenvectors Vj belonging 

to real eigenvalues J-Lj may be chosen real, Vj 
= xj . If v, were pure imaginary, then iVj is real. 
If Vj is neither real nor pure imaginary, then !(vj 
+ Vj) and (l/2i)(vj - Vj) are two real eigenvec-
tors in the two-dimensional subspace spanned by 
Vj and Vj. 

In this subcase, Vj = Xj belongs to the real 
eigenvalue J-Lj and Vk = Xk belongs to the real ei
genvalues - J-Lj with G (Xj ,Xk) = a #0. The sub
space W = span I Xj' X k I is invariant under T 
and 

a) o . 

Since detG I w = - a2 #0, we have G I w is non
degenerate and the lemma applies to W. Clearly, 
the signature of G I w is one. Therefore, 

,-llw;=I+,-llw 

with two eigenvalues in A I' 
By combining these various cases, we com

plete the first half of the theorem and show 
claims (a) and (b). 

Conversely, give the various numbers, we 
want to construct G and J. This can be done by 
taking the direct sum of examples of I and II in 
the first half of the theorem: 

I. 

J=( 0 
-1 ~) , G=(~ ~). 

T=( 0 
-I ~) , J-L= ±i, 

J=( 0 -I ~) , G= (-I 
0 ~J, 

T=(~ -1 ) 
o ' J-L = ± i, 

11.1 

J~( ~ 
0 

u' 
0 0 

-I 0 0 

0 -I 0 

G~(~ 
0 I 

~} 0 -I 

-1 0 

1 0 

C
1 -1 0 

-~} T= 1 1 -1 0 
2 0 0 

0 0 

J-L = !( ± 1 ± i) (four values); 
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11.2 

J~( ~ 
0 

~} 0 0 

-1 0 0 

0 -1 0 

G~( ~ 
0 0 

~} 0 

1 0 

-1 0 0 

( -~ 0 

!} 0 0 
T= 

0 0 0 

0 0 -1 

f.1= ± i, ± i (four values); 

11.3. 

J=( 0 
-1 ~) , G= (-1 

0 ~) , 

T=(~ ~), f.1 = ± 1. 

This completes the proof of the entire theorem. 

We would like to point out that the assumption that 
G ~ IJ is diagonalizable is necessary. For example, if 

J~( ~ 
0 1 

0' 
0 0 

-1 0 0 

0 -1 0 

G~( ~ 
0 -A-

-~) 0 -I 

-A- -1 0 o ' 
0 -A- 0 0 

then G - I J is not diagonalizable for any A-. 
As useful corollaries, one has the following results: 
Corollary 1: A HF state has index zero, i.e., is a mini

m urn, iff all the RP A energies are real and the RP A states 
have positive length in G. A HF state has index one iff there 
are exactly two pure imaginary RPA energies, while the re
maining energies are real with eigenvectors with positive 
length in G. 
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Corollary 2: If there is a HF state for which the number 
of pure imaginary RP A energies is not divisible by four, then 
the total number of HF states is at least two more than the 
dimension of the many fermion state space. 

Proof There are three claims to be verified. 
(a) A HF state has index zero, A- = 0, iff A R = A ~ 

= Al =Ac = 0 and, thus, dimV=A; .17 

(b) For index one, A- = 1, we must have A R = 0, since 
21A R ,AR = Ac = 0, since 41A ~ and 41Ac, and Al = 2. 
Thus, A; = dim V - 2. Conversely, A I = 2, A ; 

= dim V - 2=>A R = A ~ = A c = 0 and A- = 1. 
(c) If there is a HF state for which Al is not divisible by 

four, then the index of that state is odd. Hence, C2k + \ ;;;. 1 for 
some k and from the strong Morse inequality, Eq. (15), 

1_(_),], 
C=dimAJY'+2 L. C,], 

,], 2 
;;;.dim A JY' + 2 C2k + I ;;;.dim A JY' + 2. 
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It is shown that the exact solutions for the classical polaron model derived by Evrard et al. (the 
electron rotates about a fixed polaron centre with frequency n>fJ) exist also for the discrete 
frequencies n = OJ/(n + ~)(OJ is the longitudinal optical phonon frequency and n is an integer). 
For an infinite Brillouin zone radius the radius of the electron orbit is finite; this is in contrast with 
the behavior of the solutions found by Evrard et al., where the radius diverges with the Brillouin 
zone radius. Ringwood and Devreese have obtained the same set of solutions as proposed here 
with a different method. The present calculation shows clearly that the discrete frequencies arise 
as a consequence ofthe fact that the electron has to move in such a way that the different divergent 
contributions to the self-interaction cancel each other. For the bipolaron system similar exact 
solutions are found. It is shown that the orbit frequency of the electrons, in the bipolaron system, 
can have the values n = OJ/(2n + 1). 

1. INTRODUCTION 

In recent years there has been increasing interest in so
lutions of classical field theories. As is well known, some of 
these solutions possess specific properties which cannot be 
derived via perturbation techniques. A study of a classical 
field theory can serve as a basis for a semi-classical approxi
mation to the corresponding nontrivial quantum field 
theory.l 

In the present paper a classical mechanical study is 
made of the interaction of a nonrelativistic particle with a 
scalar field. The interaction is nonlinear in the particle co
ordinates but linear in the field coordinates. This model is 
analogous to a proton interacting with chargeless, spinless 
mesons. In solid state physics the model corresponds to the 
polaron system,2 which describes an electron interactin.g 
with the polarization field of an ionic crystal. The case 10 

which two electrons are involved is called the biopolaron 
system. 

Over the years, two fundamentally different ap
proaches have been developed in the study of this field-theo
retical problem. The first one relies on an elimination of the 
electron variable. Indeed, for the quantum-mechanical po
laron Lee, Low, and Pines3 have shown, via a canonical 
transformation, how the electron coordinate can be elimi
nated in the Hamiltonian. In the classical mechanical prob
lem such a procedure has been followed by Gross.4 The other 
approach uses the property that the interaction isynear in 
the field coordinates; this means that the field vanables can 
be formally eliminated. In the quantum-mechanical theory 
this idea has been followed by Feynman,5 using path-integral 
techniques, and by Devreese and others6 using the Heisen-

·)Aspirant of the National Foundation of Scientific Research NFWO. 
h)Also at VIA. 

berg equations of motion. Evrard et al. 7 have performed such 
a formal elimination of the phonon coordinates in the classi
cal mechanical theory. The latter approach will be followed 
in the present paper. 

The structure of the present paper is as follows. In Sec. 2 
the field coordinates, in the electron equations of motion, are 
formally eliminated. In Ref. 7 the problem was then regular
ized via the introduction of a Gaussian distribution function 
exp( - k 2/ K 2) in the k-space. The parameter ~ corre~pon~s 
roughly to the radius of the spherical symmetncal Bnlloum 
zone. At the end of the calculations one takes the limit 
K __ CIJ. In the present paper another distribution function 
was introduced in the k-space which allowed us to perform 
the integrations over this k-space. This distribution function 
contains a parameter S, which corresponds with the inverse 
of the parameter K of Ref. 7. Finally, the equation of motion 
for the electron position coordinate becomes an integro-dif
ferential equation in which the self-interaction contains only 
one integral, namely an integral over the time (the corre
sponding self-interaction in Ref. 7 contains a time integra.l 
and an integral over the k-space). At zero temperature thiS 
equation is compared with the equation of motion resulting 
fromaminimalizationoftheaction S[i'(t ),r(t)] in Feynman's 
theory. A similar formal elimination, of the phonon coordi
nates is carried through in the Hamiltonian. 

in Sec. 3 the trial solution of Ref. 7 (an electron rotating 
about a fixed polaron center) is studied. The solutions of Ref. 
7 are rederived. Further, the set of exact solutions [the elec
tron frequency has the discrete value n = OJ/(n + D, with n 
an integer] recently obtained by Ringwood and Devreese 10 is 
rederived by another method. The formulation of the self
interaction, as one time integral (presented in Sec. 2), al
lowed us to give an intuitive argument for the appearance of 
this set of solutions. Namely, the discrete frequencies arise as 
a consequence of the fact that the electron has to move in 
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such a way that the different divergent contributions to the 
self-interaction cancel each other. This physical explanation 
is not apparent in Ref. 10. 

As a direct generalization of the preceding sections, the 
bipolaron is studied in Sec. 4. Similar manipulations are per
formed as in the case of the polaron system. A set of exact 
solutions is found in which the two electrons rotate about the 
same center with the same frequency and radius. The al
lowed frequencies are just half those of the set of exact solu
tions for the polaron, namely fl = wl(2n + 1). An intuitive 
explanation, similar to that in Sec. 3, is given for this set of 
solutions. 

2. THE EQUATION OF MOTION FOR THE ELECTRON 

The system consisting of a free electron in interaction 
with the optical modes of a polar crystal is described by the 
Frohlich Hamiltonian2

: 

H = p2/2m + L litua~ak 
k 

+ L (Vkak exp[ik.r] + Vta~ exp[ - ik·rJ), 
k 

(2.1) 

where (r,p) and (ak,a~) are the conjugate variables of, re
spectively, the electron and the phonon subsystems. The 
coupling strength between the electron and the lattice mode 
kis Vk = - i(litulk)(-/l/2mw)I/4(41TaIV)I/2, with Vthevol
ume of the crystal, a the dimensionless coupling constant, w 
the frequency of the longitudinal-optical (L.O.) mode, and m 
the band mass of the electron. 

Following Ref. 7, the phonon coordinates in the elec
tron equation of motion can formally be eliminated; this re
sults in the integro-differential equation: 

mr = Fd + F, 

with 

(2.2) 

F d = - i L kVka + (k) exp[i(k·r(t) - wt )]e- <II I + c.c. 
k 

(2.3) 

F = - "k~exp[i(k.r(t)-wt)]e-<III 
S -f Ii 

x J~oc dt'exp[ -i(k.r(t')-wt')]e-EII'I +c.c. 

(2.4) 

where c.c. denotes the complex conjugate of the foregoing 
terms. A positive parameter € (€- +0) is introduced in the 
theory. In fact, one has replaced Vk by Vke - Ell I, which 
means that the electron-phonon coupling is switched on 
adiabatically. Further, the following notation has been used: 
a + (k) = lim I, • _ 00 a k (to)e + iWI,. 

In the classical theory r(t) is a function (not an opera
tor) and therefore commutes with r(t '). Thus the summation 
over the k-vectors, in Eq. (2.4), can be performed. In doing 
this, special attention has to be paid to the interchange ofthe 
sum and the time integral. Indeed, the sum over the k-vec
tors is not defined for the points r(t ) = r(t '). Therefore a new 
regularization parameter t will be defined by introducing a 
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distribution function d gk) in the k-space. It is convenient to 
use the following distribution function: d (x) = 1 - xf(x), 
wheref(x) = Ci(x).sin(x) - si(x).cos(x), with Ci(x) and 
Si(x) = si(x) + 1T/2, the cosine and the sine integral, respec
tively.8 In the limit t-o this distribution function tends to 1, 
while for large k it behaves like g k ) - 2. 

Inserting this distribution function into Eq. (2.4) and 
performing the summation (in the limit of an infinite crystal 
this sum is replaced by an integral) results in the expression 

F, = - b 2 lim JI dt' e - E(I - I') 

21T-1l <~o - 00 

s- .0 

r(t) - r(t ') sinw(t - t ') 
X Ir(t)-r(t')1 . (Ir(t)-r(t')1 +t)2' (2.5) 

where the notation 1 Vk 12 = b 21 Vk 2 has been used. In the 
limit of zero temperature, this means a + (k) = 0 and 
a*r (k) = 0 (thus F d = 0). Equation (2.2) describes an elec
tron, with coordinate r(t ), interacting, via an oscillating 
Coulomb force, with its positions r(t ') in the past. 

This integro-differential equation [Eqs. (2.2) and (2.5) 
at zero temperature] is slightly different from the one which 
can be derived from a minimalization of the action (for real 
times) in Feynman's theory5.9 [see Eq. (4), Ref. 5]. This ap
parent discrepancy is a consequence of the different bound
ary conditions imposed on the electron and phonon coordi
nates in the theory of Feynman and in Eqs. (2.2) and (2.5). 
Namely, in Feynman's theory one imposed the condition 
that the electron and phonon coordinates are in the same 
phase-space point at the times t = - 00 and O. :~. fter elimi
nating the phonon variables, via path-integral techmqucs, 
this condition induces the self-interaction of the electron 
with its past and its future, while in deriving Eqs. (2.2) and 
(2.5) the phonon coordinates are only fixed at t = - 00. 

Thus an elimination of the phonon coordinates induces a 
self-interaction of the electron with its past only. 

The phonon coordinates can also be eliminated from 
the Hamiltonian (2.1). The phonon energy, given by the sec
ond term in Eq. (2.1), splits up into three terms: 

H f = H f , + Hfz + Hf3 , (2.6) 

where 

Hf , = L litua*r (k)a + (k), (2.7) 
k 

H
fz 

= L w 1 V
k 

1 lim foo d'i e - <r(a*r (k)e - i[k·r(l- r) + ,uri 
k <~o Jo 

+ a + (k)ei[k.r(I- r) + ,uri), (2.8) 

H b2W l' il d ' 2<1' f = -- 1m t e 
, 21T-1l <~ 00 

s~ 

X d'i . 1'" COSW'i·e - <T 

o I r(t ') - r(t I - 'i) I + t (2.9) 

The first term HI. corresponds to the phonon energy of the 
real phonons, Hlz represents the interaction energy of the 
real phonons with the virtual phonons, and HI, is the energy 
of the virtual phonons. The interaction energy, given by the 
last term in Eq. (1.1), splits up into two terms: 
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y 

x 

FIG. (la). 

y 

x 

FIG. (Ib). 

FIG. I. Coordinate transformation for the solution of the present classical 
polaron model, (a) (see Eq. (3.I)J and bipolaron model, (b) [see Eqs. (4.5) 
and (4.6)]. 

Hi = Hi, + Hi" 
where 

Hi, = L (Vka+ (k)ei[k.r(I)-wtJ 

k 

+ Vta~ (k)e - i[k·r(t) - wI J), 

H = 
" 

b 2 I' iC£ d sinw7.e - <T 
-- 1m 7 -----------
27rli <~O 0 Ir(t) - ret -7)1 + 5 

(2.10) 

(2.11) 

I; ·0 
. (2.12) 

The first term Hi, is the interaction energy resulting from the 
direct interaction of the electron with the real polarization 
field. The second term Hi, is the self-interaction energy of 
the electron. 

3. STATIONARY SOLUTIONS OF THE CLASSICAL 
POLARON 

In a paper by Evrard et al.7 a trial solution is suggested 
in which the electron rotates in a circle, about a fixed polaron 
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center, with radius u and frequency n: 
r(t) = u cosflt ex + u sinflt ey. (3.1) 

It is convenient to describe this motion in a uniform rotating 
coordinate frame fixed on the electron (see Fig. la). In this 
coordinate frame the following expressions are valid: 

r(t) - ret - 7) = 2u sin2(n7/2) e, + U sinfl7 e
" 

(3.2) 

I r(t) - ret - 7) I = 2u I sin(JJrl2) I, (3.3) 

(3.4) 

Inserting these expressions into Eqs. (2.2) and (2.5), the fol
lowing two integral equations result for the unknowns, u and 
n: 

sinw7.e - <T i
oo sinfl7 

0= lim d7 -----
<~O 0 I sin(I1r12) I 
,,~o 

[2u I sin(I1r12) I + 5 f ' 
(3.5) 

b
2 

1"" mul1 2 = -- lim d7 I sin(I1r12) I 
27rli <.0 0 

t-~O 

siow7.e - <T 

(3.6) 
[2u I sin(117/2) I + 5 F 

which are, respectively, the force along the tangential and 
the radial directions. The time integral over the semi-infinite 
interval can be replaced by a sum of time integrals over a 
finite time interval. After performing this summation, Eqs. 
(3.5) and (3.6) reduce to one equation: 

u311 3 = __ lIm dt -:-------'"7 
ib 2 . iff e - ile - (2<1D)1 

47rlim E~ 0 ! sint + 5 /2u J 2 
(; . ..o 

sin(2wt /11) + sin! 2w(1T - t )/11 J e - (2"ID)< 
X --~--~---~~-~~~-----

1 - 2 COS(21T(1J/I1)e - (2rrIDk + e - (4rrID)< 

(3.7) 

The parameter E, which regularizes the problem at time mi
nus infinity, can now be put equal to zero 

'b 2 
u311 3 = _1 _______ __ 

87rlim sin(1Tw/l1) 

1· 1" d e -1/ cos [2w(t - 11'/2)/11 ] X 1m t ---=---'----:-'--.:.. 
{;-.o 0 (sint + 5/2u)2 

(3.8) 

For frequencies 11 = win, with n an integer, the radius u 
diverges. The right-hand side (RHS) of Eq. (3.8) is real for 
11 =/(i}/n; this is a consequence of the symmetry of the inte
grand. The leading term, in an asymptotic expansion about 
small 5, of the integral in Eq. (3.8) is 

u311 3 -;::;(b 2/47rlim)cOt(1TW/f}) In(u/5). (3.9) 

In Ref. 7 solutions with frequencies JJ>(i} are consid
ered. In this frequency region the relation between the radius 
u and the frequency f) is given by 

u311 3 ~(2a/1T)(w/2m)3/2In(u/5). (3.10) 

When the identification 5 = 1/ K is made (K is the radius of 
the spherical symmetrical Brillouin zone; this parameter is 
the ultraviolet cutotfparameter in Ref. 7) Eq. (36b) of Ref. 7 
is reobtained. 

In the limit of 5-0 the relation between the radius u 
and the frequency f) is logaritmically divergent, except for 
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the frequency fl = w/(n + ~), with n an integer. The corre
sponding radius u is given by ufl = v, with v3 = b 3/8mn 
= 1Ta(flI2mw )312W 3. This is the same set of solutions recent
ly obtained by one of us (JTD) and others. 10 

The energy of this last set of solutions can be calculated 
via Eqs. (2.6) and (2.10). The energy of the total system can 
be split into three parts: E = Ee + EJ + E i , with Ee the ki
netic energy of the electron, EJ the phonon energy, and Ei 
the interaction energy. In the limit of small 5 one finds 

Ee = !(1Ta)213f1w; Ei = - (1Ta)2f3f1w, 

EJ~(n + ~)(1Ta)213f1w In(ul5). (3.11 ) 

It is apparent that the kinetic energy Ee and the interaction 
energy Ei are both finite and do not depend on the electron 
frequency. Further they satisfy the following relations: 

Ei = -4E.; Ei = 2a(d /da)(Ee + EJ. (3.12) 

The quantum polaron ground state energy satisfies similar 
relations, II except that in the quantum mechanical case the 
last relation has to be replaced by E, = 2a dE Ida. 

Returning to the self-interaction expression (2.5), one 
can give an intuitive explanation for the appearance of the 
condition fl = w/(n +D on the orbit frequencies. In the 
case of a periodic motion, the integral (2.5) contains an infi
nite contribution for every time t' = t - m T; with 
T = 21Tlfl the period and m an integer. Indeed, for every 
period in the past the electron position coordinate 
r(t') = r(t - mT)equalsr(t). This leads to a divergent Cou
lomb interaction: sin(mwT)/5 2 (5-0). The sign of this di
vergence is determined by the factor sinw(t - t ') 

= sin(mwT). Consequently, the total self-interaction, 
which is a sum of such infinite contributions, will be finite 
when these divergent contributions cancel each other, or, in 
other words, when these divergent terms have an alternating 
sign. This means wT = (2n + 1)1T or fl = w/(n + D. The 
foregoing explicit evaluation ofEq. (2.5), for the circle orbit 
motion, shows that this is the only set of frequencies which 
are allowed in the limit 5-0. 

4. THE CLASSICAL BIPOLARON 

In this section the interaction of two electrons with each 
other and with the polarization field will be studied.9 Such a 
system is described by the following Hamiltonian: 

2 p2 

H = 2: _1_ + 2: flwa~ak 
j~ 12m k 

2 

+ I I (Vkak exp[ik.rj ] 

j ~ I k 

+ Vtat exp[ - ik.rj ]) + e2/1rl - r21 . (4.1) 

The equation of motion for the electron with position vector 
rl(t) can be obtained in the same way as in Sec. 2 (again the 
temperature is taken equal to zero): 

mr l = Fd + Fs + Fie + Fe' (4.2) 

where Fd and F, are, respectively, given by Eqs. (2.3) and 
(2.4). The other electron, with position vector r 2(t), is re
sponsible for the forces 

F = r\(t)-r2(t) 

c Ir\(t)-rit)1 Ir\(t)-r2(t)12' 
(4.3) 
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(4.4) 

Fe is the direct Coulomb force between the two electrons and 
Fie is an integral of an oscillating Coulomb interaction 
(which is mediated by the polarization field) between elec
tron 1 and the past of electron 2. 

The set of exact solutions for the one electron system, 
found in the preceding section, suggests trying a similar solu
tion for the bipolaron system. Therefore, consider the two 
electrons rotating in a circle about the same fixed point, with 
frequency fl and radius u: 

r\(t)=ucosfltex +usinntey , (4.5) 

rit) = u cosflt ex - u sinnt ey • (4.6) 

As in Sec. 3, consider a uniform rotating coordinate frame 
fixed on the electron (see Fig. Ib). For r\(t) - r\(t - 1"), the 
same expression as (3.2) can be written down. To calculate 
(4.4) we need the following expressions: 

f\(t) - r2(t - 1") = 2u cos2(fl1"12) e, - u sinfl1" e" 
(4.7) 

1 r\(t) - r2(t - 1") 1 = 2u 1 cos(fl1"12) I· (4.8) 

Equation (4.2) then reduces to the following integral 
equations: 

{ 1'" sinfl1" 
0= lim d1" -----

0--00 0 I sin(fl1"/2) 1 

sinw1"'e - fT 

(2u 1 sin(fld2) 1 + 5)2 
s-o 

(00 d sinfl1" sinw1".e - €T } 

- Jo 1" I cos(fld2) I . (2u I cos(flrl2) I + 5)2 ; 

mua 2 
(4.9) 

b 2 { i'" sinw1"·e - <r = --lim d1"1 sin(flrl2) I· -------
21Tf1 <-0 0 (2u ) sin(arl2) I + 5 f 

~-.o . 

50 
SlnW1"·e - <r } + d1") cos(fl1"12) I· -------

o (2u ! cos(flrl2) I + 5 )2 

e2 

- 4u 2 ' 
(4.10) 

which correspond, respectively, to the force along the tan
gential and the radial direction. These integrals are comput
ed in the same way as in Sec. 3. Introducing the notation 
v = 2uJlfl and 5' = 5/2u, for v#2n, Eg. (4.9) reduces to 

i
"/2 

0= lim dx sin(x - 1T14)/(sinx + 5 ')2 sinx, (4.11) 
!;.o 0 

and for v = 2n 

O I
· L17/2 d cosx - sin2nx 1 + ( _I)n = 1m x . . (4.12) 

,.00 (sinx+S')2 l~(_l)n 

It is evident that Eg. (4.11) cannot be satisfied because the 
RHS is equal to infinity. On the other hand, the RHS ofEg. 
(4.12) is identically zero for n an odd integer. Thus the elec
tron frequencies are restricted to the set fl = an 
= w(2n + 1), with n an integer which is different from those 

ofEq. (4.12). 
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Equation (4.10) gives the relation between the radius u 
and the frequency fl. For the foregoing set of frequencies, 
Eq. (4.10) reduces to 

u3fl 3 = ~ lim ("/2 dx { sinx 
41rllm i: .0 Jo (sinx + S ')2 

+ cosx 2} sinvx - e2fl 14m. 
(cosx + t ') 

An explicit calculation of the integral results in the 
expression 

where 

(4.13) 

(4.14) 

4 1 
A (n) = -. --F(1 2n + 1· 2n +~. -1) + 1 

1T 4n + 3 ' 2' 2' , 

(4.15) 

with F(a,b; c; z) the confluent hypergeometric function. 12 

This function can be written as a finite sum: 

A (n) = ~ [1 - 2 i 1 ]. 
1T rn ~ I (4m - 1)( 4m + 1) 

(4.16) 

It is interesting to take the limit for large n: 

(4.17) 
11 .oc 

which reduces to the result of the one electron case. It is not 
hard to understand this result, because in the limit n-+ 00 one 
has fl-O, and thus u- 00. This means that the electrons are 
far apart, the Coulomb interaction will be very weak in com
parison with the electron-phonon interaction, and thus may 
be neglected. In this limit the system reduces to two nonin
teracting polarons; each of these polarons can be described 
by the Hamiltonian of Sec. 3. 

The kinetic energy of the two electrons is 
E" = mu~fl~, with u"!},, given by Eq. (4.14). Observe that, 
in contrast to the exact solutions of Sec. 3, the kinetic energy 
is different for the different states; those states are labeled by 
the integer n. The interaction energy is equal to 
E, = - 4m u~!} ~. This interaction energy contains both the 
interaction energy of the electrons with the polaron field and 
the interaction energy of the Coulomb interaction between 
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the two electrons. These two energies, Ee and E;, satisfy he 
same conditions [Eq. (3.12)] as the energies of the set of exact 
solutions found in Sec. 3. The phonon energy is again logar
ithmically divergent. 

An intuitive argument similar to that in Sec. 3 can be 
given for the appearance of the discrete set of frequencies 
fl" = wl(2n + 1). For each half-period in the past there is 
an infinite contribution to the self-interaction. Indeed, the 
integrand ofF, [Eq. (2.5)] is divergent for t ' = t - m T, while 
the integrand Fie [Eq. (4.4)] is divergent for 
t 1= t - (m + ~)T, with T = 21Tlfl the period and m an inte
ger. These divergences have the following form: 
sin(mw T /2)/ S 2 CS-D). The sum of these divergences will be 
finite when the sign of the terms is alternating. This results in 
the condition wT /2 = (2n + I)1Tor fl = w/(2n + 1), which 
is the set obtained above. 
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The finite temperature excitations of the anisotropic chain in a magnetic field are calculated in the 
region 1..1 1 < 1. Some special solutions are given, which point out several changes with respect to 
the T = 0 case. 

I. INTRODUCTION 

The electronic and magnetic properties of one-dimen
sional materials is one of the topics most widely studied at 
the present time. It is also very well known that a rather wide 
class of these materials present nearest neighbors spin cou
pling as the leading mechanism for the interaction between 
their atoms, and even though the spin can be of any value, at 
low enough temperatures, it is characteristic of some materi
als to present a doublet state, such that an effective spin! 
Hamiltonian is sufficient. 

Some complications, however, (in general due to crystal 
field effects)1 introduce certain anisotropy into the system, 
leading consequently to the study of the following anisotro
pic-spin !-nearest neighbor Hamiltonian 

N 

JII"=! I [0101+1 +0-;0-;+1 +..10101+1] -HIo1, 
i= 1 

(1.1) 

where the (}"'s are the usual Pauli matrices,.J is defined as the 
anisotropy of the system, and the last term is due to the 
energy of interaction of the magnetic atoms with an external 
magnetic field along the direction of anisotropy. This Hamil
tonian has been widely used to describe several magnetic 
materials,2 and it is also useful to explain electronic proper
ties in some one-dimensional organic materials. 3 

The ground state energy for this model has been pre
viously calculated by Yang and Yang,4 and the present au
tho~ has calculated, in some previous work, the elementary 
excitations for any value of anisotropy and magnetization y 
defined by 

N 

y= Io1IN. 
i=J 

The free energy of Hamiltonian (1.1), in the region 1..1 I> 1, 
has been calculated by Gaudin,6 as a solution to an infinite 
set of certain nonlinear integral equations. One year later, 
Johnson and Mccoy7 solved this set of equations in several 
limiting cases. Later on, Johnson8 made use of Gaudin's 
equations to calculate the elementary excitations at finite 
temperature, in the region mentioned above (1..1 I> 1). 

The region 1..1 1 < 1 has been independently studied in a 
series of papers by Takahashi et al.,9 where they point out 
some differences between the two regions. In particular they 
find that for certain values of.J in the region 1..1 1 < 1, the set 
of equations becomes finite and can be solved, at least by 
numerical methods. However, no effort has been made as 

"Present address: Institut de Physique, Universite de Neucbatel, Rue A.-L. 
Breguet 1, CH-2000 Neucbatel, Switzerland 

finite tempera
ture for this region. In this paper we attempt a solution to 
this problem in order to extend the excitation spectrum to all 
values of anisotropy, magnetic field and temperature. 

The work is divided into five sections. Section II intro
duces the notation and reviews the work of Takahashi and 
Suzuki.9 In Sec. III we find by quadrature the elementary 
excitations spectrum at finite temperature. Section IV is de
voted to checking the limit of zero temperature, and the 
method used there is gel1eralized in Sec. V to explicitly solve 
the equations found in Sec. III for small values of 
temperature. 

II. NOTATIONAL PRELIMINARIES 

In this section we reproduce the equations given by Ta
kahashi and Suzuki9 for the thermodynamics of Hamilton
ian (1.1). The symmetry JII"(.J )- - JII"( -..1 ) allows the 
constraint 0..;..1 < 1. We first introduce the quantity /l, de
fined by 

/l = cos ~I.J, (2.1) 

and expand this variable in a continued fraction, namely, 

J.L 1 1 1 
-=-
11" VI + V 2 + V3 + ... 

(2.2) 

These integers Vi' defined by this expansion, are now used to 
defined the set of integers mi andy; by the following 
relations: 

i 

mo = 0, m i = I Vk , 
k~1 

(2.3) 

y~1 =0, yo= 1, Yi =Yi~2 +ViYi~1 (2.4) 

Since the third component of the magnetization,y, is a 
good quantum number, we can study the system with a con
stant number (M) of spins down. Obviously the relation be
tween y and M is trivially given by 

y = 1 -2M IN. (2.5) 

The energy and momentum of an excited state is given in 
terms of some quantities P k by9 

M 

E = 2 I (cosPk -..1) - (N - 2M)H, (2.6) 
k=J 

K= IPk , (2.7) 
k 

where thePk can be found by imposing cyclic boundary con
ditions on Hamiltonian (1.1). 

If we parametrize the P k by the new quantities x k by 

cot(Pk /2) = cot(,u/2)tanh(,uxk /2), (2.8) 

Eqs. (2.6) and (2.7) become 
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M 

E= I (-41Tfl-1 sit1f1al(xk)+2H)-NH, (2.9) 
k=1 

~ 1 sinh [¥t(xk + i)] 
K= ,t.. -In , 

k ~ I i sinh[¥t(xk - i)] 
(2.10) 

where the function al(x) is defined as follows: 

al(x) = L sit1f1 (2.11) 
21T coshf1x - cosfl 

It was argued by Gaudin° and Takahashi9 that as N __ 00 the 
solution to the X k are grouped in strings along lines parallel 
to the imaginary axis. Therefore, we define a complex of 
order n and real part x as 

C,,(X)=tzEC; Z = x + i(n + 1 - 2r) r = 1, ... ,n j, 

and argue that the X k 's will then be given by an infinite set of 
complexes, ~ of which have order nj , parity vj,and real 
partsx~ (a = I, ... ,~;j = 1,2, ... ). For agivenj, nj and Vj are 
determined by the sequences9 

nj=Yr,_1 + (j-mr)Yr, with mr, <J<mr, + I 

for j = 1,2,···, 

-I, vj =exP{1Ti[n
j ;l]} 

for j=/=l,mj , 

(2.12) 

(2.13) 

where the symbol [x] denotes the maximum integer less than 
or equal to x. The set t Xu l is then replaced by the set 1 X~ l of 
complexes with unknown real parts. 

The cyclic boundary conditions then give the following 
equations for Xu 

(2.14) 

where I and 0 are defined by 

f;(X) = f(x, nj , v;), (2.15a) 

Ojk(X) =f(x, Inj - nk I,vjvd + f(x,nj + nk,vjvd 
min(nr nJ.) - 1 

+2 I f(x,lnj -nk I +21,vj vk), (2.15b) 
I~ I 

with 

{ 
0 for nfl/1T = integer, 

f(x,n,v)= 2vtan- 1 {(cotnfl/2)"tanhxfl/2J, (2.16) 

[notice that in the complex Z plane, this function has branch 
points at the places: Rez = 0, Irnz = ± (2/fl) 
X arctan(tannfl/2) ", (nfl/2) # integer. The real axis has no 
branch points, and one can choose the branch cuts connect
ing every other couple of branch points along the imaginary 
axis such that no cut crosses the real axis]. 

In the limit N---+ 00, the thermodynamics of the system is 
given by the distribution functionspj(x) and 1];(x) which 
obey9 

aj(x) = ( - 1)"(1 + 1];) Pj(x) 

+ k~1 f~ oc 1jk(X -x')Pk(x')dx', (2.17) 
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- Aaj(x) + 2njH 

T 

+ ,II foc r dx' (-l)"1jk(X - x') 

X In{I + 1], I (x'», 

where we have used the notation 

I dOjk (x) I dl;<x) 
1j,(x) = ---, aj(x) = ---, 

21T dx 21T dx 

and the constant A is given by 

A = 41Tfl - I sit1f1. 

(2.18) 

The energy, entropy, and other thermodynamic quanti
ties can then be expressed in terms of the distribution func
tionspj(x) and 1]j(x). However, here we have given a general 
introduction to the equations we will use later on to develop 
the thermal excitation spectrum. The interested reader is 
referred to the original papers9 for a complete analysis of the 
thermodynamic properties. 

Equations (2.14), (2.17), and (2.18) are used in Sec. III 
to study the temperature effects on the energy and momen
tum of these excitations. 

III. EXCITATION SPECTRUM 

We create an elementary excitation of the system by 
simply removing or adding a new X k to the equilibrium set 
given in Eq. (2.14). The new set (x;;) will obey a similar 
equation, and upon subtracting both equations we arrive at 
the following: 

N(fj(X;!) - I;CX~» 

= 21T(J;; - J~J + Ojk(X~t - x k) 

+ I I [Oji(X;; - x(f) - Oji(X~ - X~)], (3.1) 
i (3 

where the upper sign indicates that we have removed X k 

from the equilibrium set while the lower is used when we 
insert it. The term with x~ equal to Xk is, of course, not 
included in the sum. 

Since for an elementary excitation x;; is very close to X~t 
at position different fromxk, we expand Ij and Oji about their 
equilibrium set x~ and obtain 

a;(x)Xj(x) 

= Ij + itl roc oc 1}i(X - x') [xj(x) - Xi(X') 1P,(x') dx' 

_ 1 + -Ojk(X -x k ), 
21T 

where we have defined 

Ij = J; - 1;, X;(x~ )===N (x;; - X-;;'), 

(3.2) 

and we have taken the thermodynamic limit withp;(x) being 
the density of x~ at position x. In this limit, as proved by 
Takahashi and Suzuki,9 thepj and 1]j are given by the inte
gral equations (2.17) and (2.18). 

To express our equations in a compact notation, we de
fine an operator Bu such that 
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with 

Bij·Aj = jt, f: 00 { OijO(X - X') 

+ _I _ Tij(x _ X')}Aj(X') dx', 
Sj(x) 

Sj(X) = ( - 1)'1(1 + 17/X». 

Notice that the operator Dij defined by 

1 
Dij= SBij' 

] 

is symmetric in the sense that we have the following relation 

Ai·Dij.Qj = Qj.Dji.A j , (3.3) 

whatever the vectors Q and A are. 

Multiplying Eq. (2.17) by Xj(x) and subtracting from 
Eq. (3.2) gives 

Bji.Qj = Lj , (3.4) 

where the vectors Q and L are defined by 

Q = p(x)X(x), Lj = _1_ (Ij + _1_ Ojk(X - Xk»). 
] } ] Sj(x) 21T' 

We can now proceed to the derivation of the energy and the 
momentum as functionals of Q. 

The energy of the equilibrium set x~ is given from Eq. 
(2.9) by9 

M 

E= L f [-Aaj(x~)+2njHl-NH. 
j~la~1 

The difference in energy between this set and the new x~j, 
keeping y and A constant, is given by 

E = -Aa;.Iij.Qj + (-Aak(xk) +2nkH), 

with Ii} as the unit operator, and a; = aaj(x)lax. 
To evaluate the integral over Q we use Eq. (3.3) and get 

a;.I,j.Qj = (S,Lt)-B 'f '.(aiISj)' 

The right-hand side can be calculated by means of the de
rivative of Eq. (2.18). A straightforward calculation gives 

_ .:! a; =Bjt'~ 
T Sj 17tS, 

With the help of this identity the energy becomes 

17: 
E = TLJ,t' - ± (Aak(xk) -2n,H). 

17t 

By doing an integration by parts, we switch the derivative to 
L, and the remaining integral is easily evaluated by using Eq. 
(2.18); we obtain 

€ = ± Tjt, (_I)'J{ Ojk~OO) In{l + 17}- I(oo»} 
(3.5) 

To calculate the change in momentum, we start with the 
initial one that can be calculated from Eq. (2.10) to read9 

K = ! i [t}(x~,) + 1Tnj j. 
j-IB-I 
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In a similar way the change of momentum due to the excita
tion is given by 

P= 21Ta j·Iij.Qj +1Tnk +tk(x.), 

and by using formulas (2.17) and (3.3) we get 

aj·Iij.Qj = (SpLp).Ipt,pt . 

PI can now be calculated by applying the operator 

a a 
H aH+

T 
aT' 

to Eq. (2.18) and, comparing the result with Eq. (2.17), we 
get 

pix) = - I... ( -1)'1(H ~ + T ~ )In(1 + 17j- I (x». 
A aH aT 

Using this expression, the integral involved in the calcula
tion of P can be evaluated as an integral form ofEq. (2.18). 
The result is 

P = Po + ~ IX, [H ~ + T ~ ]ln17k(X) dx, (3.6) 
2 slfIIL - 00 aH aT 

where Po does not depend on x k and is given by 

Po = - ~ ! (-I)"(/j + Oik(CXl») 
2 slfIIL j ~ I 217' 

X Ioc fH ~ + T ~ ]In(1 + 17j-'(X» dx 
- oc an aT 

± (tk(CXl) -1Tnk )· 

Equations (3.5) and (3.6) give the energy-momentum rela
tion for the elementary excitation at finite temperature, in 
parametric form, and with the 17) given by Eq. (2.18). 

A check of the calculations can be achieved by taking 
the limit T -+0. In Sec. IV we show that, in this limit, we 
obtain the expected equation.5 Part of our reason for doing 
this calculation is to show some explicit results that we need 
in Sec. V, when we analyze the spectrum found here, for 
small values of T. 

IV. THE ZERO TEMPERATURE LIMIT 

In this section we prove explicitly that the elementary 
excitation spectrum at finite temperature, calculated in Sec. 
III, goes to the proper limit5 as T -+0. 

Equation (3.5) gives the exictation energy. We can easi
ly calculate the term 17) - I ( 00 ) at any temperature, by taking 
the limit X-+ CXl in Eq. (2.18). Using the fact that 

a} ( CXl ) = 0, 1), ( CXl ) = 0, 

we get 

2nH 
In17) ( 00 ) = _J_. 

T 

As the temperature approaches zero with H being constant 
we then see that the quantity 17)- I (00) vanishes. Notice, how
ever, that the combination Tln17)(x) remains finite as T-o. 
We therefore define 

EJ(X) = lim Tln17/x). 
T -.{) 

Since9 EJ> 0 for />2, the only relevant integral equation in 
(2.18) is the one corresponding to j = 1. E? is an even func-
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tion of x positive at 00 and negative at zero. It has two zeros 
that we denote by ± k (we come back to this point later). 
The integral equation for E~ (x) then becomes 

E~(X)= -Aa](x)+2H- f~k Tl1(x-x')~(x')dx',(4.1) 
where we have used the fact that n 1 = 1 and 1/ 1- ] (x') vanish
es outside the region [ - k,k ). 

We now remove an XI = x from string 1 and add an 
Xl = k in the same string. The energy then becomes 

E = E~(k) - E?(X). (4.2) 

To calculate the momentum, we define the function R (x) by 
the relation 

~ (a a ) E?(X) 
R (x) = T H aH + T aT ---r ' (4.3) 

so that P can now be expressed as 

P = _ 211" fX R (x) dx + 211" fk R (x) dx, 
A -k A -k 

(4.4) 

where we have taken the integer 11 equal to zero to match the 
caseLi = O. 

We now substitute Eq. (4.3) into Eq. (4.1) and find the 
following integral equation for Ii (x) 

R(x)=Aat(x)- fk TtI(x-x')R(x')dx'. 

With the change of variables x = a//-l, b = /-lk we obtain 

P = rb

, R (a) da, (4.5) 
J/'x 

where the function 

R (a) = R (~//-l) 
2 SlI1f.l 

satisfies the following integral equation 

R (a) = siI1f.l 
cosha - cos/-l 211" 

Xfh sin2/-l R({3)d{3. (4.6) 
- b cosh(a - (3) - cos2/-l 

To transform the energy equation we first use the fact that k 
is a zero of c~, so that Eq. (4.2) simply reads 

E = - c?(x). 

Performing the change of variables mentioned above in Eq. 
(4.1) we get 

C = 2 siI1f.lS ([3), (4.7) 

with S (a) satisfying 

2H siI1f.l 
S(a) = --~-

cosha - cOS{J 2 siI1f.l 

_ _1_ fb sin2/-l S ( (3) d{3. 
2rr - b cosh(a - (3) - cos2/-l 

We now introduce the function Z (a) as a solution ofthe 
equation 

I fb sin2/-l d Z(a) = I - - Z({3) '/3; 
211" - b cosh(a - (3) - cos2/-l 

(4.8) 
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and with the use of this equation together with Eq. (4.6) we 
can write S (a) as 

S(a) = R (a) - ~Z(a) 
2 SlI1f.l 

so that Eq. (4.7) can be written as 

E=2SiI1f.l{R([3)- R(b) Z(fJ)}, 
Z(b) 

(4.9) 

after using the fact that b is a zero of S (a), as implied by Eq. 
(4.7). 

Equations (4.5) and (4.9) are the solution of the elemen
tary excitation spectrum at zero temperature. 10 In Sec. V we 
use these techniques to solve the excitation equations for 
small values of temperature. 

V. SPECIAL SOLUTIONS 

Equations (3.5) and (3.6) are extremely difficult to solve 
in closed form, and a general solution looks rather impossi
ble. Some idea of the effects of temperature on these excita
tions can be achieved, however, if one expands the solution 
for small values of temperature. 

Using the results obtained in Sec. IV, we can create an 
elementary excitation at finite magnetization by removing x] 
from string I and placing a new x; in the same string. These 
changes (performed in the same string), keep constant the 
magnetization of the system, and we can therefore simplify 
the equations considerably. In fact, Eq. (3.5) now reads 

c= -Tln1/,(x t)+Tln1/,(x;), (5.1) 

while the momentum becomes 

P= _/-l_ H-+ T - In1/](x)dx, T IX; (a a ) 
2 siI1f.l x, aH aT 

(5.2) 

after taking all the Ii = 0 to match the proper curve in the 
limit of zero temperature. 

Defining the function c,(x) as 

c,(x) = Tlm/I(x), 

we can see from Eq. (2.18) that this function obeys 9 

E,(x) + Aa,(x) - 2H 

= T f~ x a2(x - x') In(I + e - <,(x')lT) dx', (5.3) 

where 

a (x) = L sinj/-l , 
J 211" coslvJx - cosj/-l 

(5.4) 

and we have assumed T <.H. 
If T = 0, the right-hand side ofEq. (5.3) vanishes wher

ever Ct(x) is positive, so denoting by E?(X) the solution of 
(5.3) for zero temperature (see also Sec. IV), we can write 

c~(x) = -Aa\(x) +2H - ( az(x -x')c~(x')dx'. (5.5) 
J£\) <0 

Since a ,(x) and aix) are even functions of x, so is c~(x). 
Moreover, at ± 00 we have 

E~( ± 00) = 2H. 

Thus in the region ofy#O, 1 [H < 2(1 - ~ )] E~ has necessar-
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ily two zeros, denoted by ± k in Sec. IV. As the temperature 
increases slightly the zeros of E \ (x) move to locations that we 
denote by k " and Takahashi9 proves that for small tempera
ture (and ~ i= -1) we have 

( -D( ) 17"J-L U (x) T2 
EI x) = toi x + , 

24siI¥t W (k ) 
(5.6) 

where Uand Wsatisfy 

U (x) = aix + k ) + a2(x - k ) 

- I~ k a2(x - x') U (x') dx', (5.7) 

W (x) = J-L 
2 

siI¥t sinlvLx 
217" (coslvLx - COSj.L)2 

- I~ k a2(x - x') W (x') dx'. (5.8) 

We can now proceed to use Eq. (5.6) to evaluate the exicta
tion energy and momentum. From Eq. (5.3) it becomes obvi
ous that E\(X) is an even function of x so that if we make a 
move such that xi = - XI' the energy will be zero and the 
momentum finite. That allows many zero-energy excitations 
at finite temperature due to the number of holes created by 
exciting particles above the "Fermi surface". 

Out of these many possibilities we will concentrate on 
the excitation such that xi = k " which is the one we can 
easily compare to the only one allowed at zero temperature. 

Since k' is a zero of E\(X), Eq. (5.1) becomes 

€ = _ €~(x\) - 17"J-L U(x l ) T2, (5.9) 
24 siI¥t W(k) 

where U(x) and W(x) are given by Eq. (5.7) and (5.8). 
To calculate the momentum change due to temperature 

effects we first divide Eq. (5.3) by Tand apply the operator 

T(T~+n~) aT an 
to both sides. A simple calculation yields 

J= 1 
L (x) = Aal(x) - aix - x') ') 

- 00 1 + exp(E\(x )/T 
XL (x') dx', (5.10) 

where L (x) has been defined by 

L(x)= T(T~+n~) €I(X) . 
aT an T 

With the help of Eq. (5.6) we can expand Eq. (5.10) as 

1 
[ 

L (x) ] siI¥t 
2 siI¥t = coslvLx - coSj.L 217" 

Jk' sin2J-L [ L (x') ] d' 
X --- J-L x. 

- k' coshp(x - x') - cos2J-L 2 siI¥t 

Changing variables to a = J-LX we can express the momen
tum as 

P= I:, [R(a)-K(a)R(b)(b'-b)]da, 

K (a) = _1_ { sin2J-L 
217" cosh(a + b) - cos2J-L 

sin2J-L } + , 
cosh(a - b) - cos2/-l 

(5.11) 
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where b' = J-Lk' and R (a) is defined in Sec. IV. 
Expanding (5.11) around J-Lk we have 

P= pO + R (b )J-L(k' - k)( 1 - I:, K(a)da), (5.12) 

where po is the momentum obtained at zero temperature. 
(k' - k ), being of order T2, is now calculated by using the 
fact that k' is a zero €\(x). Equation (5.6) for x = k' reads 

€O(k')+ 17"J-LU(k') T2=0. (5.13) 
I 24 siI¥t W(k) 

Expanding the function about k we have 

~'(k).(k' - k) = _ 11'j.LU(k) 
24 siI¥t W (k ) 

after using the fact that k is a zero of ~(x). 

(5.14) 

Taking the derivative in Eq. (5.5) and integrating by 
parts we get 

€?'(x) = AW(x), 

which transforms Eq. (5.14) into 

k'-k= _ J-L
2
U(k) T2. 

96 sin2J-L W 2(k) 

Equation (5.12) now gives the final result 

p=po_ R(b)U(k)J-L
3 

T2(1_ (b K(a)da). (5.15) 
96 sin2J-L W 2(k) JI'X, 

Equations (5.9) and (5.15) give us the momentum and ener
gy changes due to a small temperature effect. 

We can see by inspection that for x I = k ' we have P = ° 
and € = 0, so that the curve starts at the origin. For 
x I = - k ' the energy is again zero by the symmetry argu
ment mentioned above, while the momentum is shifted with 
respect to the one at zero temperature by the amount 

$ = Pmax(T= T) - Pmax(T= 0) 

= _ R (b )J-L3 U (k) T2(2 _ Jb K (a) da), 
96 sin2/-l W 2(k) _ b 

the factor of two coming from the surface effect at the lower 
end of the integral. 

The eigenvalues of the integral operator a2 were shown 
by Yang and Yang4 to lie in the strip [-1,1]. The eigenval
ues of the resolvent 1/(1 + a2) are then positive, and conse
quently the functions U(x) and W(x) have the same sign as 
their inhomogeneous terms [Eq. (5.7) and (5.8)]. W(x) is 
then always positive and 

signU(x) = sign(sin21l) = sig~. 

On the other hand, we also have the result4 

R (a»O, V~E[ -1.1]. 

I f b K(a) da I < I~ 00 IK(a)1 da<2. 

So we can conclude that this shift $, and the slight energy 
difference, are negative for positive ~ and positive for nega
tive ~. The shift of the momentum at which the energy van
ishes is then proportional to T2 and moves toward the right 
or the left according to the sign of ~ (negative or positve). II 
A not so surprising result is that for ~ = 0, there is not such a 
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T2 correction. This can easily be seen by comparing Eqs. 
(5.3) and (5.5), that yield the same solution fora2 = 0, which 
is the case for L1 = O. This is in good agreement with the 
intuitive result that we would expect from the known rela
tion of the L1 = 0 case to a free particle gas. 

Equation (2.18) can also be used to discuss other order 
complexes. Keeping in mind that all the Ej forj>2 are posi
tive in the limit of zero temperature, one can approximate 
this equation at small T. A straightforward calculation 
yields: 

Ej(X) = - Aaj(x) + 2njH 

- f: = 1j, (x - x') ln(l - e ~ <,(x')IT) dx'. 

Expanding the integral on the right-hand side for low tem
perature, and using the fact that k is a zero of 6~ (x), we 
obtain 

o [ 1TpT2 ] 
Ej(X) = EJX) - 24 sinp W(k) 

X [f~ k 1j, (x - x')U(x') dx' -1j, (x - k) 

-1j, (x + k)] 
which shows a first order correction of T2 for all complexes. 
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ERRATA 

Erratum: On the sound field due to a moving source In a superfluid 
[J. Math. Phys. 20, 1409 (1979)] 

J. C. Murray 
Department of Mathematical Sciences, University of Petroleum and Minerals, Dhahran, Saudi Arabia 

(Received 24 April 1980; accepted for pUblication 2 May 1980) 

Equations (3.2), (3.4), (3.28), and (4.12) should be cor
rected to read 

a2p+ ~T + 
a---.1p+ -y--at 2 at 2 

qo a [ (. )o( U) o(r) = --- exp UJJot t - xl ] -- , 
4U1T at r 

(3.2) 

a2p- ~T-
a--- .1p- -y--at 2 at 2 

qo a [ .) ( )] o(r) = -- - exp( -1(JJot 0 t - xlU --, 
4U1T at r (3.4) 

(3.28) 

Erratum: The Planck integral cannot be evaluated in terms of a finite series of 
elementary functions 
[J. Math. Phys. 21, 14 (1980)] 

Richard Pavelle 
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173 

(Recc,ived 1 May 1980; accepted for publication 2 May 1980) 

In Ref. 3, terms of the equation are not clear, especially 
superscripts and subscripts. The equation should read as 
follows: 

2313 J. Math. Phys. 21(8), August 1980 0022-2488/801082313-01 $0.00 

= e - x ! e - 'IX = ! e - nx. 

n=O ff = I 
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Erratum: Integration of near-resonant systems in slow-fluctuation 
approximation 
[J. Math. Phys. 21, 462 (1980)] 

M. F. Augusteijn and E. Breitenberger 
Department 0/ Physics, Ohio University, Athens, Ohio 45701 

(Received 7 May 1980; accepted for pUblication 16 May 1980) 

Several disfigured statements appear in the paper, 
which should be corrected as follows: 

(1) After Eq. (4.3), in the sentence beginning "General 
conclusions ... ": instead of "can fortunately be drawn" read 
"can unfortunately not be drawn". 

(2)On p. 467, top left: instead of "with n which are not 

more simple additive" read "with n more which are simple 
additive" . 

(3) In Ref. 14, in the reference to Korteweg: instead of 
"5, 10 (1897)" read "5, No.8 (1879), especially p. 10". 

(4) In Ref. 17: instead of "Oxford University, New 
York" read "Clarendon Press, Oxford". 
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